
Popularity-based Neighborhood Collaborative
Caching for Information-Centric Networks

Xiaodong Zhu1,2, Jinlin Wang∗,1, Lingfang Wang1, Weining Qi1
1National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences,

Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

Email: {zhuxd, wangjl, wanglf, qiwn}@dsp.ac.cn

Abstract—Research on caching strategy is the key to improving
network performance for Information-Centric Networks (ICNs).
But it is still a great challenge to better utilize in-network caching
of ICNs with low costs. In this paper, we propose a popularity-
based neighborhood collaborative caching algorithm for ICNs. In
the algorithm, in-network nodes track the popularity of contents,
and a novel process is used for quick comparison of popularity
in the algorithm. En-route and one-hop neighborhood nodes
make caching decision collaboratively. Real-world topologies
and different client placed scenes are used in the simulation
experiments, and our algorithm performs better in terms of
latency, cache hit ratio and path stretch compared with the
state-of-the-art algorithms and ideal situations. The overhead
and tradeoff of the algorithm on estimation of popularity and
node interaction are also explored in details, and the proposed
algorithm provides a practical choice for ICN caching decision
strategy with its good performance and acceptable overhead.

Index Terms—Information-Centric Networks, Popularity-
based, Collaborative Caching

I. INTRODUCTION
Information-Centric Network (ICN) [1] has been considered

as an important way to solve the current problems of the
network, and ICN treats information as the core of the network
system. Many ICN architectures have been proposed, such as
CCN [2], DONA [3], COMET [4] and PURSUIT [5]. And
a key aspect of ICN is in-network caching. Contents can be
stored in ICN nodes so that the network can respond quickly
to the request. Additionally, link traffic and load on servers
can also be reduced. Therefore, using in-network cache and
delivering contents efficiently are important issues for ICN.

Various caching strategies are used to resolve the above
issue. And these strategies can be divided into three types:
individual caching, en-route caching and off-path caching.
In individual caching, each node in the network individually
decides whether or not to store the passing contents. This kind
of strategy is simple and does not need information interaction
between network nodes. But the performance achieved by
this kind of strategy is low. As for en-route caching, both
of the content requesting and caching happen on the path that
from the consumer to the provider. Nodes along the path can
work together to optimize the placement of the content. This
brings a lot of benefits compared to individual caching, but
the caches in off-path are not considered. In off-path caching,
nodes within a certain range or all the nodes in the network
are utilized to store contents collaboratively. And requests can

be forwarded to the closest copy which is not on path. In
[6] [7], the great performance that can be achieved from off-
path is described. But complex node interaction or a content
resolution server with frequent upgrades and queries is needed
for each node to perceive the cache state of other nodes.

In order to better utilize the advantages of both en-route
and off-path caching with low costs considering the reality,
our brief design is to combine en-route caching decision
with off-path nodes in a limited range. In-network nodes
track the popularity of contents, and the tracking mechanism
is designed based on the limited storage resources and the
quick processing requirement of the node. Additionally, en-
route caching is the main part to make redundant content
less and more popular content near the consumers, and one-
hop neighborhood nodes are considered to improve in-network
cache hit and decrease the same content in the neighborhood.

The main contributions of this paper are:

1) We propose a popularity-based neighborhood collabora-
tive caching scheme for ICN, which combines popularity-
based on-path caching decision and collaborative off-path
caching by using the bloom filter.

2) The popularity estimation and comparison process are
optimized as the requirement of quick process for in-
network nodes. There is also a detailed analysis of the
overhead and statistics of cases which may influence the
popularity estimation.

3) Real world internet topologies are used in the evaluation-
s to examine the performance of algorithms. Different
scenes that the way by which the client is attached to the
ICN nodes are also considered. The proposed algorithm
is compared to not only efficient existing on-path and off-
path algorithms but also the ideal situation that requests
can be forwarded to the closest copy in the network
with no extra information and query delay. And our
algorithm outperforms these existing algorithms and the
ideal situations.

The rest of the paper is organized as follows: Section II
describes the related work of the caching strategy in ICN. Then
the popularity estimation and the proposed popularity-based
neighborhood collaborative caching algorithm are discussed
in Section III. And Section IV analyzes the evaluation perfor-
mances. Finally, conclusion and future work are described in

978-1-5090-6468-7/17/$31.00 ©2017 IEEE

Section V.

