
Contents lists available at ScienceDirect

Applied Acoustics

journal homepage: www.elsevier.com/locate/apacoust

Guided spectrogram filtering for speech dereverberation

Chengshi Zhenga, Zheng-Hua Tanb, Renhua Penga,⁎, Xiaodong Lia

a Key Laboratory of Sound and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, 100190 Beijing, China
bDepartment of Electronic Systems, Signal and Information Processing Section, Aalborg Univeristy, Aalborg 9220, Denmark

A R T I C L E I N F O

Keywords:
Guided filter
Guided image filtering
Spectrogram
Dereverberation

A B S T R A C T

Guided filtering is a computationally efficient and powerful technique used in image processing applications,
such as edge-preserving smoothing, details enhancing and single image dehazing. In this paper, we propose a
novel single channel speech dereverberation method using guided spectrogram filtering by considering a speech
spectrogram as an image. The proposed method requires neither room acoustic parameter estimation nor late
reverberant spectral variance estimation. Objective test results show the validity of the guided spectrogram
filtering method for speech dereverberation. Compared with state-of-the-art speech dereverberation methods,
the proposed method has better performance in terms of perceptual evaluation of speech quality (PESQ), speech-
to-reverberation modulation energy ratio (SRMR) and short-time objective intelligibility (STOI) in most cases.

1. Introduction

In reverberant environments, speech quality and speech intellig-
ibility may degrade dramatically due to acoustic reverberation. Also,
speech recognition often fails in highly reverberant conditions. Speech
dereverberation is important for hands-free speech communication
systems and human-machine speech interfaces [1–4]. Numerous effec-
tive methods have already been proposed to reduce late reverberation
components in the last half century [5–17].

Conventional single-channel speech dereverberation methods often
need to estimate the late reverberant spectral variance [7–17]. For this
purpose, some room acoustic parameters usually need to be estimated
blindly, such as the reverberation time (T60) or the damping constant.
Note that some methods can estimate the late reverberant spectral
variance without estimating any room acoustic parameters. In [11], the
late reverberant spectral variance is estimated by using long-term
multi-step linear prediction. In [12], however, it is estimated by ex-
ploiting long-term correlation.

It is well-known that acoustic reverberation has impact on clean
speech spectrograms. If a clean speech spectrogram is considered as a
clean image, its corresponding reverberant speech spectrogram can be
considered as a corrupted version of the clean image. Single image
denoising is a hot topic in image processing and numerous algorithms
have been proposed in recent years, such as the bilateral filter and the
guided filter [18–21]. Since spectrograms contain very useful in-
formation of the represented signals, they are used for various purposes,
such as biological signals denoising [22,23], speech enhancement
[24,25], speech recognition [26], fundamental frequency extraction

[27], sound classification and speaker identification [28–30].
In this paper, a guided spectrogram filtering method is proposed to

reduce acoustic reverberation for the following three considerations.
First, as pointed out in [21], the guided filter has shown its effectiveness
and efficiency in many computer vision and computer graphics appli-
cations. Second, it does not have unwanted gradient reversal artifacts
near edges that the bilateral filter may have. Third, it has better per-
formance and much less computational cost than the lateral filter [18].

The remainder of this paper is organized as follows. Section 2 for-
mulates the problem. Section 3 presents the proposed guided spectro-
gram filtering method and the detailed description of reconstructing the
time-domain enhanced speech. Experimental results and conclusions
are given in Section 4 and Section 5, respectively.

2. Problem formulation

In reverberant environments, a microphone signal can be modeled
as

∑=
=−∞

x n h n m s m( ) ( , ) ( ),
m

n

(1)

where s n( ) is discrete-time domain clean speech and h n m( , ) is the
linear transfer function from the source signal s n( ) to the microphone.
h n m( , ) could be time-varying or time-invariant. For a linear time-in-
variant system, = − =h n m h n m h τ( , ) ( ) ( ) holds, where = −τ n m. When
the geometry of the talker and the microphone does not change rapidly,
it can be assumed that the transfer function from s n( ) to the
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microphone is approximately linear time-invariant. Most of blind
system identification-based algorithms assume that the transfer func-
tion is linear time-invariant, or approximately linear time-invariant,
and thus their performances may degrade a lot for a moving talker [4].

