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ARTICLE INFO ABSTRACT

Both reverberation and additive noise can degrade the quality of recorded speech and thus should be suppressed
simultaneously. Previous studies have shown that the generalized singular value decomposition (GSVD) has the
capability of suppressing the additive noise effectively, but it is not often applied for speech dereverberation
since reverberation is considered to be convolutive as well as colored noise. Recently, we revealed that late
reverberation is also additive and relatively white interference component in the linear prediction (LP) residual
domain. To suppress both late reverberation and additive noise, we have proposed an optimal filter for LP
residual estimator (LPRE) based on a constrained minimum mean square error (CMMSE) by using GSVD in single
channel speech enhancement, where the algorithm is referred as CMMSE-GSVD-LPRE. Experimental results have
shown a better performance of the CMMSE-GSVD-LPRE than spectral subtraction methods, but some residual
noise and reverberation components are still audible and annoying. To solve this problem, this paper in-
corporates the masking properties of the human auditory system in the LP residual domain to further suppress
these residual noise and reverberation components while reducing speech distortion at the same time. Various
simulation experiments are conducted, and the results show an improved performance of the proposed algo-
rithm. Experimental results with speech recorded in noisy and reverberant environments further confirm the
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effectiveness of the proposed algorithm in real-world environments.

1. Introduction

In hands-free communication systems, such as hearing aids, mobile
phones and voice-controlled systems, it is well-known that both room
reverberation and additive noise can significantly deteriorate the per-
ceived quality and intelligibility of speech captured by a microphone in
a closed room (Benesty and Makino, 2005; Naylor and Gaubitch, 2010;
Loizou, 2013), especially when the desired talker is far away from the
microphone. A listener who is sensorineurally impaired will have extra
difficulty in perceiving and understanding the deteriorated speech
(Bloom, 1980; Bloom and Cain, 1982). For automatic speech recogni-
tion (ASR) systems, it has been shown that late reverberation can de-
grade the performance of ASR severely (Sehr et al., 2010; Yoshioka
et al.,, 2012). In order to obtain a satisfactory communication system
both for human-to-human and human-to-machine interactions, speech
dereverberation and noise reduction are fundamentally important. For
the last half-century, many effective algorithms have been proposed to
deal with reverberation (Lebart et al., 2001; Habets, 2005; Wu and
Wang, 2006; Nakatani et al., 2008; Habets et al., 2009; Jeub et al.,

2010), noise (Boll, 1979; Cohen and Berdugo, 2002; Martin, 2001;
Cohen, 2003; Zheng et al., 2010; Gerkmann and Hendriks, 2012), or
both (Jensen and Tan, 2015; Kun et al., 2015).

For noise reduction, the additive noise is often assumed to be un-
correlated with the source signal. One of the methods based on this
assumption is spectral subtraction (SS) that was first proposed by Boll
(1979), which is the most popular for its simplicity of implementation.
The noise power spectral density (NPSD) estimation is the key step for
this type of methods, and numerous state-of-the-art NPSD estimators
have already been proposed in the literature (Cohen and Berdugo,
2002; Martin, 2001; Cohen, 2003; Zheng et al., 2010; Gerkmann and
Hendriks, 2012). It’s well-known that SS methods still suffer from the
so-called ‘musical noise’ problem, which is composed of tones at ran-
domly distributed frequencies. Various algorithms have been proposed
to reduce ‘musical noise’, including the over-subtraction of noise and the
introduction of a spectral floor (Berouti et al., 1979), the optimal
minimum mean-square error (MMSE) estimation of the short-time
spectral amplitude (Ephraim and Malah, 1984), and the incorporation
of human auditory properties (Virag, 1999).
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Since reverberation is considered as a source signal convoluting
with a room impulse response (RIR), its characteristics are quite dif-
ferent from the additive noise. Speech dereverberation algorithms can
be generally categorized into three main classes, such as inverse fil-
tering methods (Miyoshi and Kaneda, 1988; Radlovic et al., 2000),
cepstral subtraction (CS) methods (Bees et al., 1991; Subramaniam
et al., 1996), and late reverberation suppression methods incorporating
SS (Lebart et al., 2001; Wu and Wang, 2006; Kinoshita et al., 2009).
Inverse filtering methods aim at deconvoluting the RIR and restoring
the original source signal. However, inverse filtering methods are often
sensitive to environmental noise (Neely and Allen, 1979), the fluctua-
tion of the RIR (Mourjopoulos, 1985), and multiple desired speakers
(Rotili et al., 2011). Different solutions have been proposed to cope
with these problems (Neely and Allen, 1979; Tokuno et al., 1997;
Hikichi et al., 2007), and most of them are based on regularization
theory (Tokuno et al., 1997). Although inverse filtering methods can
achieve satisfactory results, they are not suitable for real-time im-
plementation due to their high computational load. To reduce the
computation load, Bees et al. proposed to perform the deconvolution
using cepstral analysis (Bees et al., 1991; Subramaniam et al., 1996). In
the cepstral domain, the convolution operation is converted to an ad-
dition operation, and the deconvolution can be realized by CS. In
contrast to inverse filtering and CS methods, many robust and practical
approaches have been proposed to mitigate late reverberation only
(Lebart et al., 2001; Wu and Wang, 2006; Kinoshita et al., 2009), as late
reverberation has been shown to be the main reason for speech quality
and recognition performance degradation (Naylor and Gaubitch, 2010).
Generally, late reverberation is considered to be uncorrelated with
early reverberation and the source signal. Therefore, these approaches
aim at estimating the late reverberation spectral variance (LRSV) and
then subtracting the estimated LRSV from the reverberant signal by
using SS methods (Lebart et al., 2001). Examples of state-of-the-art
LRSV estimators are the statistical model of RIR based methods
(Habets et al., 2009), multiple-step linear prediction based methods
(Kinoshita et al., 2009), and the smearing effect of late reverberation
based methods (Wu and Wang, 2006). One can find other speech de-
reverberation and enhancement algorithms by temporal and spectral
processing in Krishnamoorthy and Prasanna (2009); 2011).

Once the NPSD and the LRSV are estimated, SS methods are gen-
erally implemented to suppress additive noise and late reverberation
simultaneously. In our previous work (Zheng et al., 2014), we in-
vestigated the signal subspace approach (SSA), that was originally
proposed to suppress noise for noisy speech (Ephraim and
Van Trees, 1995). The SSA method is based on the decomposition of the
noisy signal space into two orthogonal subspaces called the noise sub-
space and the signal subspace. Signal enhancement is performed by
removing the noise subspace, and then estimating the source signal
from the remaining signal subspace. The signal decomposition can be
achieved by the Karhunen-Loeve transformation (KLT) (Mittal and
Phamdo, 2000; Rezayee and Gazor, 2001), the singular value decom-
position (SVD) (Jensen et al., 1995), or the generalized singular value
decomposition (GSVD) (Doclo and Moonen, 2002). Most of the tradi-
tional GSVD-based methods are proposed to reduce noise in the time
domain directly (Doclo and Moonen, 2002; Yoshioka et al., 2009;
Lollmann and Vary, 2009; Spriet et al., 2002), and others are applied to
dereverberate the speech signal by estimating the RIR functions using
multiple  microphones (Gannot and Moonen, 2003). In
Zheng et al. (2014), we proposed to apply the GSVD-based method for
noise reduction and dereverberation in the LP residual domain, in
which we show that both late reverberation and ambient noise are
additive in the LP residual domain. A constrained MMSE LP residual
estimator (LPRE) was introduced to suppress both late reverberation
and additive noise at the same time by using GSVD, where the algo-
rithm is referred as CMMSE-GSVD-LPRE algorithm. Although the
CMMSE-GSVD-LPRE algorithm is superior to SS methods and the tra-
ditional GSVD-based methods, some residual noise and reverberation
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components are still perceivable under low signal-to-noise ratio (SNR)
or low direct-to-reverberation ratio (DRR) regions, as the permissible
residual noise and reverberation are not optimized (see Zheng et al.,
2014 for details).