II. RELATED WORKS

Leave copy everywhere (LCE) is the default cache decision
for some ICN architectures(eg. CCN [2]). LCE is a simple
strategy and just caches all the passing contents along the path.
But there will be too many duplicate contents in the network
and all of the contents are seen as equal without distinction.
This decrease the utilization of storage within the network.

For en-route caching, caches along the path are collabo-
ratively used. Prob-Cache [8] probably caches contents and
the length of path is also considered. CL4M [9] perceives the
state of topology and chooses the node with the largest be-
tweenness centrality as the cache node. The network topology
is considered in Prob-Cache and CL4M, while the popular
contents still cannot be acquired quickly. Leave copy down
(LCD) [10] distributes popular contents to the edge of the
network by a simple mechanism that contents are stored at
the next hop of the cache-hit node. But the redundancy of the
content still exists and the distribution relies on many cache
hit times. In age-based caching [11], popular contents have
a higher probability to be cached at the edge of the network
when the network is stable. But age-based caching still cannot
avoid the redundant caches.

For off-path caching, a globel or local group of nodes
are utilized collaboratively to unleash the advantages of in-
network cache. The hash strategies proposed by [12] determine
which node caching a content by hash functions. These hash
strategies significantly improve the cache hit ratio, but the
path length is usually large in such schemes. Mick et al.
[13] propose multi-hop neighborhood collaborative caching to
better use caches in several hops. It reduces the latency with
a good cache hit ratio, while the system is a bit complex and
the request forwarded between too much hops may influence
the performance when used in reality. The high transmission
to get the status of other cache is another problem for many
off-path schemes. According to Bayhan et al. [14], caching the
most popular contents in the name resolution server can get
the most benefit. In the paper, the situation assumed is a little
idealistic: popularity estimation is not considered and cache
status is greatly affected by caching strategies.

As discussed above, it is an appropriate and still needs to be
researched way which comprehensively considers the topolo-
gy, content popularity and overhead for using in reality. In
order to make more popular contents near the client, enhance
in-network cache diversity, utilize off-path cache in a simple
and low transmission load way, we propose a popularity-based
neighborhood collaborative caching algorithm. The contents
will be located hierarchically by the popularity. And the over-
head for using in reality is also comprehensively considered.

III. ALGORITHM

In this section, the brief design idea about our algorithm
is proposed. We first describe the popularity estimation and
comparison process in the algorithm. This is the foundation
of caching decision in the algorithm. Then we describe the

algorithm overall. Also, the details and an example of the
algorithm are shown.

A. Estimate and Compare Popularity

1) Design Principle: Comparing the popularity of the con-
tents will be used for caching decision in our algorithm. And
we consider the result is true when the popularity of compared
content is not the least among the given set. So the popularity
estimation is needed firstly. Considering the reality of in-
network node, we should track the popularity of contents with
little calculation and limited storage. Popularity comparison
also needs further consideration. Obviously, it is not a suitable
method to compare all the given contents every time the
popularity comparison process is needed. Just compare the
popularity of compared content with the least popular content
in the given set is enough, but it is difficult to maintain the least
popular content for quick comparison. Because the estimated
popularity of the content is changing and the cached content
set is also changing all the time.

Forecasting the popularity of content in traditional meth-
ods for many kinds of caching systems needs complex data
structure and algorithm implementation. As the line-speed
requirement of in-network caching, popularity processing of
ICN nodes should be simple. Scalability is another important
issue as ICN nodes’ limited storage space can’t keep track of
evolving content popularity if they store all passing informa-
tion and evict nothing. Therefore, simplicity and scalability
are the main design principles for the popularity estimation
and comparison process.

We use the request counts of the content to represent the
popularity Pct of each content in this paper. The content store
of the ICN node is extended to also store the request counts
of cached contents. And a LRU(Least Recently Used)-based
queue named the Popularity Index Store (PIS) in each node
is used to store request counts of the content which is not in
the content store. There is a variable MinContent to index the
content whose request counts is minimum among the cached
contents.

2) Popularity Estimation: As shown in Algorithm 1, the
situation is a request coming into a node. If there exists
the required content in the content store, request counts
for this content in the content store is increased by one.
And if the number of counts of the content is less than
that of MinContent, update MinContent with the content.
If MinContent is exactly the required content, search the
content store to find the minimum one to reset MinContent.
This operation is necessary as the change of request counts
of MinContent may make other content in the content store
become the one with minimum counts. Additionally, just add
the request counts of the requested content in PIS if it is not
in the content store.

