Sitemap  |  Contact  |  Home  |  中文  |  CAS  |  Director’s Email
International Cooperation
Education & Training
Societies & Publications
Chinese Journal of Acoustics
 
 
  Location:Home>Chinese Journal of Acoustics
Calculation of vibrational energy transition rates in acoustic relaxation processes for excitable gas molecules(2018 No.2)
Author:
ArticleSource:
Update time: 2024/07/24
Viewed:
Close
Text Size: A A A
Print

Title: Calculation of vibrational energy transition rates in acoustic relaxation processes for excitable gas molecules

Author(s): ZHANG Kesheng; ZHANG Xiangqun; TANG Wenyong; XIAO Yingqun; JIANG Xueqin;

Affiliation(s): School of Electrical and Information Engineering, Guizhou Institute of Technology, et al.

Abstract: To research the correlation between vibrational energy transition rates and acoustic relaxation processes in excitable gases, the vibrational relaxation theory provided by Tanczos [J.Chem. Phys. 25, 439(1956)] is applied to calculate the energy transition rates of Vibrational-Vibrational (V-V) and Vibrational-Translational (V-T) energy transfer in gas mixtures. The results of calculation for the multi-relaxation processes in various gas mixtures, consisting of carbon dioxide, methane, chlorine, nitrogen, and oxygen at room temperature, demonstrate that the acoustic energy stagnated in every vibrational mode is coupled with each other through V-V energy exchanges. The vibrational excitation energy will relax through the V-T de-excitation path of the lowest mode because of its fastest V-T transition rate, resulting in that only one absorption peak can be measured for most of excitable gas mixtures. Thus, an effective model is provided to analyze how the vibrational energy transition rates affect the characteristics of acoustic relaxation processes and acoustic propagation in excitable gas mixtures.

 
Copyright ? 1996 - 2020 Institute of Acoustics, Chinese Academy of Sciences
No. 21 North 4th Ring Road, Haidian District, 100190 Beijing, China
E-mail: ioa@mail.ioa.ac.cn