In this paper, we extend our work presented in Zheng et al. (2014)
and propose to use the auditory masking properties to control the level
of the residual noise and reverberation for single channel speech en-
hancement. Note that the auditory masking properties have already
been well defined and studied in both time and frequency domains
(Schroeder et al., 1979; Thiemann, 2001). Because the effect of fre-
quency masking is much more dominant than that of time masking, we
will focus on the frequency masking effect in this paper. However, the
auditory masking threshold (AMT) in frequency domain can not be
applied in signal subspace directly. To solve this problem, Jabloun and
Champagne proposed a frequency domain to eigenvalue domain
transformation (FET), which provides a way to calculate a perceptual
upper bound for the residual noise (Jabloun and Champagne, 2002),
and this was extended to the generalized singular value domain by
Ju and Lee (2007). Whereas, FET can not be used in the LP residual
domain either. Therefore, we need to study a new transformation to
calculate the perceptual upper bound for the LP residual noise and re-
verberation in this paper.

The remainder of this paper is organized as follows. Section 2 for-
mulates the problem and briefly introduces the Wiener optimal filtering
and the GSVD. Section 3 presents the constrained MMSE LP estimator
and the proposed perceptually motivated optimal filter, where the
transformation from perceptual constrains to subspace values is re-
formulated in the linear prediction residual domain. Simulation and
realistic experiments are given in Sections 4 and 5, respectively, with
objective and subjective evaluation results. Finally, some conclusions
are made in Section 6.

2. Problem formulation and GSVD-based optimal filtering

When placed at a certain distance from the talker in a closed room,
the microphone not only acquires the direct sound, but also the re-
flected sounds, which are the delayed and modulated versions of the
direct sound. Thus, reverberation can be modeled as the source signal
convoluting with the RIR. Taking the environmental noise into con-
sideration, the microphone signal is given by

x(n) s(n)y*h(n) + v(n)

Lp—1

D, s = D) + v(n)
i=0

y(n) +v(n)

@

where s(n) is the clean speech signal, h(n) is the RIR from the talker to
the microphone, which is modeled by a finite impulse response (FIR)
filter with length L, and “*’ is the convolution operator. It is assumed
that h(n) is time-invariant, and v(n) is the additive noise. y(n) is the
reverberant speech signal without the additive noise.

Eq. (1) can be written in the vector multiplication form, which is

(2)

where s, = [s(n), s(n — 1),...,s(n — L, + 1)]" is the vector of the clean
speech signal at time index n, and h = [h(0), h(1),....h(L, — 1)]" is the
vector of the RIR coefficients, respectively. ‘T" denotes the transpose
operation.

x(n) = sth + v(n)

2.1. Optimal filtering

Here, we want to find a filter w(n) with length L, such that the
filtered microphone signal

d(n)

x(n)*w(n)

= x'w

€))
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is an estimation of the desired signal d(n) or its delayed version, where
w = [w(0), w(1),...,w(L, — 1] is the vector of the filter coefficients,
and x, = [x(n), x(n — 1),..,x(n — L, + 1)]" is the vector of the mi-
crophone signal, which can be written as

X, = AT h + v, ()]

where v, = [v(n), v(n — 1),...,v(n — L,, + 1)]7 is the vector of the noise
signal. .7; € Rl*Iw is the Hankel matrix of the clean speech signal,
which is given by

Hs = [Sn, sn—ly---,sn—Lw+1]' 5)
The estimated error signal e(n) is defined as
e(n) =dn) — d ). 6)

Minimizing the mean square error (MSE) of e(n), i.e., E{ez(n)},
where E{'} represents the expectation, leads to an optimal filtering
problem. If the reverberant signal y(n) is chosen as the desired signal d
(n), then it is a noise reduction problem, where only the additive noise
will be suppressed. If s(n) is chosen as the desired signal d(n), then it is a
dereverberation and denoising problem, where both the reverberation
and the additive noise will be suppressed. Here we focus on the second
problem, i.e., speech dereverberation and denoising in noisy environ-
ments. It’s well-known that the optimal filter to minimize the MSE cost
function is the Wiener filter (Kalman, 1963), and the optimal filter wp,
is given by

-1
Wopt = RixTxa

)

where Ry = E{x,x.} € RlwXIw and ry = E{d(n)x,} € RlvX1 are the
L,, x L, dimensional auto-correlation matrix of the microphone signal,
and the L, X 1 dimensional cross-correlation vector between the mi-
crophone signal and the desired signal, respectively.

It can be seen that if M > > 1 holds, R, and r,4 can be estimated
by

1

—~ 1 N ,
Ry = M%N}f;y Yy = M}{xdn

(8

where 7, € Riw*M g the L, X M Hankel matrix of the microphone
signal, which is given by

©)

andd, = [d(n), d(n — 1), ..d(n — M + 1)]" is the vector of the desired
signal.

Hx = [Xpy Xp—1 - Xn—m41]5

2.2. GSVD

The reverberant signal y(n) can be rewritten as

D-1 Lp—1
D> s(n=Dh@) + Y, s(n—Dh()
i=0 i=D

Ser (I’L) + Slr(n)

y(n)

(10)

where s..(n) and s;(n) are the early and the late reverberation signals,
respectively. D defines the boundary of the early and the late re-
verberation, which corresponds to the time ranges from 40 to 80 ms
(Naylor and Gaubitch, 2010). Note that s..(n) includes the direct sound
and the early reflected sound. According to Eq. (10), late reverberation
is also an additive component in the time domain. Further, it is assumed
that both late reverberation and additive noise are uncorrelated with
the early reverberation signal. Based on these assumptions, we can
apply both SS algorithm and the GSVD-based optimal filtering algo-
rithm for dereverberation and noise reduction.

According to Naylor and Gaubitch (2010), the early reflected sound
has an effect on increasing the strength of the direct-path sound and
thus generate a positive impact on the intelligibility of speech. There-
fore, the early reflected sound should not be suppressed for the purpose
of human listening and only late reverberation should be. Assume that
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we can roughly estimate late reverberation s;(n) and additive noise v
(n), and denote

t(n) = sp(n) + v(n) an

as the interference that needs to be suppressed. The detailed steps to
estimate s;(n) and v(n) will be given in the next section. Then the mi-
crophone signal can be rewritten as

x(n) =dn) + t(n) 12)

where d(n) = s¢;(n) is considered as the desired signal in this paper.

To employ the GSVD-based algorithm, the interference signal t(n)
needs to be firstly constructed in the Hankel matrix form as the same
dimension as 7%,

Hi= [tm tn—1x~~~ytn—M+1] 13)

where t, = [t(n), t(n — 1), ..t(n — L, + 1)]" is the vector of the inter-
ference signal.

A nonsingular matrix Q € R™M and two real matrices
U, V € RIw*M_whose columns are orthogonal vectors, can be found to
transform both .7, and .#; into nonnegative, bounded diagonal matrices
C and B simultaneously

UT#.Q=C 14
VI#Q =B 15)
subjected to

C'C +B'B=1y (16)

where Iy € RMM js an identity matrix, C = diag{cy, ¢,,...,cp} and
B = diag{b,, b,,...,by}. The diagonal elements of C and B are arranged in
descending and ascending order, respectively.

