Title: A high precision calibration method for long baseline acoustic positioning systems
Author(s): HAN Yunfeng;ZHENG Cuie;SUN Dajun;
Affiliation(s): Acoustic Science and Technology Laboratory, Harbin Engineering University; et al.
Abstract: To solve the problem that traditional long baseline(LBL) positioning system is easily affected by severe sound speed varying results in low calibration precision, low efficiency and inconsistent position using different references, we propose a high precision array calibration method. We use distances between beacons to build error adjustment model. This model improves the calibration performance of traditional calibration method. The theory shows this method can achieve equal calibration precision with distance measurement precision in horizon. This method can improve the calibration efficiency, solve position ambiguity and achieve high precision especially in deep ocean. The shallow water experiment shows this method has millimeter calibration precision which is equal to distance measurement error. The calibration precision improves from centimeter to millimeter compared to traditional calibration method.The method also decreases the operation complexity. The localized positions are more close to GPS compared to traditional method, which has great application values.