As shown in Algorithm 2, when an ICN node needs to
save a content into its content store, the request counts of this
content is updated with the counts stored in PIS. Next, The
count index in PIS is deleted. The counts of the evicted content
will be kept in the PIS instead. Similar to Algorithm 1, when

Algorithm 1 Request Process

1: in-network node get a request for content CTa

2: if node has the needed content then
3: add request counts of CTa in the content store
4: if CountsInCS CTa < CountsInCS MinContent then
5: MinContent = CTa

6: end if
7: if CTa is MinContent then
8: search and reset MinContent among the cached con-

tents
9: end if

10: else
11: add request counts of CTa in PIS
12: end if

the evicted content is MinContent, search the content store to
find the minimum one to reset MinContent. This reset action
is similar to resetting MinContent in Algorithm 1.

Algorithm 2 Content Process

node put CTa

2: update CountsInCS CTa with CountsInPIS CTa

delete CountsInPIS CTa

4: add CountsInCS evict to PIS
if evict is MinContent then

6: search and reset MinContent among the cached contents
end if

3) Overhead: Assume the cache size of an ICN node is
n and using 16 bits to store the counts of each content.
Each component of the content store will need extra 16
bits, which is pretty small compared to the length of the
cached name and data. According to [15], the LRU-based
PIS and extra store of the content store will totally need
(136 + 16) m + 16n = 152m + 16n bits, where m is the size
of PIS. Obviously, the time complexity is O (n) if we compare
all contents in the popularity comparison process. We can also
use the min heap and hash-map structure to maintain count
indexes. And the time complexity of the operation on the
structure and get the minimum one is both O

(
log n
)
. While

in the proposed algorithm, the structure is a simple LRU-
based queue and only two situations will process the resetting
MinContent with the time complexity O (n). Other popularity
comparison and operation on the data structure all only cost
the time complexity O (1). The resetting MinContent operation
can also be processed by other processes to avoid the impact
of line-speed packet processing in the ICN node. And the ratio
of these two situations will be analyzed in details in Section
IV-D.

B. Neighborhood Collaborative Caching Algorithm

1) Brief Design: The proposed algorithm is designed to
cache only one copy along the path from the client to the node
caching the required content to avoid redundant contents. To
achieve the goal of making popular contents near the edge of

the network, caching decision begins with the request coming
into the network from the edge nodes. During caching decision
process in each node, if the popularity comparison between the
request and the cached contents of one node is true, this node
is considered as the cache node for the coming back content
and other node will not cache this content. If the popularity
comparison is false, the next hop along the request path will do
the same process. This will make more popular contents stored
at the edge and less popular contents stored in the network.
The cache status of one hop neighborhood nodes is also used to
search the potential content location when processing requests
and avoid same contents in one hop neighborhood nodes when
preparing to cache a content.

2) Bloom Filter: To reduce interaction traffic, we use the
bloom filter to record the cached contents. And every in-
network node periodically transmits its bloom filter to the
surrounding one hop neighborhood nodes. Each node stores
the bloom filters got from the surrounding nodes. The cache
size of each in-network node is used as the capacity m of a
bloom filter. According to [16], the number of bits needed for
each bloom filter is:

n = m

∣∣∣ln p f p

∣∣∣
ln2 2

3) Algorithm: A compare tag using only 1 bit needs to be
stored in the request message in the proposed algorithm. And
the name of the decided node for caching the content also
needs to be stored in the request and the content message. If
we use the MAC address of the node to indicate the node, this
will only use 48 bits.

As described in Algorithm 3, the content store is checked
first for a coming request. If the node has the needed content,
it will respond to the request with this content. If there is no
needed content in the content store, the node will check the
cached surrounding bloom filters to get the potential source.
Then the node will forward the ask information to confirm
whether the content exists in the potential source. The ask
information can be a private protocol or just the original
request with a special tag for the distinction. This sending
ask information process will be logged as request cost in the
performance evaluations. The needed content will come back
and the node will respond to the request with this content if
surrounding nodes have the content. If there is no requested
content in surrounding nodes, the node will check the compare
tag and process popularity comparison. This node will be
considered as the cache node if both checks above are true.
Then the name of this node will be added to the request and the
compare tag will be changed to false. And the following nodes
will not do the same process as the compare tag is false. The
request is forwarded to the default path at last. Additionally,
the node will be decided as the cache node directly without
popularity comparison if the cache is not full and compare tag
is true. This is not shown in the algorithm. When the request
gets the content somewhere, the node name in the request will
be added to the content.

