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A Novel Failure Detection Circuit for SUMPLE Using Variability
Index

Leiou WANG†a), Member, Donghui WANG†, and Chengpeng HAO†, Nonmembers

SUMMARY SUMPLE, one of important signal combining approaches,
its combining loss increases when a sensor in an array fails. A novel failure
detection circuit for SUMPLE is proposed by using variability index. This
circuit can effectively judge whether a sensor fails or not. Simulation results
validate its effectiveness with respect to the existing algorithms.
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1. Introduction

A sensor array is a collection of sensors spreading out over
a field in some geometrical configurations, transmitting and
receiving signals. Its primary use is to enhance the detec-
tion of signals with weak signal-to-noise ratio (SNR). With
a good signal processing method, undesired signals such
as environmental noise and receiver’s internally generated
noise can be suppressed and the combining output SNR can
be amplified by several folds. One of the well-known ap-
proaches is called signal combining, whose main idea is to
find a set of combining weights, so that the maximum out-
put SNR can be achieved. Until now, there have been two
main approaches employed to attain the combining weights.
One of them, eigen-based method, is proposed by Cheung
in [1], and a fundamental framework of the eigen-based the-
ory is established. And then, several improved methods are
proposed [2]–[6]. The major problem for all above eigen-
based methods is the high computational cost especially for
large sensor arrays [5], [6]. The other one, SUMPLE [7], [8]
obtains the combining weights by cross correlation of each
sensor with a weighted sum of all the other sensors’ out-
put as the reference. SUMPLE can significantly reduce
the computational cost while at the same time providing a
comparable performance. However, the combining loss of
SUMPLE will increase if a sensor in an array fails. To cir-
cumvent the drawback, a modified α coefficient SUMPLE
(α-SUMPLE) method is proposed by Shen in [9]. Although
the α coefficient can quickly reduce the weight amplitude of
the failure sensor, the α coefficient may incur extra combin-
ing loss for an array without failure sensor.

In this paper, a failure detection circuit for SUMPLE is
presented. First, a mathematical model and related methods
for a failure sensor in an array are introduced. Then, based
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on the above discussions, variability index (VI) is used as
the failure detection criterion, and VI-SUMPLE circuit is
proposed. In this method, the weight amplitude of the fail-
ure sensor can be compensated, and no extra combining loss
is incurred for an array without failure sensor.

The rest of this paper is organized as follows. In Sect. 2,
a related background is introduced. The proposed method is
presented in Sect. 3. Finally, simulation results and conclu-
sions are included in Sect. 4 and Sect. 5, respectively.

2. Related Backgrounds

2.1 Basic Definition

The received signal from the ith sensor can be represented
by

Ŝ i,k = ŝi,k + n̂s
i,k, (1)

where the subscript k is time index, ŝi,k is the source sig-
nal, and n̂s

i,k is the noise. The hat notation over the various
quantities indicates complex. The weights used to obtain a
weighted sum of the various sensors is represented by

Ŵi,K = ŵi,K + η̂i,K , (2)

where K is the time index in units of the correlation averag-
ing interval, ncor. In addition, ŵi,K is the signal weight, and
η̂i,K is the noise weight. Accordingly, the combining output
of the sensor array is

Ĉk =

N∑
i=1

Ŝ i,kŴ∗i,K , (3)

where N is the total number of sensors, and superscript ∗
represents complex conjugation.

Let the individual sensor signal SNR be ρsi =∣∣∣ŝi,k

∣∣∣2/∣∣∣∣n̂s
i,k

∣∣∣∣2 and the weight SNR be ρwi =
∣∣∣ŵi,K

∣∣∣2/∣∣∣η̂i,K

∣∣∣2, the
combining SNR becomes [7]

S NR = Nρsi

ρwiρ +
1
N

ρwi + 1

 = Nρsi∆S NR, (4)

where the ratio ρ ≈ 1 [7], and ∆S NR represents the combin-
ing loss. When ρwi ≫ 1, the combining SNR becomes, as
expected,

S NRopt = Nρsi. (5)
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2.2 Related Methods

The weights for SUMPLE in the next time interval [7]

Ŵi,K+1 = RK+1
1

ncor

(K+1)ncor−1∑
k=Kncor

[
Ŝ i,k

N∑
j=1, j,i

Ŝ ∗j,kŴ j,K

]
. (6)

The outer sum over ncor corresponds to the correlation av-
eraging interval, and the inner sum corresponds to the refer-
ence signal. The RK+1 is a normalization factor.

