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Abstract: An improved discretisation method relative to the geometric dimensions of the rotor-bearing system in the
calculation of its critical speeds using the transfer matrix method (TMM) is introduced to enhance the computation
precision. This work is motivated by the noise analysis of the power system, wherein the noise source identification in
a multiple source environment is challenging and hence the need for a higher degree of accuracy. This new
discretisation method is derived according to the principles of the equivalence of mass properties with lumped mass
and moment of inertia included. The efficiency of the proposed discretisation method is tested via both simulation
studies and real noise data. The Riccati TMM is applied on the equivalent discrete models obtained from the proposed
geometric dimension discretisation method (abbreviated to GDDM in this study) as well as the empirical discretisation
formula, the comparison of which indicates that the analysis of the rotor-bearing assembly discretised appropriately
enough under the GDDM is capable of providing solutions of critical speed and predictions of vibration modes and
noise with better precision.
1 Introduction

The utilisation of high-speed permanent magnet (PM) motor in the
power system is to be preferred in plenty of engineering
applications [1, 2]. In the noise and vibration analysis of a rotating
machinery, of great interest is the calculation of the rotor’s critical
speeds, because severe vibration or even damage could happen if
the intended operating speed is close to or coincide with the
critical speed [3]. The unexpected vibration could be detected
by the spectrum of radiated noise acquired from experiments,
which works in combination with the precise computation of
critical speeds to achieve a comprehensive description of the
structure-induced vibration characteristics of a power system.

The application of conventional approaches to compute the critical
speeds, which is solving the differential equations of motion, is
restricted due to its computational complexity. With the progress
of high-performance computers, the finite element method (FEM)
has been widely applied in that modelling and calculation of
structures with complex shapes could be achieved through FEM.
However, FEM has difficulties in the interpretation of some
parameters with clear physical meanings and is usually time-
consuming even for the high-performance computers [4]. The
transfer matrix method (TMM) was first proposed by Myklestad
and improved by Prohl [5, 6]. To improve the numerical stability
of the Prohl TMM, the Riccati TMM was developed, where the
formulation of the method was derived from the conversion of a
two-point boundary value problem to an initial value problem [7].
The fundamental idea of TMM is to make the state variables on
the cross-section transfer from one end of the rotor to the other
according to the deformation compatibility condition. Thus, unlike
FEM, the order of TM in TMM stays with the number of initial
state variables and does not increase with the degree-of-freedom of
the system. For this reason, the TMM is relatively easy to be
programmed with less time and memory requirement during
computing.

Many scholars have contributed to the analyses of rotor-bearing
assemblies using the TMM [8–10], and the calculation precision
of TMM is of great importance. Hsieh et al. [11] investigated the
influence of extra forces on calculation precision and vibration
mode prediction of a rotor-bearing system. Liu [12] adopted a
recurrence perturbation formula based on the Riccati TMM instead
of the conventional perturbation FEM for a more precise
eigenvalue analysis of a rotor system with uncertain parameters.

To improve the calculation precision of the TMM, most of the
researches focus on the assembly of the TM itself (e.g. [7]) and
the optimisation of the solving algorithm (e.g. [13]). However,
very little attention had been paid to the pre-process of the TMM
which is the discretisation of the model, even for the general
studies of this method [14, 15]. To apply the TMM, a typical
elastic rotor-bearing system with continuous mass distribution first
needs to be discretised into a certain number of segments along
the axial direction. Horner and Pilkey [7] gave two conditions,
based on which the structure should be segmented. They
suggested that the length of each segment should be such that
all of the terms comprising each element of the TM are
approximately the same order of magnitude and a segmentation
should occur where the state variables are desired. Nevertheless,
these two conditions cannot give clear and precise directions for
discretisation because they lack mathematical description. Huang
and Han [16] adopted a condition with a definite mathematical
formulation, which is

N ≥ 1+ 5.34r (1)

where N is the total number of lumped discs and r denotes the
highest order of the natural frequency required.

However, (1) is only an empirical formula as clearly stated in
[16], and the discrete model obtained from this empirical formula
is still highly possible to give answers with the computing
precision poorer than the value intended which is 1%. Since the
discretisation of the rotor-bearing system is the premise of
the following work of TMM, it is reasonable to assume that the
structure characteristics related to the geometry dimensions of the
1245



Fig. 1 jth Beam segment with different cross-section dimensions
rotor should be taken into account as well as N and r [used in (1)] in
the discretisation. Thus, it is the intent of this paper to provide
valuable information on the optimisation of the pre-process in the
application of TMM for computing the critical speed of a
rotor-bearing assembly more precisely.