Algorithm 3 Request Process Algorithm

in-network node get a request
if the node has the needed content then

3: respond to the request with this content
else

search and confirm surrounding potential sources
6: if surrounding nodes have the needed content then

get back the needed content and respond request with
it

else
9: if (compare tag == true) and (popularity comparison

== True) then
add name of this node to request
change compare tag to False

12: end if
forward request to the default path

end if
15: end if

Algorithm 4 Content Process Algorithm

in-network node get a content
check node’s name in the content
if node’s name in the content == name of the node in
process then

4: if no same content in neighborhood nodes then
cache this content

end if
end if

8: forward the content

Algorithm 4 shows the content process pipeline. The node
in process will check its name with the node name stored
in the content. The content will be stored in this node only
if the name check is true and there is no same content in
neighborhood nodes by searching the bloom filters.

4) Example: A simple example of caching decision is
shown in Figure. 1. Each node can store one content and the
popularity rate is A > B > C > D > E in this example. And
the current cache status is also shown in Figure. 1. The client
sends a request for content B into the network. There is no
change to the request as the popularity of B is lower than
A at R3. Then the request is forwarded to R2. There is no
content B in R2 or one-hop neighborhood nodes of R2. As
the popularity of B is higher than C which is stored at R2, R2
changes the compare tag of the request to false and adds its
name to the request. The request is forwarded to R1 after the
above process, and there is no cache hit at R1. There is no
cache decision at R1 as the compare tag has been changed to
false. The request is finally forwarded to the server to get the
content B. And content B will be stored at R2 when it comes
back to the client with the name of R2 stored in the content
B.

server

client

R1

R2

R3

R4

A

E

C

D

request for B

compare tag:
true

node name:
null

request for B

compare tag:
false

node name: R2

request forward path

Fig. 1: An example of caching decision

IV. PERFORMANCE EVALUATIONS

A. Simulation Setup

We implement our algorithm based on Icarus [17], a python
emulator for ICN caching strategy simulation. We modify
the strategy process pipeline in the simulation to implement
the popularity index, bloom filter transmission and caching
decision in the proposed algorithm. Through the experiment,
we conduct a detailed performance analysis and cost statistics.

Three metrics are used to measure the performance of the
algorithms. They are latency, cache hit ratio and path stretch.
Latency reflects the delay in getting content, which is the
intuitive metric to effect the network performance. Cache hit
ratio measures the portion of content requests served by a
cache. And a higher cache hit ratio means that the response
time and the load of a server is less. Path stretch means
the ratio between the actual path length with the calculated
shortest path. This reflects the transmission within the network
from another aspect. In addition, work load metric is not
presented due to the restriction of the paper space. But it is
utilized to calculate the transmission overhead of the bloom
filter.

The evaluation is performed with two real word topologies:
GEANT (European academic network), WIDE (Japanese a-
cademic network) and two Rocket Fuel topologies: AS1221
(Telstra, Australia) and AS1775 (EBONE, Europe). And in
GEANT and WIDE, only nodes with degree equaling to 1
are set as clients. While in AS1221 and AS1775, each of
the nodes in the network is linked with a client. This can
better reflect the possible different ICN situations. We set the
number of contents as N = 105. This size can be considered
fair to simulate a realistic scene, which was analyzed in [18].
The popularity of the contents is defined by Zipf distribution,
and the impact of different values of parameter α on the
experiments is also tested. We assume that the requests of
contents are generated as λ = 10 per second following a
Poisson process. The cache of each node is empty at the
beginning, and cache size of each node is equal. The first

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
5 65 86 06 26 46 66 87 07 27 47 67 88 08 28 48 68 8

La
ten

cy
(m

s)

c a h c e s i z e r a t i o

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(a) GEANT

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
5 05 2
5 45 65 86 0
6 26 46 66 8
7 07 27 47 6
7 88 0

La
ten

cy
(m

s)

c a h c e s i z e r a t i o

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(b) WIDE

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0
1 0 5

La
ten

cy
(m

s)

c a h c e s i z e r a t i o

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(c) AS1221

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
6 06 26 46 66 87 07 27 47 67 88 08 28 48 68 89 09 29 49 69 8