The auto-correlation matrix of the microphone signal RY can also
be estimated by

M
XX

5 1 1 _
R =L—foTJ/x=L—QTC2Q1

w w

@7

under the condition that L,, > > 1, where RY € RM*M,

It should be pointed out that both Ry in Eq. (8) and R in Eq. (17)
are the estimated auto-correlation matrix of the microphone signal, but
with different dimensions. Eq. (17) gives the auto-correlation matrix
with dimensions M X M. The auto-correlation matrix of the inter-
ference signal RY can be estimated in a similar way as

R = Lol = Lo reg!
L, L, (18)
where RY € RM*M,

GSVD-based optimal filtering is to find a transformation matrix
P € RM*M_ which transforms the matrix .#; to the Hankel matrix of the
estimated desired signal .7,

—

Hy = AP 19

Under the assumption that the interference is additive and un-
correlated with the desired signal, the minimum variance estimation
(MVE) algorithm (Van Huffel, 1993) gives P as

Cc2-B?),
P:Q(T)Ql

Substituting Eq. (20) into Eq. (19), we have

(20)

A, =UcCQ! (21

where C' = C~1(C? — B?).
In practice, the diagonal elements ¢; of matrix C’ should be non-
negative, and ¢/ is given by

¢/ = max{c? — b2 0}/c, i=1,2, ..,M. (22)
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3. Optimal filtering in the LP residual domain
3.1. Constrained MMSE optimal filter in LP residual domain

The Hankel matrix of the error signal is given by

He = Hq— AP
= Hq(Iy — P) — AP (23)
where #, € Riw*M_ The first term of the right hand side (RHS) of

Eq. (23) is referred as the signal distortion, and the second term is re-
ferred as the residual interference. In fact, we want to minimize the
MSE of the signal distortion while keeping the residual interference
under a predefined threshold. Two linear constrained estimators have
been proposed, namely time domain constrained (TDC) and spectral
domain constrained (SDC) (Ephraim and Van Trees, 1995). The TDC
estimator is a special case of the SDC estimator. Therefore, only the SDC
estimator will be considered here. In this case, the optimization pro-
blem can be formulated as

mPin tr{egel} 24)
subjected to
E{lefq,} < ao? i=1,2, ..M (25)

where tr{-} is the matrix trace, ¢4 and ¢, are the first column vector of
H#3(Iyy — P) and 7P, respectively. q; is the ith column vector of Q7!, &;
is a suppression gain function, and o is the variance of the interference.
The solution to this SDC MMSE optimal filtering problem is given by

P = QAQ™ (26)

according to Ephraim and Van Trees (1995) under the assumption that
the interference is additive, where A = diag{éy, &, ...0y} is a diagonal
matrix with elements

6=Ja,i=12, ..M @7

and «; is the noise suppression gain function. In Ephraim and
Van Trees (1995), the authors proposed an aggressive noise suppression
gain function for a;, which is given by

a; = exp{—yot/cH, i=1,2, ..M 28)

where v is an independent value which typically ranges from 1 to 5. In

Zheng et al. (2014); Doclo and Moonen (2002), the following sup-

pression gain function was used to avoid estimating the noise variance
2

for

a; = exp{—yb?/cf}, i= 1,2, ..M. (29)

The major drawback of the approach above is that the LP coeffi-
cients (LPC), i.e., the structures of the enhanced speech are changed,
and this will have a negative effect on speech quality, especially in
remote speech communication based on LPC coding. To cope with this
problem, we proposed to use the constrained MMSE optimal filtering in
the LP residual domain (Zheng et al., 2014). By using the LP model, x(mn)
can be given by

Lp
x(n) = Z al'x(n — m) + r(n)

m=1

(30)

where L, is the order of the LP model, and a;" withm =1, 2, ---,L,, are
the LP coefficients of x(n). r(n) is the LP residual of x(n). It is assumed
that the LP coefficients of the microphone signal is the same as the early
reverberant signal (Gaubitch et al., 2003). Applying the same LP fil-
tering process on each side of Eq. (12), we have

re(n) = ra(n) + r(n) (€1Y)

where r4(n) and r,(n) are the LP residuals of the desired signal and the
interference, respectively. It is obvious that r,(n) is additive, and the
implementation of the constrained MMSE optimal filtering in the LP
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Fig. 1. Singular values of the speech signal, the interference signal, the CMMSE-GSVD-
LPRE and the PCMMSE-GSVD-LPRE algorithm. (a) voice speech frame, (b) noise-only
frame.

Table 1
Values of parameters used in the proposed algorithm.

M =40
fs =16 kHz

Ly = 512
P=20

Ly = 256
y=25

Ly =473
N =512

residual domain is straightforward. Meanwhile, the authors in
Zheng et al. (2014) used a more aggressive suppression gain function,
which is given by

2
e = exp 7-bitp
LLP = - 2 2 2
max{cip — bi1p, Omin}

(32)
where b; 1p, ¢; 1p are the generalized singular values of the Hankel
matrices #;* and .#LFf, which are constructed by the residual signal
r{n) and r,(n), respectively. o2;, is a small positive value avoiding di-
vision by zero.

The estimated Hankel matrix of the desired signal in LP residual
domain is given by

T = e
= UweCirQrp 33)
where ngt is the optimal transformation matrix in the LP residual do-

main, Up and Qyp are the decomposed matrix of #Lf and .#F. C’pis a
diagonal matrix with diagonal elements ¢/ p = a;p-Cirp, i = 1, 2, .., M.

The estimated Hankel matrix .#%¥ may not have the Hankel-form
structure, and we can simply average the anti-diagonal elements of .73
to recover the Hankel-form structure. Once the LP residual of the de-
sired signal is obtained, the desired signal can be reconstructed by using
the inverse process of LP.

3.2. Perceptually constrained optimal filter in the LP residual domain

Under low SNR and DRR regions, the CMMSE-GSVD-LPRE
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Table 2
Segmental SNR results of the six algorithms in reverberant and noisy environment.
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SegSNR White Gaussian noise Babble noise Factory noise

SNR(dB) -5 0 5 10 15 -5 0 5 10 15 -5 0 5 10 15

‘anechoic room’ N —7.25 —492 —227 035 2.68 —7.13 —478 213 046 2.78 ~6.78 ~—436 176 0.82 3.09
SS —2.66 ~0.85 0.70 1.97 2.94 —3.01 ~1.42 0.07 1.45 2.60 —292 132 0.29 1.61 2.72
PSS —2.38 0.05 2.03 3.70 5.00 —3.34 —1.28 0.72 2.50 4.08 —2.74 —0.75 1.17 2.84 4.27
GSVD —420 ~1.67 0.80 3.00 4.78 —4.82 —2.44 —0.09 2.08 3.99 —4.18 —1.88 0.42 2.53 4.38
PCGSVD —416 ~1.61 0.89 3.15 4.98 —4.63 210 0.40 2.61 4.43 —411 ~171  0.72 2.92 4.75
CMMSE —1.43 0.55 2.39 4.06 5.39 —2.82 —1.04 0.79 2.54 4.17 —2.46 —0.71 1.15 2.84 4.43
PCMMSE —0.59 1.20 2.89 4.50 5.84 —2.77 ~1.00 0.82 2.55 4.19 —2.19 ~0.54 1.29 2.92 4.50
APCMMSE  6.67 6.12 5.17 4.15 3.16 4.36 3.77 2.95 2.09 1.41 4.59 3.82 3.05 2.10 1.41