Bradley et al. have shown that early reflections that reach the mi-
crophone in approximately the first 50–100ms after the direct path are
beneficial to overall speech intelligibility [31]. Hu et al. further show
that early reflections neither improve nor decrease overall speech
perception [32]. However, it is well-known that late reflections may
reduce both speech quality and speech intelligibility, so that they need
to be suppressed. For this reason, (1) is rewritten as

∑ ∑= +
= − + =−∞

−

x n h n m s m h n m s m( ) ( , ) ( ) ( , ) ( ),
m n D

n

m

n D

1h

h

(2)

where Dh denotes the filter length of early reflections. (2) is further
written as

E L= +x n z n z n( ) ( ) ( ), (3)

where E = ∑ = − +z n h n m s m( ) ( , ) ( )m n D
n

1h
denotes the early speech com-

ponent and L = ∑ =−∞
−z n h n m s m( ) ( , ) ( )m

n Dh denotes the late reverberant
speech component. In this paper, only the late reverberation needs to be
suppressed, while the early speech component is unaltered.

Applying the short-time Fourier transform (STFT) to (3), we get

E L= +X k l Z k l Z k l( , ) ( , ) ( , ), (4)

where = ∑ +=
− −X k l x n lR w n e( , ) ( ) ( )n

K j nk
0
1 π

K
2

is the STFT of x n( ). k and l
are, respectively, the frequency bin index and the frame index. K is the
frame length and R is the frame shift. Analogous to EX k l Z k l( , ), ( , ) and
LZ k l( , ) correspond to the STFTs of Ez n( ) and Lz n( ), respectively.
Spectrograms of the microphone signal, the early speech component,
and the late speech component are denoted as
X ZE E= =k l X k l k l Z k l( , ) 20log (| ( , )| ), ( , ) 20log (| ( , )| )10

2
10

2 and
ZL L=k l Z k l( , ) 20log (| ( , )| )10

2 , respectively. Each spectrogram can be
regarded as an image, where each time-frequency bin is a pixel.

Before giving an intuitive interpretation, we propose to normalize
each spectrogram first. Taking X k l( , ) as an example, we have

X
X

�
=∼ k l k l( , ) ( , )

max{ } (5)

where �max{ } extracts the maximum value of the matrix �. The ele-
ment of � is given by

X X �= −k l k l( , ) ( , ) min{ } (6)

where �min{ } extracts the minimum value of the matrix� . The element
of � is given by

X
X X X

X
 = ⎧

⎨⎩

⩾
k l

k l k l
( , )

( , ), if ( , )
, otherwise

min

min (7)

where X �= −max{ } 255min .
Fig. 1 shows the impact of the late reverberant component on the

normalized spectrogram of a clean speech signal. We use the same clean
speech signal as in [17], taken from the TIMIT database [33]. The
transfer function between the talker and the microphone is generated
by the image method [34], where the length, width and height of the
simulated rectangular room are 5m, 4m and 3m, respectively. Ac-
cording to Sabine’s reverberation model, the value of the reflection
coefficient can be calculated directly when the reverberation time T60 is
given. As can been seen from Fig. 1, the late reverberant component has
significant impact on the normalized spectrogram of the clean speech
signal. If the normalized spectrogram of the clean speech signal is re-
garded as a clean image, the normalized spectrogram of the reverberant
and the noisy speech can be seen as this clean image with haze. In this
paper, an efficient and effective haze removal algorithm is adopted to
extract the early speech component Ez n( ) from the microphone signal
x n( ).

3. Guided spectrogram filtering

To the best of our knowledge, the guided image filtering method
[21] has not been introduced for speech dereverberation yet. Based on
the guided image filtering method, we propose a guided spectrogram
filtering method for speech dereverberation. In practice, only the nor-
malized spectrogram of x n( ) is available, and thus we only have the
guidance spectrogram �

∼
. The element of the filtering input spectrogram

�
∼ can be computed from �

∼
directly, which is given by

� � �= − + − ∼∼ ∼k l β k l β k l( , ) ( , 1) (1 ) ( , ), (8)

where β is the forgetting factor and its typical value ranges from 0 to 1.
According to [21], the local linear model between �

∼
and the filtering

output spectrogram �
∼

is the most important assumption of the guided
filter, which leads to

� �= ∘ +∼ ∼A B, (9)

where ∘ denotes the Hadamard product, and both A and B are calcu-
lated from the guidance spectrogram �

∼
and the filtering input spec-

trogram �
∼, which is given in details herein.