La
ten

cy
(m

s)

c a h c e s i z e r a t i o

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(d) AS1755

Fig. 2: Latency with different cache size ratio

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0

ca
ch

e h
it r

ati
o

c a h c e s i z e r a t i o

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(a) GEANT

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0

ca
ch

e h
it r

ati
o

c a h c e s i z e r a t i o

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(b) WIDE

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0

ca
ch

e h
it r

ati
o

c a h c e s i z e r a t i o

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(c) AS1221

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0

ca
ch

e h
it r

ati
o

c a h c e s i z e r a t i o

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(d) AS1755

Fig. 3: Cache hit ratio with different cache size ratio

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
0 . 6 5
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0
1 . 0 5

pa
th

str
etc

h

c a h c e s i z e r a t i o

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(a) GEANT

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

pa
th

str
etc

h

c a h c e s i z e r a t i o

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(b) WIDE

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

1 . 2

pa
th

str
etc

h

c a h c e s i z e r a t i o

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(c) AS1221

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5
0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

1 . 2

1 . 3

pa
th

str
etc

h
c a h c e s i z e r a t i o

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(d) AS1755

Fig. 4: Path stretch with different cache size ratio

T = 3 hours are used to warm up caches in the network and
the next T = 12 hours are logged to get statistics. We set that
the size of the PIS is 5 times the size of the content store and
the false positive probability value p f p = 0.05 is selected in
the proposed algorithm. Least Recently Used (LRU) is used
as the cache replacement strategy in the evaluation, which is
the most widely used strategy in ICN. And cache size ratio is
the ratio of the number of contents that each node can cache
to the total number of contents. In addition, α is 0.8 and cache
size ratio is 0.01 in the evaluations if not specified.

The proposed algorithm is compared to some traditional
and state-of-the-art algorithms: Leave Copy Down (LCD)
[10], Betweenness Centrality Cache Less For More (CL4M)
[9] and Hybrid Asymmetric-Multicast Hash Routing (HR
Hybrid-AM) presented in [12]. This hash routing scheme has
good performance with little affected by topology changing.
Additionally, we also consider the ideal situation that each
node knows the closest node having the requested content

without extra information. Therefore, a node can directly send
the request to the nearest content location. And the caching
strategy for this situation is Leave Cope Everywhere (LCE) [2]
and LCD. They are identified as NRR-LCE and NRR-LCD in
the evaluation. This situation is ideal as a content resolution
system which knows the status of all the temporary cache is
needed. It is difficult to realize because the rapid changes in
the network cache and the update cost and delay. The cost
and delay to request the closest copy are also ignored in the
situation. But it is a very good reference benchmark which
shows the best promotion which can be got from the off-path.
And our algorithm is identified as PBCO for short.

B. Effect of Cache Size Ratio

We first show the effect of different cache size ratio for all
four topologies. The parameter α of Zipf distribution is set as
0.8 here. Fig. 2, 3, 4 show the performance of latency, cache
hit ratio and path stretch. From these figures, we can observe

that: First, the proposed algorithm outperforms than all other
algorithms in almost all cases. And the performance is stable
with the growth of the cache size ratio. Second, in Fig. 3(c) and
Fig. 3(d), hash strategy performs better when the cache size
is large. As its design to locate contents by hash, larger cache
size in the network can cache more diverse contents. And as
each node has a client in AS1221 and AS1775, the diversity
of PBCO is less than HR Hybrid-AM with a large cache size.
And some cache nodes are not clients in GEANT and WIDE,
so PBCO has more chance to locate different contents along
the path. So PBCO is better than HR Hybrid-AM in Fig. 3(a)
and Fig. 3(b). And hash strategy sacrifices the performance of
latency and path stretch, and the gap between hash strategy
and PBCO is pretty large. Additionally, PBCO also has better
cache hit ratio than HR Hybrid-AM when the cache size is
small in Fig. 3(c) and Fig. 3(d). Finally, the ideal situation
NRR-LCD also performs well as it can get the nearest replica
in the network. NRR-LCD is the best except for PBCO. But
the proposed strategy still outperforms NRR-LCD.

C. Effect of Workload’s Popularity

In this section, the α of Zipf distribution is changed from 0.6
to 1.4 with fixed cache size ratio (0.01) to analyze the effect of
workload’s popularity. As shown in Fig. 5, 6, 7: First, PBCO
performs well with the increment of α and is still the best
in almost all cases. Second, the performance of all strategies
gains a lot with the growth of α. And the gap between PBCO
with compared strategies gets smaller when the α is large.
When the α is large, only some of the most popular contents
are requested. Any caching strategy can identify contents with
high popularity with this skewed enough popularity. Generally,
the α is no greater than 1 in reality [19]. Finally, HR Hybrid-
AM performs better on cache hit ratio in Fig. 6(c) and Fig.
6(d), and PBCO is better in Fig. 6(a) and Fig. 6(b). There are
more content types of HR Hybrid-AM whose design that finds
content accurately is the advantage with the large α. Topology
reason analyzed in Section IV-B is the same here.