lecture room R+N —891 ~7.98 720 666 ~638 883 ~791 ~718 ~6.65 634 870 779 ~710 ~659 ~6.34
SS —5.05 —4.45 —4.18 —4.01 —3.97 —4.90 —4.36 —4.17 —4.03 —3.93 —4.74 —4.29 —4.12 —4.00 —3.91
PSS —5.30 ~454 —420 —4.02 —399 552 472 436 —415 —4.01 513 T456 ~424 406 —4.01
GSVD —6.50 ~—5.62 ~511 T479 ~460 ~6.69 577 524 —483 —451 —6.27 549 502 467 449
PCGSVD —6.50 —5.63 —5.11 —4.74 —4.43 —6.60 —5.59 —4.97 —4.41 —3.99 —6.26 —5.43 —4.86 —4.38 —4.00
CMMSE —4.22 —373 T349 ~340 ~340 469 404 377 —359 —3.48 —429 —3.84 359 344 343
PCMMSE —3.15 292 ~—2.88 ~—2.88 ~293 ~462 398 ~372 354 342 3.8 ~—358 338 328 —3.29
APCMMSE  5.76 5.06 4.31 3.78 3.46 4.21 3.93 3.47 311 2.91 4.83 4.21 3.71 3.31 3.05

meeting room R+N —9.08 —824 742 ~676 ~630 —891 815 ~7.38 672 T6.29 —893 ~806 ~7.28 T6.65 ~6.23
SS —5.18 ~—4.61 —424 —401 ~385 509 441 ~—415 397 ~—3.81 T490 ~—442 —414 ~396 —3.81
PSS —5.53 ~4.84 ~436 ~412 ~394 576 489 446 —420 ~—4.02 531 ~474 ~434 ~414 395
GSVD —6.78 T5.97 T538 497 ~466 695 ~6.03 544 —499 —4.61 —6.54 579 523 484 452
PCGSVD —6.79 ~598 537 493 ~449 684 587 512 —451 —4.00 ~—6.54 ~574 ~505 450 —3.99
CMMSE —434 —391 ~365 350 ~341 491 419 383 3,65 353 ~441 —392 ~364 350 341
PCMMSE —3.22 —3.06 —3.01 ~—297 ~291 ~484 413 ~379 ~—3.62 350 395 357 342 ~3.36 —3.29
APCMMSE  5.86 5.18 4.41 3.79 3.38 4.07 4.02 3.59 3.10 2.78 4.97 4.49 3.86 3.29 2.93

office room R+N —9.15 ~—833 ~753 ~694 ~658 ~9.09 825 ~751 693 ~6.63 ~9.00 816 ~7.40 ~6.86 ~6.53
SS —5.24 —4.69 —4.40 —4.21 —4.06 —5.15 —4.56 —4.24 —4.15 —4.14 —5.01 —4.47 —4.28 —4.13 —4.01
PSS —5.57 ~4.87 —4.48 —4.28 —414 —587 503 453 436 430 539 479 —448 —427 —415
GSVD —6.82 —6.02 ~545 ~511 —485 ~7.05 612 551 ~5.09 ~4.89 ~6.56 582 533 7497 471
PCGSVD —6.83 ~6.02 —5.45 —5.08 —4.72 —6.98 —5.97 —5.22 —4.70 —4.37 ~6.56 —5.76 —5.17 —4.68 —4.27
CMMSE —4.39 —4.00 —3.76 —3.63 —3.54 —5.01 —4.30 —3.88 —3.76 —3.77 —4.52 —4.00 —3.74 —3.64 —3.54
PCMMSE —-3.26 —3.17 ~—3.13 ~—3.12 ~3.07 ~494 423 ~—3.83 372 373 408 ~—370 ~—352 ~350 ~3.43
APCMMSE  5.89 5.16 4.40 3.83 3.51 4.15 4.02 3.68 3.21 2.90 4.92 4.45 3.88 3.36 3.10

algorithm has no guidelines to control the amount of interference re-
duction and speech distortion, which may somewhat degrade the per-
formance of the algorithm. Auditory masking is a well-known psy-
choacoustic property of the human auditory system that has been
widely used in speech enhancement (Virag, 1999; Gustafsson et al.,
1998), speech coding (Johnston, 1988; Painter and Spanias, 2000), etc.
In this paper, we propose to use the auditory masking property to
control the level of the residual interference. To make the residual in-
terference imperceivable, the auditory masking threshold (AMT) curve
is calculated first, and the perceptually based optimal filter is derived.

The power spectrum of the desired signal is required for evaluating
the AMTs in the frequency domain, and this power spectrum was es-
timated by the Blackman-Tukey frequency estimation technique in
Ju and Lee (2007). In this paper, we propose to estimate the power
spectrum of the desired signal directly from the output of the CMMSE-
GSVD-LPRE.

Suppose the output of the CMMSE-GSVD-LPRE is d (n), and the
power spectrum fd(w) is given by:

fuw) = 1D W)l (34

where D (w) is the Fourier transform of d (n).

There are several steps involved in calculating the AMT curve using
fd(w) and we give a brief introduction of different calculation steps as
follows (the detailed expression of these steps can be found in
Johnston (1988) and Painter and Spanias (2000)):

e The power spectrum of the desired signal is partitioned into critical
bands, and the energy in each critical band is summed up.

o The effects of masking across critical bands are calculated using the
spreading function, which is taken from Schroeder et al. (1979)

e Subtract a relative threshold offset depending on the noise-like or
tone-like nature of the spectrum structure. A relative threshold
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offset proposed in Sinha and Tewfik (1993) is used to simplify the
calculation.

e Normalize the energy in each critical band, and include the absolute
threshold information of hearing

The obtained AMT is denoted as T(w) and is used to calculate the
perceptually based singular value. The un-normalized auto-correlation
matrix of the desired signal IA{% € RM*M jg a Toeplitz matrix, which is
given by

744(0) faa (1) faa(M = 1)
]RM f4a (1) 744 (0) fya (M — 2)
dd : : . :
faa(M — 1) fggM —2) - 73(0) (35)

where 7jy(m), m=0,1, ..M — 1, is the un-normalized correlation

function of d (n).

Suppose #; and g, € RM*! are the ith eigenvalue and unit norm ei-
genvector of ﬁf,ﬁ, respectively. A well-known relationship between the
eigenvalue and the power spectrum is given by Jabloun and
Champagne (2002)

_1 pra ) 2 P
n= o f T Gw)Pdw, i=1,2, ..M (36)
where G;(w) is the Fourier transform of g; In the discrete domain,
Eq. (36) can be computed by

N-1

1 PN .
=<, Taw) 1G (WP, i
Nk:O

=1,2, ..