1. Compute the local variance of the guidance spectrogram �
∼

at each
frequency bin k and l, given by

� � �= −∼ ∼ ∼σ k l m k l m k l( , ) ( , ) ( ( , )) ,2 2 2
(10)

where

�
�

∑ ∑= ∼

−

+

−

+

∼m k l k l N( , ) ( ( , )) / ,
l r

l r

k r

k r
2 2

2

2

1

1

(11)

and

�� ∑ ∑= ∼

−

+

−

+
∼m k l k l N( , ) ( , )/ ,

l r

l r

k r

k r

2

2

1

1

(12)

where = + × +N r r(2 1) (2 1)1 2 denotes the number of time-fre-
quency bins in computing the local mean and the local mean of
square of �

∼
. The parameter r1 should not be a large value due to that

statistical independence assumption over frequency is valid even in
reverberant conditions. However, r2 could be much larger than r1

when considering that the late reverberant components are
smoothed and shifted version of the power spectral densities of the
clean speech [8].

2. Compute the local covariance of the guidance spectrogram �
∼

and
the filtering input spectrogram �

∼ at each frequency bin k and l,
given by

�� �� � �= − ∼ ∼∼ ∼k l m k l m k l m k lcov ( , ) ( , ) ( , ) ( , ), (13)

where

Fig. 1. Waveforms and normalized spectrograms of the clean speech (a), (b), the re-
verberant speech with =T 40060 ms (c), (d).
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and
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2
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3. Calculate ∼A k l( , ) and ∼B k l( , ) using the local covariance, the local
variance and the local mean, given by

�� �
= +∼

∼∼A k l k l σ k l ε( , ) cov ( , )/( ( , ) )2
(16)

and

� �= −∼ ∼ ∼∼B k l m k l A k l m k l( , ) ( , ) ( , ) ( , ) (17)

4. Locally smooth ∼A k l( , ) and ∼B k l( , ) as follows

∑ ∑= ∼

−

+

−

+
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2
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(18)

and

∑ ∑= ∼

−

+

−

+

B k l B k l N( , ) ( , )/ ,
l r

l r

k r

k r

2

2

1

1

(19)

where A k l( , ) and B k l( , ) are, respectively, the element of A and that
of B in (9).

The enhanced spectrogram using the proposed guided spectrogram
filtering is given by

Y = − ∼∼k l X k l αQ k l( , ) max{ ( , ) ( , ),0}, (20)

where α is a constant value ranging from 0 to αmax and ∼Q k l( , ) is the
element of the matrix �

∼
. The same as spectral subtraction-type

methods, α can be regarded as a subtraction factor. When
Y= = ∼α k l X k l0, ( , ) ( , ) holds so that all the pixels are unchanged. When

α is large enough,Y ≡k l( , ) 0 holds so that all the pixels becomes zero.
Therefore, αmax should not be too large. A scaling factor is introduced to
normalize the enhanced spectrogram, given by

Y
�

=∼Y k l k l( , ) 1
max{ }

( , ).
(21)

The normalized enhanced spectrogram is applied to compute the
gain function directly, which is given by

= ⎧
⎨⎩

⎧
⎨⎩

⎫
⎬⎭

⎫
⎬⎭

∼
∼G k l Y k l
X k l

G G( , ) min max ( , )
( , )

, , ,min max
(22)

where ∈ − −G [ 30 10]min dB is the minimum value of the gain that con-
strains the residual noise floor and Gmax is one.

After obtaining the gain function, an inverse FFT (IFFT) is applied to
synthesize the time-domain enhanced speech, which is given by

E =∼z n G k l X k l( ) IFFT{ ( , ) ( , )}, (23)

where the overlap-add method is necessary to reconstruct the time-
domain enhanced speech generally.