D. Overhead

Storage overhead: As analyzed in Section III-A3, the total
storage needed for indexing popularity is 152m + 16n bits,
where m is the size of PIS and n is the cache size. As m = 5n
in the simulation, 776n bits are used for each node. At the
situation that each chunk size is 10K [20], consumption of
space storage for indexing popularity is 776

8×10K ≈ 0.95% of
the space to store a content. And in our simulations, with
the biggest cache size 105 × 0.05 = 5000, each node only
needs 5000×776

8×1024 ≈ 474KB. And each bloom filter is 3.8KB
as described in Section III-B2 with 5000 contents and 0.05
error rate. Each ICN node also needs to store the one-hop
surrounding nodes’ bloom filter, and the number of the one-
hop surrounding nodes is usually a single digit.

Calculation overhead: As analyzed in Section III-A3, the
popularity comparison process that may influence the line-
speed process in the pipeline of our algorithm has been
solved by using MinContent to compare with time complexity

TABLE I: Get MinContent statistics

Topology Cache size Counts Change Case 1 Case 2 Total ratio

GEANT

0.001 1433016 1748 260 0.00140124
0.005 1350161 418 373 0.000585856
0.01 1306000 239 455 0.000531394
0.02 1259751 146 433 0.000459615
0.05 1191711 66 338 0.000339008

WIDE

0.001 1022480 831 58 0.000869455
0.005 974960 259 261 0.000533355
0.01 946768 178 308 0.000513325
0.02 917845 95 312 0.00044343
0.05 874353 53 203 0.000292788

ASN1221

0.001 1968555 7849 645 0.00431484
0.005 1881982 1907 2484 0.002333179
0.01 1831272 939 2714 0.001994788
0.02 1776931 451 2015 0.001387786
0.05 1688447 188 1285 0.000872399

ASN1775

0.001 1878773 5678 341 0.003203687
0.005 1786271 1122 1904 0.001694032
0.01 1744022 669 2320 0.001713855
0.02 1690354 343 1741 0.001232878
0.05 1610402 163 1032 0.000742051

O (1). And now the main calculation overhead is resetting the
MinContent with time complexity O (n). There are two cases
that MinContent needs to be re-calculated. One is that the
request counts changing content is MinContent, and another
is that the evicted content is MinContent. We define the former
as case 1 and the latter as case 2 for short. Table. I shows the
counts of each case during the evaluation. The total ratio is
very low and the number of case 1 drops with the growth
of the cache size ratio. The larger the cache size ratio is, the
less times request counts of MinContent changes. This is also
consistent with the law of Zipf distribution. While case 2 is
the most frequent at 0.01 cache size ratio with the influence
of both cache size and cache put action. We compare the time
consumption directly with no considering the advantage that
resetting MinContent can be done without in the ICN pipeline.
Assume c is the total request counts change times, d is both
two cases happen times and n is the cache size. The time
consumption between the proposed process and min heap is:

dO (n) + cO (1)
cO
(
log n
) ≈

dO (n)
cO
(
log n
)

And d/c is the total ratio in the Table. I. The lowest value of
the result is 0.013 and up to 0.3 of all situations.

Bloom filter overhead: The false positive ratio and the
bloom filter transmission ratio are shown in Table. II. The
false positive ratio shows the ratio of ask information getting
false at the potential source node to the total counts of
sending ask information. This may happen as the false positive
characteristic of the bloom filter or the cache being evicted
during the transmission gap. The false positive ratio is higher
in AS1221 and AS1775, because each node is linked with a
client in these topology and cache changes more frequently.
When the cache size is large, cache changes less frequently
and the false positive ratio declines. The transmission ratio
shows the ratio of total bloom filter transmission and the total
link load. The transmission ratio increases with the cache size
as the size of bloom filter increases and the total link load
decreases. The transmission ratio in AS1221 and AS1775 is