M
37)

where T;(wy) and Gi(wy) are the Discrete Fourier transforms (DFT) of
faa(m) and g(m), respectively. g(m) is the mth element in g;
wy = 27tk/N, where N is the length of DFT. In practice, N should be
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Table 3
PESQ results of the six algorithms in reverberant and noisy environment.
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PESQ White Gaussian noise Babble noise Factory noise

SNR(dB) -5 0 5 10 15 -5 0 5 10 15 -5 0 5 10 15

‘anechoic room’ N 1.16 1.48 1.85 2.23 2.60 1.29 1.65 2.02 2.38 2.70 1.20 1.54 1.93 2.30 2.66
SS 1.45 1.85 2.22 2.52 2.73 1.50 1.90 2.18 2.53 2.76 1.49 1.88 2.24 2.53 2.76
PSS 1.61 2.08 2.45 2.75 3.01 1.41 1.85 2.24 2.63 2.96 1.48 1.89 2.30 2.65 2.97
GSVD 1.40 1.81 2.21 2.60 2.96 1.39 1.79 2.16 2.52 2.85 1.37 1.76 2.18 2.56 2.90
PCGSVD 1.46 1.87 2.28 2.67 2.98 1.43 1.84 2.22 2.62 2.99 1.43 1.83 2.26 2.68 3.05
CMMSE 1.78 2.20 2.59 2.93 3.19 1.52 1.94 2.33 2.69 3.02 1.50 1.94 2.35 2.72 3.04
PCMMSE 1.78 2.23 2.60 2.94 3.23 1.70 2.09 2.45 2.79 3.10 1.68 2.08 2.46 2.83 3.14
APCMMSE 0.62 0.75 0.75 0.71 0.63 0.41 0.44 0.43 0.41 0.39 0.48 0.54 0.53 0.53 0.48

lecture room R+N 1.03 1.31 1.59 1.84 1.95 1.13 1.44 1.69 1.88 2.00 1.04 1.39 1.64 1.86 1.97
SS 1.27 1.54 1.72 1.85 1.85 1.17 1.53 1.69 1.84 1.89 1.21 1.56 1.72 1.82 1.84
PSS 1.34 1.67 1.86 1.98 1.99 1.17 1.55 1.79 1.93 2.01 1.27 1.57 1.81 1.95 1.97
GSVD 1.28 1.61 1.88 2.04 2.08 1.19 1.54 1.81 1.96 2.06 1.25 1.57 1.84 1.98 2.03
PCGSVD 1.31 1.65 1.90 2.06 2.06 1.20 1.57 1.82 1.95 2.06 1.27 1.62 1.86 1.99 2.03
CMMSE 1.66 1.92 2.03 2.09 2.06 1.29 1.62 1.86 1.97 2.06 1.25 1.66 1.84 1.99 2.01
PCMMSE 1.73 1.97 2.06 2.11 2.10 1.40 1.70 1.89 2.01 2.05 1.35 1.72 1.93 2.03 2.04
APCMMSE 0.69 0.66 0.47 0.26 0.14 0.26 0.26 0.20 0.13 0.05 0.31 0.33 0.29 0.18 0.08

meeting room R+N 1.07 1.33 1.66 1.98 2.24 1.21 1.54 1.84 2.12 2.33 1.09 1.40 1.75 2.07 2.29
SS 1.29 1.60 1.87 2.07 2.18 1.27 1.63 1.89 2.09 2.21 1.28 1.58 1.88 2.10 2.22
PSS 1.38 1.73 2.03 2.21 2.32 1.26 1.65 1.93 2.18 2.32 1.24 1.63 1.95 2.19 2.32
GSVD 1.31 1.65 1.98 2.24 2.40 1.24 1.66 1.91 2.19 2.36 1.23 1.60 1.96 2.22 2.38
PCGSVD 1.36 1.68 2.02 2.26 2.42 1.29 1.69 1.93 2.20 2.36 1.27 1.64 2.00 2.25 2.39
CMMSE 1.77 2.05 2.27 2.39 2.45 1.36 1.75 1.99 2.22 2.35 1.27 1.73 2.02 2.25 2.36
PCMMSE 1.83 2.09 2.28 2.40 2.44 1.44 1.81 2.06 2.22 2.32 1.41 1.82 2.09 2.27 2.34
APCMMSE 0.76 0.75 0.62 0.43 0.20 0.23 0.27 0.22 0.10 —0.01 0.32 0.42 0.34 0.20 0.05

office room R+N 1.05 1.32 1.62 1.91 2.13 1.20 1.50 1.80 2.04 2.15 1.12 1.39 1.71 1.98 2.16
SS 1.23 1.54 1.74 1.96 2.04 1.31 1.64 1.85 1.97 2.00 1.27 1.56 1.81 1.96 2.05
PSS 1.35 1.72 1.95 2.11 2.20 1.26 1.62 1.90 2.09 2.13 1.24 1.64 1.88 2.09 2.18
GSVD 1.27 1.62 1.92 2.13 2.24 1.26 1.61 1.90 2.09 217 1.20 1.62 1.90 2.11 2.22
PCGSVD 1.32 1.65 1.94 2.14 2.24 1.29 1.64 1.91 2.08 2.15 1.23 1.65 1.91 2.11 2.20
CMMSE 1.71 1.97 2.13 2.21 2.25 1.34 1.71 1.98 2.12 2.18 1.28 1.72 1.94 2.14 2.20
PCMMSE 1.79 2.00 2.16 2.24 2.26 1.44 1.78 2.03 2.14 2.18 1.38 1.80 2.02 2.17 2.22
APCMMSE 0.73 0.68 0.54 0.33 0.13 0.24 0.28 0.23 0.10 0.02 0.25 0.41 0.31 0.18 0.06

larger than M.

While in the LP residual domain, the perceptually based eigenvalue
is calculated by replacing f};(w,) with the AMT, i.e. T(w;) and replacing
Gi(wi) with QM (wy):

AMT lN_lTW Py, Pi=1,2, ..M
Uy ngo (wi) 1Q (wi), | =8
where Q' (wy) is the DFT of q;*, which is the ith column vector of Qp
and T (wy) = T(W)lw:wk

niAMT are perceptually based eigenvalues and can not be im-
plemented in GSVD-based approach directly, and should be trans-
formed into the generalized singular value domain. The relationship
between the eigenvalue and the generalized singular value is given by:

I’ = 0'ze 39
where IT = diag{A;, 4,...,A4)} is the transformed generalized singular
valuee. © =GT'Qp is the transformation matrix, where
G =[g, 8,8, and = = diag{n ™7, n M, niMT }

So far, we have calculated the perceptually based singular value A;.
Then, the estimated Hankel matrix of the desired signal in LP residual
domain with perceptual constrain is given by
A§" = ULpCipQid (40)

where Cj = diag{cl’,'LP, cz’:LP, ...,c,(,;YLP} and the diagonal elements of Cp
are given by:
Ai , i
bi,LP

The physical meaning of Eq. (41) is straightforward. When b;, 1p is
larger than A;, which means that the interference components are per-
ceptible, and the singular value obtained by CMMSE-GSVD-LPRE will

clip = ci:LP'min{L =1,2, ..M.

(41)
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be attenuated. When b; 1p is smaller than A;, which means the inter-
ference components are imperceptible, and the singular value obtained
by CMMSE-GSVD-LPRE will not be changed. Fig. 1 plots the singular
values of the speech signal, the interference signal, the CMMSE-GSVD-
LPRE output signal and the PCMMSE-GSVD-LPRE output signal for
voiced and noise-only speech frames corrupted by white Gaussian noise
at 10 dB SNR, with M = 40. One can get that some larger singular va-
lues of CMMSE-GSVD-LPRE algorithm are preserved unchanged in
Fig. 1(a), while the smaller singular values, which are mainly con-
tributed by perceptual residual interference, are further suppressed
using the proposed PCMMSE-GSVD-LPRE algorithm. In noise-only
frame, Fig. 1(b) reveals that all the singular values can be further
suppressed using the proposed PCMMSE-GSVD-LPRE algorithm.

3.3. Real time implementation of the proposed algorithm

In this part, the detailed steps of the proposed algorithm are pre-
sented as follows:

1. Framing and fast Fourier transform (FFT): The microphone signal x
(n) is segmented into frames with frame length L, and frame shift
L. Calculating the FFT of the Ith frame to obtain X(wy, I), where
Wi = Zﬂk/Lh, k= 0,1, ~~',Lh - 1.