The combining loss of SUMPLE will increase if a sen-
sor in an array fails. Reference [9] indicates that the greater
the weight amplitude of the failure sensor, the worse the
combining SNR. Therefore, α-SUMPLE is proposed and
the weight of α-SUMPLE can be expressed as [9]

Ŵi,K+1 = Ŵi,K+1

∣∣∣Ŵi,K

∣∣∣α, (7)

where
∣∣∣Ŵi,K

∣∣∣α is a weight correcting coefficient, and α is a
variable real number with ranging from 0 to 1. When a sen-
sor in an array fails, the weight amplitude of the failure sen-
sor is usually smaller than 1. Therefore,

∣∣∣Ŵi,K

∣∣∣α can further
reduce the weight amplitude of the failure sensor. However,
this unconditional correcting coefficient also results in an
extra combining loss for an array without failure sensor.

3. Proposed Method

The above discussions demonstrate that we need to judge
whether a sensor fails or not in an array. Variability index is
a second order statistic which is a function of the estimated
population mean and the estimated population variance. VI
can be calculated for each combining weight power using

VI = 1 +
1

N − 1

N∑
i=1

(∣∣∣Ŵi,K

∣∣∣2 − ∣∣∣W̄K

∣∣∣2)2/(∣∣∣W̄K

∣∣∣2)2, (8)

where
∣∣∣W̄K

∣∣∣2 is the arithmetic mean of the combining weight
power for N sensors. From Eq. (8), we can find that if a
sensor in an array fails, the weight amplitude of the failure
sensor will decrease, which results in VI increases. Con-
sequently, we consider using VI to be the failure detection
criterion.

For implementation purposes, it is possible to reduce
the computational costs associated with calculating VI using
alternative definition. In this manner, a simplified VI∗ [10] is
obtained by using the biased, maximum likelihood estimate
of the population variance rather than the unbiased estimate
used in Eq. (8)

VI∗ = N
N∑

i=1

(∣∣∣Ŵi,K

∣∣∣2)2/ N∑
i=1

∣∣∣Ŵi,K

∣∣∣22. (9)

The simplified VI∗ requires fewer arithmetic operations than
the original VI.

In order to detect a failure sensor, VI∗ is compared with
a threshold TVI . We can use the following hypothesis test:

VI∗ ≤ TVI ⇒ without f ailure sensor
VI∗ > TVI ⇒ with f ailure sensor

. (10)

The use of the above hypothesis test requires the value of
the corresponding threshold TVI , such that a low probability
of the hypothesis test error is achieved. For an array without
failure sensor, we define this probability as

β = Pr ob (VI∗ > TVI |without f ailure sensor ) . (11)

In an analogous fashion, for an array with failure sensor, we
define another probability as

γ = Pr ob (VI∗ ≤ TVI |with f ailure sensor ) . (12)

Because an analytic expression for β and γ is difficult,
we use Monte Carlo simulation to estimate β and γ. The
probabilities of error β and γ as a function of threshold TVI

in different signal SNRs are shown in Fig. 1 and Fig. 2, re-
spectively. The simulation results are the statistics of 1000
independent tests. From Fig. 1 and Fig. 2, it can be observed
that increasing TVI can reduce β, but results in a higher γ.
Therefore, we need to carefully choose TVI for both β and
γ. Precisely, TVI can be determined as

T̂VI = argmin
TVI

(β × γ) , (13)

where T̂VI is the threshold corresponding to the minimum
value of β × γ.