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

lat
en

cy
(m

s)

p a r a m e t e r α

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(a) GEANT

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

lat
en

cy
(m

s)

p a r a m e t e r α

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(b) WIDE

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0
1 1 0

lat
en

cy
(m

s)

p a r a m e t e r α

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(c) AS1221

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

lat
en

cy
(m

s)

p a r a m e t e r α

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(d) AS1755

Fig. 5: Latency with different parameter α

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

ca
ch

e h
it r

ati
o

p a r a m e t e r α

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(a) GEANT

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

ca
ch

e h
it r

ati
o

p a r a m e t e r α

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(b) WIDE

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

ca
ch

e h
it r

ati
o

p a r a m e t e r α

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(c) AS1221

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

ca
ch

e h
it r

ati
o

p a r a m e t e r α

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(d) AS1755

Fig. 6: Cache hit ratio with different parameter α

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1

pa
th

str
etc

h

p a r a m e t e r α

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(a) GEANT

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1
1 . 2

pa
th

str
etc

h

p a r a m e t e r α

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(b) WIDE

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1
1 . 2

pa
th

str
etc

h

p a r a m e t e r α

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(c) AS1221

0 . 6 0 . 8 1 . 0 1 . 2 1 . 4
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1
1 . 2
1 . 3

pa
th

str
etc

h
p a r a m e t e r α

 L C D
 C L 4 M
 H R _ H Y B R I D _ A M
 N R R - L C E
 N R R - L C D
 P B C O

(d) AS1755

Fig. 7: Path stretch with different parameter α

also larger than that in GEANT and WIDE. The reason is
similar, each node is a client in AS1221 and AS1775, and
the average path length is smaller compared to GEANT and
WIDE. As request in GEANT and WIDE may have to pass
through many intermediate nodes. So the link load caused by
each node is less in AS1221 and AS1775. This results the
higher transmission ratio.

E. Discussion

The proposed algorithm provides a practical choice for
ICN caching decision strategy to use in reality with its good
performance and acceptable overhead. Additionally, The brief
design principle considers being used in reality as the most
important thing. The popularity estimation is simple here
because of such principle. Indeed, the popularity of content
can be forecasted more accurately with a complex system to
adapt to different scenes. But it needs to balance the improved
performance and the cost. This is also a research direction

worthy of consideration in the future. The evaluation results
show the great performance the proposed algorithm can get.
While there are still differences of results between different
topologies and cache size ratio. And we think that the situation
that limited cache size ratio and only a part of the ICN nodes
being attached to client, is more close to the real.

V. CONCLUSION

In this paper, a popularity-based neighborhood collaborative
caching algorithm for ICN is proposed to better utilize in-
network caching of ICN. And the popularity estimation is op-
timized for quick popularity comparison in the algorithm. The
evaluation results show that the proposed algorithm is better
than both the sate-of-the-art algorithms and ideal situations on
latency, cache hit ratio and path stretch. Moreover, overhead
analysis is shown for the possible deployment in reality in the
future.

TABLE II: Bloom filter statistics

Topology Cache size false positive transmission ratio

GEANT

0.001 0.017048699 0.00020588
0.005 0.018217565 0.001099729

0.01 0.019947411 0.002286292
0.02 0.028523958 0.00475654
0.05 0.017462384 0.012627577

WIDE

0.001 0.012572695 0.000184611
0.005 0.022668569 0.000969304

0.01 0.020788684 0.001998073
0.02 0.021464023 0.004101039
0.05 0.018854617 0.010797986

ASN1221

0.001 0.085490004 0.000937336
0.005 0.074529822 0.004894195

0.01 0.056858621 0.010039883
0.02 0.036220493 0.020607586
0.05 0.018428454 0.053670723

ASN1775

0.001 0.050156111 0.000977008
0.005 0.044512413 0.005110064

0.01 0.035636928 0.010458639
0.02 0.023279465 0.021504309
0.05 0.013821846 0.055819811

The proposed algorithm can be further optimized to estimate
the popularity under a low overhead and be used in some
real systems, such as Fog Computing [21] and Sea Computing
[22].

Acknowledgment

This work was supported by ”The Next-Generation
Broadband Wireless Mobile Communications Network” Na-
tional Science and Technology of Major Projects (No.
2017ZX03001019).

References
[1] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-

los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of
information-centric networking research,” IEEE Communications Sur-
veys & Tutorials, vol. 16, no. 2, pp. 1024–1049, 2014.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies. ACM, 2009, pp. 1–12.

[3] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” in Proceedings of ACM SIGCOMM 2007: Conference on
Computer Communications. ACM, 2007, pp. 181–192.