The remainder of this paper is organised as follows. In Section 2,
the proposed quantitative discretisation method for rotors is strictly
derived. In Section 3, necessary simulation studies are performed
to evaluate the capability of the proposed geometric dimension
discretisation method (GDDM) in improving the calculation
accuracy of the Riccati TMM. Simulations of the discrete models
obtained from the empirical formula are presented for performance
comparison. Section 4 provides the further details and possible
situations that may be encountered when using discrete model with
larger number of elements under the GDDM. In Section 5, the
proposed GDDM is applied on a rotor-bearing assembly from a
PM motor to calculate its critical speed. Experimental data of the
radiated noise of the same motor are recorded to support the
calculated result given by the optimised discrete model. Finally,
conclusions are drawn and a discussion of possible extensions is
stated in Section 6.
2 Derivation of the GDDM

Usually, the rotor-bearing system is modelled by beam elements
[17]. On this premise, the segments discretised from rotor-bearing
system are divided into two different types: one is the elastic beam
segment with only its diameter and length considered, while its
mass and moment of inertia are lumped on each end of its own,
wherein lies the other type of segment, the rigid disc. It should be
noted that these discs are treated such as particles with no
geometric dimensions taken into consideration. The rigid disc is
addressed as point or station [18], and the beam segment as field.

2.1 Calculation of lumped mass

According to the invariant centroid theory [16], the mass of the rigid
disc lumped on both ends of the jth beam segment is

mR
j =

∑s
k=1 mk lkak

lj

mL
j =

∑s
k=1 mk lk(lj − ak)

lj

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(2)

where the superscripts R and L refer to right and left, s is the number
of sub-beams with different cross-section dimensions within the jth
beam segment (see Fig. 1), lj is the total length of the jth beam
segment, lk and mk k = 1, 2, . . . , s( ) are the length and the mass
per unit length of the kth k = 1, 2, . . . , s( ) sub-beam,
respectively, and ak is the distance from the kth k = 1, 2, . . . , s( )
sub-beam’s centroid to the left end cross-section of the jth beam
segment.

2.2 Calculation of lumped moment of inertia

The moment of principal axes of inertia of the kth k = 1, 2, . . . , s( )
sub-beam with uniform cross-section dimension in the jth beam
segment are given below [16]

Jpk = j pk lk

Jdk =
∫lk/2
−(lk/2)

jdk dl + mk dl · l2
[ ] = jdk lk +

1

12
mk l

3
k

⎧⎪⎪⎨
⎪⎪⎩ (3)

where jk k = 1, 2, . . . , s( ) is the moment of inertia per unit length,
and the subscripts p and d refer to the polar and diameter moment of
inertia, respectively.
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Let JLpk , J
R
pk , J

L
dk and JRdk be the kth k = 1, 2, . . . , s( ) sub-beam’s

polar and diameter moment of inertia lumped on both ends of the jth
beam segment. Then, the principles of the constant of moment of
inertia can be described as

JLpk + JRpk = Jpk = j pk lk

JLdk + mL
jka

2
k + JRdk + mR

jk lj − ak

( )2
= Jdk

⎧⎪⎨
⎪⎩ (4)

in which

mR
jk =

mk lkak
lj

mL
jk =

mk lk lj − ak

( )
lj

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(5)

Since the moment of inertia is inversely proportional to the square of
distance [16], which is

JLpka
2
k = JRpk lj − ak

( )2
JLdka

2
k = JRdk lj − ak

( )2
⎧⎪⎪⎨
⎪⎪⎩ (6)

We combine (3)–(6), yielding

JRpk =
a2k

a2k + lj − ak

( )2 j pk lk

JLpk =
lj − ak

( )2
a2k + lj − ak

( )2 j pk lk

JRdk =
a2k

a2k + lj − ak

( )2 jdk lk +
1

12
mk l

3
k − mk lkak lj − ak

( )[ ]

JLdk =
lj − ak

( )2
a2k + lj − ak

( )2 jdk lk +
1

12
mk l

3
k − mk lkak lj − ak

( )[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)
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Accordingly, the lumped moment of inertia on both ends of the jth
beam segment can be expressed as