According to above analysis, we propose a failure de-
tection circuit, which uses VI∗ as the failure detection crite-
rion. The block diagram of VI-SUMPLE is shown in Fig. 3.
A set of weight correcting coefficients and a VI module are
added in this architecture. The input signals of the VI mod-
ule are the combining weight of each sensor. The VI mod-
ule calculates the value of VI∗ based on Eq. (9), and outputs
a set of control signals according to the comparison result
between VI∗ and T̂VI in Eq. (13). If VI∗ is smaller than
T̂VI , α = 0 and VI-SUMPLE is identical to SUMPLE. Oth-
erwise, the performance of VI-SUMPLE approaches that of

Fig. 1 Probabilities of the hypothesis test error β for a N = 4, and ncor =
1024 without failure sensor.
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Fig. 2 Probabilities of the hypothesis test error γ for a N = 4, and ncor =
1024 with a single failure sensor.

Fig. 3 Block diagram of VI-SUMPLE.

α-SUMPLE with a certain α value.
The computational complexity of SUMPLE is order

(NKncor) [5], [6], [8]. Nevertheless, the extra computa-
tional costs of VI-SUMPLE only has several addition and
multiplication operations in each iteration.

4. Simulation Results

Simulations are conducted to compare the performance of
SUMPLE, α-SUMPLE, and VI-SUMPLE for signal com-
bining. The source is a QPSK signal, and n̂s

i,k is independent
white Gaussian noises.

Test 1: The aim of the test is to investigate VI∗ for an
array when a sensor suddenly drops out. To this end, we set
N = 4, ncor = 1024, K = 40, and T̂VI = 1.2. The 1th sensor
in the array drops out at K = 20. The simulation results
are the statistics of 100 independent tests. From Fig. 4, as
expected, VI∗ increases about 0.35 when the sensor drops
out. At the same time, we can observe that is lower than TVI

before K = 20, but it immediately exceeds TVI after K = 20.

Fig. 4 VI∗ for a N = 4, and ncor = 1024 as a single sensor drops out.

Fig. 5 Array combining loss in different signal SNRs without failure sen-
sor.

The failure sensor detection is the primary motivation in this
paper. From above simulation results, it can be seen that
VI∗ is an easily used indicator which can effectively judge
whether a sensor fails or not in an array.

Test 2: Simulations are made to compare these meth-
ods combining loss in different signal SNRs, and the simu-
lation results are the statistics of 2000 independent tests for
a N = 4, ncor = 1024, and T̂VI = 1.2. For the array with-
out failure sensor, based on above simulation results, VI∗ is
lower than TVI . The VI module outputs the control signals to
make α = 0, so VI-SUMPLE is identical to SUMPLE. Fig. 5
shows that SUMPLE and VI-SUMPLE have a better com-
bining performance than α-SUMPLE. Although the theoret-
ically weight amplitude

∣∣∣Ŵi,K

∣∣∣ = 1, the practical weight am-
plitude deviates from the theoretical value due to noise [7]
and
∣∣∣Ŵi,K

∣∣∣α makes the deviation even worse. As a result,
α-SUMPLE incurs more extra combining loss.

For the array with a single failure sensor, the combin-
ing loss for different methods is presented in Fig. 6. At this
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Fig. 6 Array combining loss in different signal SNRs with a single fail-
ure sensor.

Fig. 7 Array combining loss in different signal SNRs with three failure
sensors.

time, VI∗ is higher than TVI , and the performance of VI-
SUMPLE approaches that of α-SUMPLE with α = 0.3. It
can be seen that α-SUMPLE and VI-SUMPLE are superior
to SUMPLE.

In order to investigate the combining loss for an array
with multiple failure sensors, the previous test is repeated
for a N = 6, ncor = 1024, and T̂VI = 1.1. The simulation
result is shown in Fig. 7. It can be seen that the improve-
ments of VI-SUMPLE becomes more significant.

5. Conclusions

In this paper, a failure detection circuit for SUMPLE is

presented. we first discussed the mathematical model and
the performance analysis when a sensor in an array fails.
Based on this discussion, VI is used as the failure detection
criterion, and VI-SUMPLE is proposed. This circuit can ef-
fectively judge whether one or more sensors fail or not in an
array. Moreover, the weight amplitude of failure sensor can
be compensated to reduce the combining loss. Simulation
results indicate that this failure detection circuit performs
better than the traditional state-of-the-art counterparts.
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