【Title】Time domain finite volume method for the transient response and natural characteristics of structural-acoustic coupling in an enclosed cavity (2014 No.3)
【Author】XUAN Lingkuan; MING Pingjian; ZHANG Wenping; JIN Guoyong; GONG Jingfeng
【Abstract】A time domain finite volume method(TDFVM)based on wave theory is developed to analyze the transient response and natural characteristics of structural-acoustic coupling problems in an enclosed cavity.In the present method,the elastic dynamic equations and acoustic equation in heterogeneous medium are solved in solid domains and fluid domains respectively.The structural-acoustic coupling is implemented according to the continuity condition of the particle velocity along the normal direction and the normal traction equilibrium condition on the interface.Several numerical examples are presented to validate the effectiveness and accuracy of the present TDFVM.Then the effects of water depth on the acoustic and vibration characteristics and the natural characteristics of a structural-acoustic coupling system are analyzed.The numerical results show that the increase of water depth leads to a stronger coupling between the water and structure and the decrease of natural frequencies of coupling system,The computational cost and memory of this method are small and it can be applicable to structural-acoustic coupling problems in the heterogeneous fluid.