JRpj =
∑s
k=1

JRpk

JLpj =
∑s
k=1

JLpk

JRdj =
∑s
k=1

JRdk

JLdj =
∑s
k=1

JLdk

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
2.3 Simplified formulation of the equivalent
mass properties

For the reason of brevity and convenience, the jth beam segment is
expected to be of uniform cross-section dimension, which gives

s = 1

lk = lj

ak = lj/2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(9)

In this case, the equivalent mass and moment of inertia lumped on
both ends of the jth beam segment can be re-expressed as

mL
j = mR

j = 1

2
mj lj

JLpj = JRpj =
1

2
j pjlj

JLdj = JRdj =
1

2
jdjlj −

1

6
mj l

3
j

( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(10)
Fig. 2 Model of the rotor-bearing assembly to be analysed

Fig. 3 Discrete model with stations and fields
2.4 Geometric DDM

This paper has particular interest in the expression of the diameter
moment of inertia Jdj [in (10)], because the definition of the
moment of inertia [see Equation (11), [15], pp. 409–410] indicates
that its value should be a positive value in the application of
the TMM

J =
∫
r2 dm (11)

Under this circumstance, a relation is established between the
cross-section dimension of the jth beam segment and its length
after discretisation. For solid shaft, we have

jdjlj −
1

6
mj l

3
j =

1

16
mjD

2lj −
1

6
mj l

3
j . 0

l2j
3
,

D2

8
(12)

Moreover, for hollow shaft

jdjlj −
1

6
mj l

3
j =

1

16
mj D

2 + d2
( )

lj −
1

6
mj l

3
j . 0

l2j
3
,

D2 + d2

8

(13)

where D and d denote the outer and inner diameters of the jth beam’s
cross-section, respectively.

Here, expressions (12) and (13) are the quantitative GDDM
suggested in this paper for the TMM.
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3 Evaluation of GDDM in the Riccati method

In this section, the different discrete models of the same
rotor-bearing assembly, whose first four orders of critical speed
and the corresponding vibration mode curves are given for [19],
are obtained from both the GDDM and empirical formula for
comparison. The rotor shaft of the rotor-bearing system is 9.4 m
long in the axial direction and the density of its material is
7550 kg/m3, with 130 and 44 GPa as its elasticity and shear
modulus, respectively. There are two identical flexible supports at
both ends of it. The equivalent mass, static stiffness and oil
film stiffness of the flexible supports are 1.764× 104 kg,
3.92× 109 N/m and 2.45× 109 N/m, respectively.

The rotor shaft is numbered from 1 to 15 according to the
change of cross-section, locations of attached components and its
structural features, as shown in Fig. 2. Each of the shaft segment
is of uniform cross-section dimension, and it will be discretised
into some certain number of points and fields. Generally, the
ith point and the ith field on its right compose the ith element
(see Fig. 3).

Considering the rotor-bearing assembly is axially symmetric, a
four-degrees-of-freedom rotor model is practicable here [15]. If we
adopt y to represent the displacement in the vertical direction in
Fig. 2, u is the deflection of cross-section in the plane defined by
the rotor axis and plumb line, M is the bending moment and Q is
the shear force, the state vectors on the cross-section of the ith
element can be written as

zi = y u M Q
[ ]T

i
(14)
3.1 Riccati method

The Riccati method has already been demonstrated and used
to resolve real issues of rotor systems in plenty of literature
related; hence, the detailed description of the method is not the
primary interest of this paper and need not be repeated here,
but the necessary information related to the form of TM and
frequency governing equation will be described here for the sake
of brevity.
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Table 1 Details of the discrete model with 29 elements under GDDM

Shaft segment Element

Segment
number

Diameter,
m

Length,
m

Number of elements
after discretisation

Length,
m

1 0.47 0.275 1 0.2750
2 0.57 0.505 2 0.2525
3 0.59 0.365 2 0.1825
4 0.71 0.475 2 0.2375
5 0.72 0.580 2 0.2900
6 1.01 0.100 1 0.1000
7 1.03 0.650 2 0.3250
8 1.02 3.900 7 0.5517
9 1.03 0.650 2 0.3250
10 1.01 0.100 1 0.1000
11 0.71 0.580 2 0.2900
12 0.69 0.275 1 0.2750
13 0.58 0.365 2 0.1825
14 0.55 0.295 1 0.2950
15 0.47 0.285 1 0.2850
Grounded on the principles of the Riccati TMM, the matrix of
state variables zi is reorganised as

f
e

{ }
i

according to the condition of the state variables at the left-hand
boundary of the system [7]. To be specific, f

