Title: The concise fractional Fourier transform and its application in detection and parameter estimation of the linear frequency-modulated signal
Author(s): CHEN Yanli; GUO Lianghao; GONG Zaixiao;
Affiliation(s): Institute of Acoustics, Chinese Academy of Sciences, et al.
Abstract: A concise fractional Fourier transform(CFRFT) is proposed to detect the linear frequency-modulated(LFM) signal with low signal to noise ratio(SNR).The frequency axis in time-frequency plane of the CFRFT is rotated to get the spectrum of the signal in different angles using chirp multiplication and Fourier transform(FT).For LFM signal which distributes as a straight line in time-frequency plane,the CFRFT can gather the energy in the corresponding angle as a peak and improve the detection SNR,thus the LFM signal of low SNR can be detected.Meanwhile,the location of the peak value relates to the parameters of the LFM signal.Numerical simulations and experimental results show that,the proposed method can be used to efficiently detect the LFM signal masked by noise and to estimate the signal's parameters accurately.Compared with the conventional fractional Fourier transform(FRFT),the CFRFT reduces the transform complexity and improves the real-time detection performance of LFM signal.