[4] G. Garcı́a, A. Beben, F. J. Ramón, A. Maeso, I. Psaras, G. Pavlou,
N. Wang, J. Śliwiński, S. Spirou, S. Soursos et al., “Comet: Content
mediator architecture for content-aware networks,” in Proceedings of
Future Network & Mobile Summit (FutureNetw), 2011. IEEE, 2011,
pp. 1–8.

[5] D. Trossen and G. Parisis, “Designing and realizing an information-
centric internet,” IEEE Communications Magazine, vol. 50, no. 7, pp.
60–67, 2012.

[6] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and
J. Wilcox, “Information-centric networking: seeing the forest for the
trees,” in Proceedings of the 10th ACM Workshop on Hot Topics in
Networks. ACM, 2011, pp. 1–1.

[7] M. Dräxler and H. Karl, “Efficiency of on-path and off-path caching
strategies in information centric networks,” in Proceedings - 2012 IEEE
Int. Conf. on Green Computing and Communications, GreenCom 2012,
Conf. on Internet of Things, iThings 2012 and Conf. on Cyber, Physical
and Social Computing, CPSCom 2012. IEEE, 2012, pp. 581–587.

[8] I. Psaras, W. K. Chai, and G. Pavlou, “In-network cache management
and resource allocation for information-centric networks,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 25, no. 11, pp. 2920–
2931, 2014.

[9] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache ”less for more” in
information-centric networks,” in Proceedings of International Confer-
ence on Research in Networking. Springer, 2012, pp. 27–40.

[10] N. Laoutaris, H. Che, and I. Stavrakakis, “The lcd interconnection of
lru caches and its analysis,” Performance Evaluation, vol. 63, no. 7, pp.
609–634, 2006.

[11] Z. Ming, M. Xu, and D. Wang, “Age-based cooperative caching in
information-centric networking,” in Proceedings of International Con-
ference on Computer Communications and Networks, ICCCN. IEEE,
2014, pp. 1–8.

[12] L. Saino, I. Psaras, and G. Pavlou, “Hash-routing schemes for informa-
tion centric networking,” in Proceedings of the 3rd ACM SIGCOMM
workshop on Information-centric networking. ACM, 2013, pp. 27–32.

[13] T. Mick, R. Tourani, and S. Misra, “Muncc: Multi-hop neighborhood
collaborative caching in information centric networks.” in Proceedings
of the 2016 3rd ACM Conference on Information-Centric Networking.
ACM, 2016, pp. 93–101.

[14] S. Bayhan, L. Wang, J. Ott, J. Kangasharju, A. Sathiaseelan, and
J. Crowcroft, “On content indexing for off-path caching in information-
centric networks.” in Proceedings of the 2016 3rd ACM Conference on
Information-Centric Networking. ACM, 2016, pp. 102–111.

[15] D. Perino and M. Varvello, “A reality check for content centric network-
ing,” in Proceedings of the ACM SIGCOMM workshop on Information-
centric networking. ACM, 2011, pp. 44–49.

[16] P. S. Almeida, C. Baquero, N. Preguiça, and D. Hutchison, “Scalable
bloom filters,” Information Processing Letters, vol. 101, no. 6, pp. 255–
261, 2007.

[17] L. Saino, I. Psaras, and G. Pavlou, “Icarus: a caching simulator for infor-
mation centric networking (icn),” in Proceedings of the 7th International
ICST conference on Simulation Tools and Techniques. ICST, 2014, pp.
66–75.

[18] V. Sourlas, I. Psaras, L. Saino, and G. Pavlou, “Efficient hash-routing
and domain clustering techniques for information-centric networks,”
Computer Networks, vol. 103, pp. 67–83, 2016.

[19] M. Yamamoto, “A survey of caching networks in content oriented
networks,” IEICE Transactions on Communications, vol. 99, no. 5, pp.
961–973, 2016.

[20] D. Rossi and G. Rossini, “Caching performance of content centric net-
works under multi-path routing (and more),” Relatório técnico, Telecom
ParisTech, 2011.

[21] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A
platform for internet of things and analytics,” in Proceedings of Big Data
and Internet of Things: A Roadmap for Smart Environments. Springer,
2014, pp. 169–186.

[22] T. Jing, “Sea-cloud coordinative and look ahead (preface),” Journal of
Network New Media, vol. 3, no. 1, pp. 1–1, 2014.