{ }
contains the n/2

(n is the total number of state variables) state variables that are
homogeneous at the left-hand boundary (say their values are all
zeros) and {e} contains the rest n/2 complementary state
variables. The transfer of the state variables from point i to point
i + 1 can be described as follows:

f
· · ·
e

⎧⎨
⎩

⎫⎬
⎭

i+1

=
u11

..

.
u12

· · · · · · ..
. · · · · · ·

u21
..
.

u22

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

i

f
· · ·
e

⎧⎨
⎩

⎫⎬
⎭

i

(15)

where

u11
[ ]

i =
1 l

0 1

[ ]
i

u12
[ ]

i =
l v2m− k
( )

Jp − Jd
V

v

( )
v2

v2m− k 0

⎡
⎣

⎤
⎦

i

u21
[ ]

i =
l2

2EI

l3

6EI
1− g
( )

l

EI

l2

2EI

⎡
⎢⎢⎣

⎤
⎥⎥⎦

i

u22
[ ]

i =
1+ l3

6EI
1− g
( )

v2m− k
( )

l + l2

2EI
Jp − Jd

V

v

( )
v2

l2

2EI
v2m− k
( )

1+ l

EI
Jp − Jd

V

v

( )
v2

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

In (16), EI is the bending stiffness, k is the stiffness of the elastic
support on the ith point (taken as zero if there is not any), v is the
whirl speed, V is the spin speed (we take V = v in this paper)
and g is the shear influence coefficient of the ith field
cross-section, which is defined as

g = 6EI

aGAl2

( )
i

(17)

where A denotes the cross-section area, G is the shear modulus and a
is the factor related to the cross-section shape (for the hollow circular
section, a is taken as 0.667; for the solid circular section, a is taken as
0.886).

Then the Riccati transformation is introduced [7]

f
{ }

i
= s[ ]i e{ }i (18)

where the n/2
( )× n/2

( )
matrix s[ ]i is the Riccati TM. By

combining (15) and (18), the recursion formula of the Riccati TM
is obtained

s[ ]i+1= u11s+ u12
[ ]

i
u21s+ u22
[ ]−1

i
(19)

Considering the deformation compatibility requirements of the
flexible constraints, the frequency governing equation of the
1248
Riccati TMM in this case can be expressed as

s| |N+1= s11 s12
s21 s22

∣∣∣∣
∣∣∣∣
N+1

= 0 (20)

where s| | denotes the determinant of the square matrix [s].
It is worth noting that the solving algorithm applied in this paper is

modified by substituting (20) with (21), which can eliminate the
singular points in solving the frequency equation, hence the
improvement of numerical stability [20]

D1 v2( ) = S| |N+1

∏N
i=1

Sign u21s+ u22
[ ]

i

∣∣∣ ∣∣∣( )
= 0 (21)

3.2 Simulation satisfying the proposed GDDM

Here, the rotor-bearing system is discretised into 29 elements
premised on the proposed GDDM. The details of this
discretisation are listed in Table 1. It should be noted that 29 is the
minimum number of elements to satisfy the proposed GDDM for
this rotor.

Then, the modified Riccati method is performed on this discrete
model and the first four orders of critical speed are computed as
well as the corresponding vibration modes (as illustrated in Fig. 4).
The comparison between the calculated speeds and the reference
values is shown in Table 2 and the relative percentage error is
obtained. It can be seen that the relative errors are all <1%, which
are also reflected in the differences between the computed and
reference mode curves in Fig. 4. In general, the vibration mode
curves calculated from the discrete model under the GDDM are in
conformity with the trend of the curves for reference despite the
small differences in the amplitude.

3.3 Simulations only satisfying the empirical formula

In this section, the rotor-bearing assembly is discretised in manners
that satisfy the empirical formula only, which indicates that 22
elements with 23 points will be enough for the computation of
first four orders of critical speed.