The detailed implementation of the proposed guided spectrogram
filtering method is summarized in Algorithm 1. It is worth noting that
the proposed method does not need to estimate the late reverberant
spectral variance for the purpose of suppressing the late reverberant
speech component. Therefore, we need neither the late reverberant
spectral variance estimation nor room acoustic parameter estimation to
implement the proposed method. Moreover, the implementation of the
proposed method is very efficient. This is because the guided filter in
Algorithm 1 has an O (1) time implementation for each time and

frequency bin [21]. Note that =r r1 2 is chosen in the original guided
filter, where only one parameter r is used for image processing in [21].
While considering for speech applications, r1 in the frequency dimen-
sion should be much smaller than r2 in the time dimension for dere-
verberation.

Algorithm 1. Guided spectrogram filtering

(1) Normalized Reverberant Speech Spectrogram Generation
Input: x n( )

Output: X k l( , ) and �
∼ k l( , )

a) Apply the STFT to obtain X k l( , )

b) Use (5)–(7) to calculate �
∼ k l( , )

(2) Guided Filter

Input: the filtering input spectrogram �
∼ r r, ,1 2 and ε

Output: the filtering output spectrogram �
∼

(a) Compute �
∼ using (8)

(b) Compute A and B using (10)–(19)

(c) Compute �
∼

using (9)
(3) Speech Reconstruction

Input: � �
∼ ∼k l k l( , ), ( , ) and X k l( , )

Output: the time-domain enhanced speech E
∼z n( )

(a) Compute the enhanced spectrogramY k l( , ) using (20)
(b) Normalize the enhanced spectrogram using (21)
(c) Calculate the gain function using (22) for dereverberation
(d) Reconstruct E

∼z n( ) by using IFFT in (23) and the overlap-add
method

To show the capability of the proposed guided spectrogram filtering
method in an intuitive way, we depict the normalized enhanced speech
spectrograms in Fig. 2, where = = = = −r r α G1, 2, 1.0, 171 2 min dB,

= =K R512, 128 and =ε 0.82 are chosen for the sampling rate
=f 16,000s Hz. Comparing Fig. 2 with Fig. 1 shows that the degraded

spectrogram has been enhanced by the proposed method, where the
smearing effect of reverberation has already been partially removed.

4. Performance evaluation

To evaluate the performance of the proposed guided spectrogram
filtering method, we compare it with the spectral subtraction method
presented in [7,35], the GSVD-based single-channel speech dere-
verberation [6] and the constrained minimum mean square estimation
linear prediction-based dereverberation using GSVD [17], where SS,

Fig. 2. Waveforms and normalized spectrograms of the clean speech (a), (b), the re-
verberant speech with =T 40060 ms enhanced by the proposed guided spectrogram fil-
tering method (c), (d).
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GSVD and CMMSE-GSVD are respectively abbreviations of these three
existing methods and the proposed method is referred as GSF. To
achieve the best performances of these three competing methods, the
same as [35], we use the knowledge of the true reverberation times to
estimate the late reverberation spectral variance that is need to sup-
press the reverberant components for these methods, where in practice
the reverberation times have to be estimated from the microphone
signals blindly.

The clean speech samples are taken from the TIMIT database [33]
and sets of measured RIRs for five rooms are used:

1. Room A: 6m× 6m× 3m, fully closed curtains on walls, ≈T 0.260 s
2. Room B: 6m× 6m× 3m, partially closed curtains on walls,

≈T 0.460 s
3. Room C: meeting room, 5m× 3.5 m× 3m, ≈T 0.660 s
4. Room D: variable reverberation room, 4.5m× 3.5m× 3m,

≈T 0.860 s
5. Room E: lecture hall, 7 m× 11m× 3m, ≈T 1.060 s

The detailed description of these sets of measured RIRs can be found
in [35–37], where the reverberation times of these five rooms range
from 200ms to 1000ms. The reverberant signals are generated by
convolving the clean speech samples from the TIMIT database with the
sets of measured RIRs. The speech to reverberation modulation energy
ratio (SRMR) [38,36], the perceptual evaluation of speech quality
(PESQ) [39,37] and the short-time objective intelligibility (STOI)
[40,41] are chosen to give quantitative comparison results of the pro-
posed method with the three competing methods. The following sub-
sections present the quantitative results and discuss on these results. In

all the following results, = = = =r K R ε1, 512, 128, 0.81
2, and

= −G 17min dB are fixed for the sampling rate =f 16,000s Hz, while both
r2 and α are variables, where both of them are set to different values, i.e.