2. Estimating the NPSD and LRSV: The unbiased MMSE NPSD estimator
proposed in Gerkmann and Hendriks (2012) is used to estimate the
NPSD, 62(wy, 1), and the simple and efficient method proposed in
Wu and Wang (2006) is used to estimate the LRSV, Gflr (Wi, 1) in this
paper.

3. Estimating the interference signal in time domain: The power spectral
of the interference 62(wy, [) is obtained by using Zheng et al.
(2014, (15)), which is a weighted sum of NPSD and LRSV, i.e.

62wy, D) = 82wy, D) + ,Bﬁflr (W, 1), where ¢, B are the weighting
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Table 4
SRMRnorm results of the six algorithms in reverberant and noisy environment.
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SRMRnorm White Gaussian noise Babble noise Factory noise

SNR(dB) -5 0 5 10 15 -5 0 5 10 15 -5 0 5 10 15

‘anechoic room’ N 1.01 1.80 2.83 3.54 3.86 1.54 2.34 3.23 3.71 3.93 1.41 2.30 3.16 3.69 3.92
SS 2.23 3.15 3.77 4.11 4.18 2.84 3.48 3.80 4.07 4.09 2.47 3.36 3.82 4.07 4.19
PSS 1.74 2.85 3.58 3.96 4.08 2.38 3.15 3.76 4.01 4.11 2.30 3.20 3.75 4.03 4.12
GSVD 2.08 3.14 3.84 4.11 4.17 2.50 3.23 3.78 4.01 4.10 2.50 3.32 3.84 4.07 4.13
PCGSVD 2.05 3.11 3.84 413 4.21 2.52 3.30 3.86 4.08 4.14 2.48 3.33 3.88 412 4.18
CMMSE 2.54 3.58 4.06 4.21 4.24 3.02 3.60 3.98 4.11 4.15 2.82 3.59 3.98 4.16 4.19
PCMMSE 3.26 3.90 4.14 4.23 4.24 3.10 3.65 4.00 4.11 4.15 3.02 3.69 4.02 4.17 4.20
APCMMSE 2.26 2.10 1.31 0.69 0.38 1.56 1.31 0.77 0.40 0.22 1.61 1.39 0.86 0.48 0.27

lecture room R+N 0.81 1.15 1.62 1.95 2.09 1.14 1.51 1.85 2.07 2.17 1.11 1.47 1.82 2.06 2.16
SS 1.72 2.04 2.24 2.39 2.43 2.04 2.30 2.43 2.49 2.51 2.05 2.30 2.39 2.46 2.50
PSS 1.39 1.90 2.27 2.46 2.51 1.80 2.21 2.44 2.54 2.56 1.84 2.21 2.45 2.54 2.56
GSVD 1.72 2.16 2.44 2.57 2.59 2.04 2.37 2.52 2.58 2.61 2.12 2.41 2.54 2.61 2.61
PCGSVD 1.69 212 2.40 2.55 2.58 2.04 2.38 2.54 2.61 2.62 2.09 2.39 2.54 2.62 2.62
CMMSE 1.82 2.24 2.53 2.67 2.70 2.29 2.63 2.73 2.75 2.75 2.32 2.60 2.73 2.77 2.75
PCMMSE 2.21 2.47 2.62 271 273 2.39 2.69 2.75 277 276 2.49 2.68 2.77 2.79 2.76
APCMMSE 1.40 1.32 1.00 0.76 0.63 1.25 1.18 0.90 0.69 0.59 1.38 1.21 0.94 0.73 0.60

meeting room R+N 0.91 1.39 2.05 2.51 2.74 1.27 1.80 2.34 2.69 2.83 1.22 1.73 2.31 2.66 2.81
SS 1.97 2.40 2.67 2.84 2.92 2.30 2.66 2.91 3.01 3.06 2.18 2.60 2.84 2.94 3.01
PSS 1.52 2.15 2.60 2.84 2.94 1.97 2.45 2.78 2.96 3.02 1.97 2.44 2.79 2.95 3.01
GSVD 1.94 2.50 2.85 3.01 3.07 2.21 2.66 2.94 3.07 3.10 2.28 2.69 2.98 3.07 3.10
PCGSVD 1.91 2.47 2.82 3.00 3.07 2.21 2.67 2.95 3.09 3.13 2.25 2.67 2.98 3.08 3.13
CMMSE 2.03 2.58 2.89 3.06 3.13 2.52 2.91 3.11 3.19 3.20 2.40 2.80 3.09 3.18 3.20
PCMMSE 2.51 2.83 2.97 3.09 3.16 2.62 2.96 3.13 3.20 3.21 2.54 2.88 3.13 3.19 3.22
APCMMSE 1.61 1.44 0.92 0.58 0.42 1.35 1.16 0.79 0.52 0.38 1.32 1.15 0.82 0.53 0.41

office room R+N 0.85 1.32 1.91 2.33 2.56 1.25 1.75 2.24 2.54 2.63 1.19 1.70 2.22 2.51 2.64
SS 1.90 2.33 2.54 2.74 2.86 2.31 2.69 2.88 2.99 2.94 2.22 2.60 2.79 2.93 2.94
PSS 1.50 2.12 2.59 2.79 2.90 1.97 2.50 2.82 2.94 2.95 2.00 2.50 2.79 2.93 2.97
GSVD 1.91 2.45 2.79 2.94 3.01 2.27 2.70 2.94 3.03 3.01 2.28 2.74 2.96 3.03 3.03
PCGSVD 1.87 2.41 2.76 2.93 3.01 2.25 2.70 2.95 3.04 3.02 2.24 2.72 2.95 3.04 3.05
CMMSE 2.00 2.56 2.87 3.02 3.11 2.58 3.00 3.16 3.19 3.16 2.44 2.89 3.09 3.18 3.18
PCMMSE 2.55 2.83 2.97 3.07 3.13 2.69 3.05 3.18 3.20 3.17 2.62 2.98 3.13 3.20 3.19
APCMMSE 1.70 1.51 1.06 0.73 0.58 1.44 1.30 0.94 0.67 0.54 1.42 1.28 0.92 0.68 0.56

10.

11.

12.

coefficients, and the time domain signal of the interference ?(n) is
calculated by using Zheng et al. (2014, (16)) with the overlap-add
method frame by frame.

. Linear prediction: The LP coefficients a)', m =0, 1, ...,P, and the

residual signal r(n) of the microphone signal are calculated by
using the Levinson-Durbin algorithm Cybenko (1980). The residual
signal 7;(n) of the interference is obtained by using the same LP
process.

. Constructing the Hankel matrix in LP residual domain: The Hankel

matrices #LF, #!* with dimension L,, X M of the Ith frame signal
rd{n), #(n) are constructed, where L, and M satisfy:
L,+M=1L,+1.

. Generalized singular value decomposition: Applying the generalized

singular value decomposition to obtain the decomposed matrix Uyp,
Vip, Qup, Crp and Byp.

. Estimating the LP residual of the desired signal: The constrained MMSE

GSVD-based optimal filter is obtained, and the estimated LP re-
sidual of the desired signal is calculated by using Eq. (33).

. Calculating the power spectral of the desired signal: Using the first L

elements in the first column vector of .#5¥, and the LP coefficients
of the (I — 1)th frame to synthesize the estimated desired signal.
Then the power spectral of the desired signal Ty(w) can be obtained.