3.3.1 Discretisation manner 1: In this manner, the 2nd, 5th and
11th shaft segments will all be discretised into two elements with
different lengths. To be specific, the 2nd into 0.4 and 0.105 m in
length, the 5th and 11th both into 0.48 and 0.1 m. Besides, the 4th
shaft segment will be divided into four equal elements, and the 7th
as well as the 9th into three. The 14th and 15th will be bisected,
while the 8th will remain in one piece. The rest shaft segments
will be the same as stated in Table 1. As a result, the rotor-bearing
IET Electr. Power Appl., 2017, Vol. 11, Iss. 7, pp. 1245–1253
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Table 2 First four orders of the critical angular speed calculated from
the discrete model with 29 elements created under GDDM

Order of critical
speed

Reference value,
rad/s

Calculated value,
rad/s

Relative
error, %

1 93.5719 94.2707 0.747
2 287.5432 289.5848 0.710
3 459.9533 460.6963 0.162
4 498.8326 503.7099 0.978

Fig. 4 Vibration mode curves corresponding to the discrete models with 29
elements under GDDM
assembly is also modelled by 29 elements, but some of the elements
in the 2nd, 5th, 8th and 11th shaft segments do not satisfy the
proposed GDDM. The calculation results are shown in Table 3.

The relative errors calculated from the discrete model only
satisfying the empirical formula are much larger than those in
Section 3.2 (as shown in Table 2), even though they have the
same number of elements. This is because each of the elements
which do not satisfy the GDDM makes the value of its diameter
moment of inertia negative. In the TM of the state variables, there
is a term with reference to the polar and diameter moment of
inertia [see u12

[ ]
i
and u22

[ ]
i
in (16)], which is Jp − Jd. For solid

shaft, we have

Jp − Jd =
1

16
mjD

2lj +
1

6
mj l

3
j (22)

and for hollow shaft

Jp − Jd =
1

16
mj D

2 + d2
( )

lj +
1

6
mj l

3
j (23)

Since none of the values of mj and lj are negative, we know from (22)
and (23) that the value of the term Jp − Jd is always positive, which
Table 3 First four orders of the critical angular speed calculated from
the discrete model with 29 elements, some of which disobey the
proposed GDDM, however, satisfy the empirical formula

Order of critical
speed

Reference value,
rad/s

Calculated value,
rad/s

Relative
error, %

1 93.5719 100.8705 7.800
2 287.5432 261.1742 9.170
3 459.9533 468.2168 1.797
4 498.8326 485.0791 2.757
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indicates that Jp . Jd. In the situation where we have a positive
value of Jd through the GDDM, the value of term Jp − Jd is
smaller than Jp, whereas it can be larger than Jp in the situation
where we have negative value of Jd such as the discretisation
manner 1 in this section. Solving the frequency governing [see
(21)] requires computing the cumulative product of each discrete
element’s TM. A large value of matrix element is undesirable,
because it could make the value of the matrix element in the final
matrix S[ ]N+1 considerably large, which would result in the
undesirable subtraction of two large numbers and poor accuracy,
especially when these two numbers are close to each other (the
reason is provided in details via Appendix 1). The corresponding
vibration mode curves are obtained from the calculated critical
speeds. Since the computed critical speeds diverge greatly from
the reference values, the corresponding mode curves will not be in
conformity with the reference curves. Fig. 5a depicts the great
difference between the calculated and reference vibration mode
curves in this section.
Fig. 5 Vibration mode curves of the discrete model under empirical
formula

a Vibration modes curves corresponding to discretisation manner 1
b Vibration modes curves corresponding to discretisation manner 2
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Table 6 First four orders of the critical angular speed calculated from
the discrete model with 49 elements created under GDDM