∈r {2,4,8,16}2 and ∈α {0.9,1.0,1.1,1.2}.

4.1. PESQ scores

The PESQ scores are shown in Fig. 3. It is obvious that the perfor-
mance of GSF is highly correlated with r α,2 and the reverberation time
T60. When the reverberation time T60 is less than 600ms, higher PESQ
scores can be achieved by using a smaller value of r2, e.g., =r 22 , while
it is better to use a larger value of r2 when the reverberation time T60 is
larger than 600ms, e.g., =r 42 or =r 82 . The reason is that the sound
decay rate decreases when the reverberation timeT60 increases, so more
successive frames are necessary to model the late reverberant compo-
nents. For the subtraction factor α in (20), it suggests that over sub-
traction is much better than under subtraction, where this conclusion is
consistent with the conventional SS methods [1,7]. However, α cannot
be too large. PESQ scores significantly reduce when α is larger than 1.2.
When comparing the four dereverberation methods, one can find that
the proposed GSF method has the highest PESQ scores for ⩽T 80060 ms
when =r 22 and =α 1.1 are chosen. For =T 100060 ms, the CMMSE-
GSVD gets the best performance among the four methods, while the
proposed method is much better than SS and GSVD.

4.2. SRMR scores

For the SRMR scores, the comparison results are presented in Fig. 4.
Comparison on the SRMR scores obtained here is consistent with that

Fig. 3. PESQ scores for Rooms from A to E with =T 20060 ms (a), =T 40060 ms (b),
=T 60060 ms (c), =T 80060 ms (d), and =T 100060 ms (e), respectively.

Fig. 4. SRMR scores for Rooms A to E with =T 20060 ms (a), =T 40060 ms (b),
=T 60060 ms (c), =T 80060 ms (d), and =T 100060 ms (e), respectively.
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on the PESQ scores in Fig. 3, where only the CMMSE-GSVD method is
comparable with the proposed GSF method when ⩾T 60060 ms. Among
the three competing dereverberation methods, the CMMSE-GSVD
method has the highest SRMR scores, while SS has the lowest SRMR
scores in most cases. From Fig. 4, one gets that =r 22 and =α 1.1 can be
chosen for moderate performance requirements except for =T 20060 ms
in practice.

4.3. STOI scores

The STOI scores are presented in Fig. 5. It is interesting to see that
the STOI scores of the reverberant speech signals are even higher than
those of corresponding dereverberated speech signals using SS, espe-
cially when ⩽T 60060 ms. This phenomenon could also be found in [42,
Fig. 5], where the speech signals dereverberated by the method in [8]
have much lower STOI scores than the reverberant speech signals. By
properly choosing r2 and α, the proposed method can achieve higher
STOI scores in most cases when compared with the competing methods.

4.4. Discussions

Objective comparison results indicate that the proposed GSF
method is promising in single-channel speech dereverberation.
Compared with GSVD and CMMSE-GSVD, GSF has much less compu-
tational load and dose not require any late reverberation spectral var-
iance estimation schemes. Moreover, GSF has the same computational
complexity with SS, where both of them has an O (1) time im-
plementation for each time and frequency bin. However, SS still re-
quires to estimate the late reverberation spectral variance for subtrac-
tion.

5. Conclusions

Motivated by guided imaging filtering method, we proposed a
computationally efficient and effective method for speech dere-
verberation by using guided spectrogram filtering. It is interesting to
see that the gain function can be computed from the normalized spec-
trogram of the reverberant speech signal and its enhanced version di-
rectly without estimating the late reverberant spectral variance.
Performance evaluation shows that the proposed method for dere-
verberation has better performances in terms of both PESQ scores and
SRMR scores. The proposed method can be easily extended to noise
reduction when properly choosing the parameters in Algorithm 1,
which could be one of future works. Another future work could con-
centrate on multi-channel speech dereverberation using guided spec-
trogram filtering.
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