. Calculating the AMT curve: the AMT curve T(w) is obtained by using

the calculation steps described above.

Projecting the AMT into the generalized singular value in LP residual
domain: By using Egs. (38) and (39), the perceptually based sin-
gular value A;, i = 0, 1, ...,.M — 1 are obtained.

Desired signal in LP residual domain: The estimated Hankel matrix of
the desired signal in LP residual domain with MMSE and percpetual
constrains is obtained by using Eq. (40).

Synthesizing the enhanced signal: Using the first L; elements in the
first column vector of .#5* in Eq. (40), and the LP coefficients of the

(I = 1)th frame to synthesize the enhanced desired signal.

4. Simulation experiments

In this section, the proposed PCMMSE-GSVD-LPRE is compared with
the SS algorithm proposed in Cohen (2003). The proposed algorithm is
also compared with the single channel speech enhancement algorithm
based on masking properties of human auditory system proposed in
Virag (1999), which is referred as PSS. The GSVD-based approach and
the perceptually constrained GSVD-based approach, which were pro-
posed in Jensen et al. (1995) and Ju and Lee (2007), respectively, are
selected as two subspace algorithms for comparation. These two sub-
space algorithms are referred as GSVD and PCGSVD, respectively. Our
previous work (Zheng et al., 2014), the CMMSE-GSVD-LPRE algorithm,
is also compared with the proposed algorithm in this paper. In order to
make a complete and fair comparison, we use the same NPSD and the
same LPSV estimators for all of these algorithms, and extend these al-
gorithms to suppress the interference signals estimated in this paper.

4.1. Experimental setup

The source signals consist of 100 male speech sentences and 100
female speech sentences taken from the TIMIT speech corpus
(Garofolo et al., 1988). These source signals are convoluted with the
recorded RIRs, which are taken from the Aachen Impulse Response
Database (Jueb et al., 2009). Three types of room are selected, in-
cluding the meeting room, the office room and the lecture room. For the
meeting room, the office room and the lecture room, the distances are
145 cm, 100 cm and 225 cm, respectively. Meanwhile, the reverbera-
tion times (Tp) of these three types of room are about 340, 656 and
878 ms, respectively. Different kinds of noise, including babble noise,
factory noise and white Gaussian noise, are added to the reverberant
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Fig. 2. Waveforms and spectrograms of: (a) clean speech, (b) the reverberant and noisy speech, (c) speech enhanced by the SS algorithm, (d) speech enhanced by the PSS algorithm, (e)
speech enhanced by the GSVD algorithm, (f) speech enhanced by the PCGSVD algorithm, (g) speech enhanced by the CMMSE-GSVD-LPRE algorithm, (h) speech enhanced by the

proposed PCMMSE-GSVD-LPRE algorithm.
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Fig. 3. Averaged MUSHRA Listening tests scores for simulation waveforms.

Table 5
Volume and reverberation time of the testing rooms.

Room type Volume (m®) T60 (s)
1 meeting room 103 0.49
2 lecture room 809 0.79
3 small reverberation room 135 1.98

signals using the filtering and noise adding tool (FaNT) (Hirsch, 2005).
The input SNR ranges from — 5 dB to 15 dB with a 5 dB step size, where
the noise signals are taken from the NOISEX-92 database (Varga and
Steeneken, 1993). To evaluate the performance of these algorithms in
noise-only environments without reverberation, these three kinds of
noise are added to the clean source signals directly, where this special
scenario is referred as anechoic room here.

The frame shift L; and the frame length L are set to 256 and 512,
respectively, which correspond to the quasi-stationary period of speech
under sample frequency f; = 16 kHz. M is set to 40, which can achieve a
good balance between computational load and algorithm performance.
P and y are empirically chosen as 20 and 2.5, respectively. In re-
verberation rooms, both ¢ and f are set to 1, while in anechoic room, &
and f are set to 1 and 0, respectively. Typical values of the respective
parameters for the proposed algorithm are summarized in Table 1.

4.2. Segmental SNR results

Segmental SNR is considered as a reasonable objective measure for
speech enhancement, which is given by

n=ILg+Lp—1 3
Lo, 8°()

Yo (§ (n) - 5(n))? 42)

10 &
SegSNR=— " log,,
NS

where N; is the total number of the frames, and §(n) is the enhanced
signal. Frames with SNRs above 35 dB do not reflect large perceptual
differences and generally can be replaced with 35 dB in above equation.

Table 6
SRMRnorm results of the six algorithms in realistic environment.
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Likewise, during periods of silence, SNR values can become very ne-
gative since signal energies are small. These frames are set to a lower
threshold, i.e. — 10 dB, instead (Quackenbush et al., 1988).

Segmental SNR results of the reverberant and noisy signals and that
of the six algorithms are presented in Table 2, where the reverberant
and noisy signals are denoted as ‘R+N’ and the noisy signals without
reverberation are denoted as ‘N’ for abbreviation, respectively. The
CMMSE-GSVD-LPRE algorithm and the PCMMSE-GSVD-LPRE algo-
rithm proposed in this paper are denoted as ‘CMMSE’ and ‘PCMMSE’ for
compact when no confusion arises, respectively. The segmental SNR
improvement of the proposed algorithm is referred as APCMMSE.

The segmental SNR results in Table 2 are the averaged values of all
the 200 speech sentences. The proposed PCMMSE-GSVD-LPRE algo-
rithm achieves the highest values of the segmental SNR over all com-
petitive algorithms for white Gaussian noise in anechoic room. While
for the babble noise and the factory noise, it has the best performance
under low SNR conditions, i.e. SNR < 5 dB. For the reverberant and
noisy signals, the proposed PCMMSE-GSVD-LPRE algorithm achieves
the highest output segmental SNR values over all kinds of noise types
and input SNR values evaluated in this paper. One can also get that the
segmental SNR improvement of the proposed algorithm varies from
both noise types and SNR values, where the largest segmental SNR
improvement can be achieved for white Gaussian noise and the smallest
segmental SNR improvement for babble.

4.3. Perceptual evaluation of speech quality (PESQ)

In this section, we use the PESQ recommended by ITU-T for speech
quality assessment (ITU-2000, 2000) to compare the proposed algo-
rithm with the five competing algorithms.

Table 3 gives the averaged PESQ scores over all the 200 speech
sentences. It can be seen that the proposed PCMMSE-GSVD-LPRE al-
gorithm achieves the best PESQ scores in anechoic room in all cases.
While for the reverberant and noisy signals, the proposed algorithm still
has the best PESQ scores in low input SNR conditions. In high input
SNR conditions, the PCGSVD algorithm and the CMMSE-GSVD-LPRE
algorithm have slightly higher PESQ scores, while the PESQ scores of
the proposed algorithm are comparable with the best PESQ scores.
Meanwhile, the PESQ scores of the proposed algorithm are higher than
that of the CMMSE-GSVD-LPRE algorithm in most cases except in the
meeting room with high input SNR, i.e. SNR = 15 dB. The same as the
segmental SNR improvement, the PESQ score improvement of the
proposed algorithm are also highly correlated with noise types and
input SNR values. For example, the PESQ scores of the proposed algo-
rithm have the highest values for white Gaussian noise and the smallest
values for babble.

