Sitemap  |  Contact  |  Home  |  中文  |  CAS  |  Director’s Email
International Cooperation
Education & Training
Societies & Publications
Chinese Journal of Acoustics
 
 
  Location:Home>Resources>Popularization of scientific knowledge
How Speech Recognition Works: Speech to Data
Author:
ArticleSource:
Update time: 2013/02/04
Viewed:
Close
Text Size: A A A
Print

An ADC translates the analog waves of your voice into digital data by sampling the sound. The higher the sampling and precision rates, the higher the quality.

To convert speech to on-screen text or a computer command, a computer has to go through several complex steps. When you speak, you create vibrations in the air. The analog-to-digital converter (ADC) translates this analog wave into digital data that the computer can understand. To do this, it samples, or digitizes, the sound by taking precise measurements of the wave at frequent intervals. The system filters the digitized sound to remove unwanted noise, and sometimes to separate it into different bands of frequency (frequency is the wavelength of the sound waves, heard by humans as differences in pitch). It also normalizes the sound, or adjusts it to a constant volume level. It may also have to be temporally aligned. People don't always speak at the same speed, so the sound must be adjusted to match the speed of the template sound samples already stored in the system's memory.

Next the signal is divided into small segments as short as a few hundredths of a second, or even thousandths in the case of plosive consonant sounds -- consonant stops produced by obstructing airflow in the vocal tract -- like "p" or "t." The program then matches these segments to known phonemes in the appropriate language. A phoneme is the smallest element of a language -- a representation of the sounds we make and put together to form meaningful expressions. There are roughly 40 phonemes in the English language (different linguists have different opinions on the exact number), while other languages have more or fewer phonemes.

The next step seems simple, but it is actually the most difficult to accomplish and is the is focus of most speech recognition research. The program examines phonemes in the context of the other phonemes around them. It runs the contextual phoneme plot through a complex statistical model and compares them to a large library of known words, phrases and sentences. The program then determines what the user was probably saying and either outputs it as text or issues a computer command.

We'll take a closer look at exactly how it does this next.

 
Copyright © 1996 - 2020 Institute of Acoustics, Chinese Academy of Sciences
No. 21 North 4th Ring Road, Haidian District, 100190 Beijing, China
E-mail: ioa@mail.ioa.ac.cn