4.4. SRMR results

In this section, we use the speech-to-reverberation modulation en-
ergy ratio (SRMR) (Falk et al., 2010) for speech quality and intellig-
ibility assessment as a non-intrusive metric. This metric was used as one
of the objective metrics in the REVERB Challenge (Kinoshita et al.,

SRMRnorm Meeting room Lecture room Small reverberation room

Distance(m) 0.5 1.0 2.0 4.0 0.5 1.0 2.0 4.0 0.5 1.0 2.0 4.0
R+N 3.02 2.74 2.30 2.11 3.97 3.47 3.18 2.83 1.94 1.15 0.85 0.84
SS 3.31 3.01 2.61 2.41 3.98 3.81 3.35 3.07 2.95 2.14 1.60 1.61
PSS 3.48 3.12 2.67 2.59 4.24 3.89 3.46 3.18 3.12 2.07 1.54 1.45
GSVD 3.44 3.10 2.67 2.61 4.29 4.04 3.51 3.15 3.05 2.04 1.44 1.45
PCGSVD 3.42 3.09 2.71 2.57 4.30 4.03 3.49 3.16 3.01 2.00 1.43 1.44
CMMSE 3.57 3.23 2.79 2.72 4.37 4.05 3.55 3.25 3.38 2.43 1.71 1.57
PCMMSE 3.60 3.30 2.91 2.76 4.42 4.11 3.63 3.34 3.41 2.49 1.77 1.63
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Fig. 4. Spectrograms of: (a) the recorded speech, (b) speech enhanced by the SS algorithm, (c) speech enhanced by the PSS algorithm, (d) speech enhanced by the GSVD algorithm, (e)
speech enhanced by the PCGSVD algorithm, (f) speech enhanced by the CMMSE-GSVD-LPRE algorithm, (g) speech enhanced by the proposed PCMMSE-GSVD-LPRE algorithm.

138



R. Peng et al.

Clean

PCMMSE-GSVD-LPRE

CMMSE-GSVD-LPRE

PCGSVD

PSS

Reverberant and Noisy

Il Il Il Il
40 60 80 100
MUSHRA listening tests score

120

Fig. 5. Averaged MUSHRA Listening tests scores for recorded waveforms.

2013). Here, the updated version, i.e., SRMRnorm (Santos et al., 2014),
is chosen to evaluate the proposed algorithm.

Table 4 gives the results of the averaged SRMRnorm scores over all
the 200 speech sentences. It can be seen from Table 4 that the proposed
PCMMSE-GSVD-LPRE algorithm is superior to all the other five com-
peting algorithms under all kinds of testing conditions. One can also get
that the SRMRnorm improvement of the proposed algorithm is higher
in low SNR conditions than that in high SNR conditions.

4.5. Spectrogram comparison and MUSHRA listening test

Fig. 2 shows waveform and spectrogram of clean speech, re-
verberant and noisy speech, and speech enhanced by the six algorithms
evaluated in this paper. The reverberant and noisy speech is generated
by convoluting the clean speech with the RIR measured in the meeting
room at distance 145 cm, and the white Gaussian noise is added to the
reverberant speech with the input SNR value at 10 dB.

We can clearly see the improvement of the proposed algorithm over
SS, GSVD and PCGSVD algorithm, which has lots of unwanted inter-
ferences in speech spectrograms. Although PSS algorithm and CMMSE-
GSVD-LPRE algorithm achieve better performance than SS, GSVD,
PCGSVD algorithm, PCMMSE-GSVD-LPRE has less ‘musical noise’ than
PSS and CMMSE-GSVD-LPRE, especially at the speech onsets.

To test the speech quality, MUSHRA (MUIti Stimulus test with
Hidden Reference and Anchor) (Vincent, 2005) listening tests are
conducted here. MUSHRA listening tests allow the comparison of high
quality reference speech signals with several lower quality test speech
signals. Here, we use the clean speech signals as the high quality re-
ference ones, the reverberant and noisy signals and processed signals as
the lower quality test speech signals. Listeners are asked to compare the
high quality reference speech signals to several test speech signals
sorted in random order, including the reference signal. Each subject is
asked to assess the quality of each test sound (relative to the reference
and other test sounds) by grading it on a quality scale between 0 and
100. Fig. 3 shows the averaged MUSHRA listening tests scores of ten
listeners, where the proposed algorithm achieves the best listening
performance.

5. Realistic experiments

In this section, we evaluate our algorithm in a realistic reverberant
and noisy environment. Because the synchronized clean reference
speech signal can not be acquired easily, we choose the non-intrusive
metric, i.e. SRMRnorm and the spectrogram to measure these algo-
rithms.
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5.1. Experimental setup

The source signal is the same as the speech used in the simulation
experiments in Section 4 and was played back by a HIVI-H4 active
speaker. A 1/2” microphone was used to record the speech in different
rooms. Three kinds of rooms were tested, including a meeting room, a
lecture room, and a small reverberation room. The volume and the
reverberation time of each room can be found in Table 5. The position
of the speaker was fixed throughout the recording, while the position of
the microphone was moved such that the distances between the mi-
crophone and the speaker were 0.5 m, 1.0 m, 2.0 m and 4.0 m. A high-
pass filtering was applied to the recordings before the dereverberation
and denoising process to suppress the unwanted interference of alter-
nating current (AC), where the cutoff frequency of the high-pass filter is
100 Hz.

5.2. SRMR results

Table 6 presents the results of the averaged SRMRnorm measure-
ment for all the 200 recorded speech sentences and the corresponding
enhanced speech sentences processed by the six algorithms evaluated in
this paper. ‘R+ N’ denotes the recorded reverberant and noisy speech.
‘CMMSE’ and ‘PCMMSE’ are shortening for the CMMSE-GSVD-LPRE
algorithm and the proposed ‘PCMMSE-GSVD-LPRE’ algorithm.

It can be seen that the proposed PCMMSE-GSVD-LPRE algorithm
has the largest SRMRnorm values among the six algorithms in all kinds
of rooms and distances.

5.3. Spectrogram comparison and MUSHRA listening test

Fig. 4 shows the spectrogram of the recorded speech, speech en-
hanced by the SS algorithm, the PSS algorithm, the GSVD, the PCGSVD,
the CMMSE-GSVD-LPRE algorithm and the proposed PCMMSE-GSVD-
LPRE algorithm, respectively. It can be seen that the proposed
PCMMSE-GSVD-LPRE algorithm has a better dereverberation result,
and the speech pauses are more distinct comparing to the speech pro-
cessed by the competing algorithms. Meanwhile, the residual inter-
ferences of the proposed PCMMSE-GSVD-LPRE algorithm are sup-
pressed more efficiently. The MUSHRA listening tests are also
conducted for these speech signals recorded in realistic environments,
where the playback signals are used as the high quality reference
speech signals, the recorded signals and processed signals are used as
the lower quality test sounds. Fig. 5 presents the MUSHRA listening
scores averaged by ten listeners. One can find that the proposed algo-
rithm also has the best speech quality in realistic environments.

6. Conclusion

In this paper, we have extended our previous work to suppress both
noise and late reverberation in the LP residual domain, and introduced
a perceptually constrained optimal filter, which can make the residual
interference un-perceivable. To calculate the perception based upper
bound for the residual noise and reverberation, we reformulated the
frequency to generalized singular value transformation equation in the
LP residual domain. Both objective measurements and subjective
measurements are evaluated in simulation and realistic experiments to
show the effectiveness of the proposed algorithm under different input
SNR and reverberation time conditions. By introducing the auditory
masking properties into the GSVD-based approach, the residual inter-
ference is constrained to a level which is imperceivable, which can
significantly improve the quality of the processed speech in terms of
segSNR, PESQ, and SRMR metrics. MUSHRA listening tests conducted
for both simulated and realistic experiments also show the better speech
quality of the proposed algorithm.
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Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.specom.2017.12.004.
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