Order of critical
speed

Reference value,
rad/s

Calculated value,
rad/s

Relative
error, %

1 93.5719 93.5831 0.012

Table 5 Details of the discrete model with 49 elements under GDDM

Shaft segment Element

Segment
number

Diameter,
m

Length,
m

Number of elements
after discretisation

Length,
m

1 0.47 0.275 1 0.2750
2 0.57 0.505 3 0.1683
3 0.59 0.365 2 0.1825
4 0.71 0.475 3 0.1583
5 0.72 0.580 3 0.1933
6 1.01 0.100 1 0.1000
7 1.03 0.650 3 0.2167
8 1.02 3.900 19 0.2053
9 1.03 0.650 3 0.2167
10 1.01 0.100 1 0.1000
11 0.71 0.580 3 0.1933
12 0.69 0.275 1 0.2750
13 0.58 0.365 2 0.1825
14 0.55 0.295 2 0.1475
15 0.47 0.285 2 0.1425
3.3.2 Discretisation manner 2: The discrete model of the
rotor-bearing assembly used in this manner is basically the same
as that in Section 3.3.1, except for the discretisation of the 1st, 8th
and 12th segments. These three segments are all bisected in this
section, which gives 32 elements and 33 points, the most number
of elements by now. Similarly, the proposed GDDM are not
satisfied here, while the demand for elements in the empirical
formula is met. The first four orders of critical speed calculated
here are summarised in Table 4.

Table 4 gives better precision of the critical speed than Table 3, in
that the TMM adopts a discrete model with all its constituent
elements concatenated in the axial direction to simulate a
rotor-bearing system, the mass of which is continuously distributed
in fact, the equivalence tends to be more effective when more
elements are applied. It is important to note that this comparison is
made in the circumstance that the equivalent models are
discretised under the same condition, which is the empirical
formula as shown in (1). However, in comparison of the accuracy
from Tables 2 and 4, using the empirical condition to create a
discrete model with more elements seems no longer to be a fully
dominating method, for the same reason discussed in Section
3.3.1. Fig. 5b presents the vibration mode curves corresponding to
the calculated results in Table 4. They appear to be a better
approximation to the reference result compared with Fig. 5a. Since
the curves presented in Fig. 5b are still calculated from the critical
speeds with poor precision, their approximation to the reference
result remains inferior to that in Section 3.2 under the GDDM.
2 287.5432 287.7405 0.069
3 459.9533 460.0743 0.026
4 498.8326 498.9880 0.031
4 Increasing the number of elements under
the GDDM

From the expression of the GDDM [see (12) and (13)], we note that
for a system with determinate cross-section dimensions, the more
elements created in its discrete model, the smaller the value of lj
will be, hence the easier it will be to satisfy (12) or (13). In this
case, Section 4 will give a further discussion of the situation
where the number of elements is increased under the GDDM.
Fig. 6 Vibration mode curves corresponding to the discrete models with 49
elements under GDDM
4.1 Discrete model with 49 elements under the GDDM

Table 5 displays the details of the discretisation for the model
adopted in this section. This equivalent model has 49 elements
and 50 points; moreover, all of these elements satisfy the GDDM.

We apply the modified Riccati method on the above model. The
calculated results are shown in Table 6 and the corresponding
vibration mode curves in Fig. 6.

From Table 6, we can see that all of the relative error values fall
below 0.1%, which is vastly superior to the other methods
mentioned above. Besides, the calculated vibration mode curves
presented in Fig. 6 are in good conformity with the reference
result. It appears that increasing the number of elements under
the GDDM could further the improvement of the computing
precision of the Riccati TMM. However, further increase of the
number of elements is not suggested here because it would bring
an s[ ]N+1 with considerably large values of the matrix elements,
hence the decline in the calculation precision (the reason is
provided in details via Appendix 1, and a numerical result is given
in Appendix 2). It should be noted that the reason of the decline in
Table 4 First four orders of the critical angular speed calculated from
the discrete model with 32 elements, some of which disobey the
proposed GDDM, however, satisfy the empirical condition

Order of critical
speed

Reference value,
rad/s

Calculated value,
rad/s

Relative
error, %

1 93.5719 95.1175 1.652
2 287.5432 291.2209 1.279
3 459.9533 453.9564 1.304
4 498.8326 505.2376 1.284
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the calculation precision here is different from that in Section 3.3.
In this section, it is the number of times doing the multiplication
in computing the cumulative product of each discrete element’s
TM that leads to the large values of matrix element in s[ ]N+1,
whereas the major cause is the increment value of matrix element
in some discrete element’s TM. In Section 3.3, both of these two
problems could be avoided using the GDDM.
5 Radiated noise data analysis

In this section, the radiated noise from a PM motor (see Fig. 7a) is
recorded for further analysis.
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Fig. 7 PM motor and the rotor shaft assembly

a Arrangement of radiated noise measurement of the PM motor
b Motor’s rotor shaft assembly
The schematic representation of the motor’s rotor shaft assembly
is illustrated in Fig. 7b, and material properties of its main
components are listed in Table 7.

In the radiated noise measurement of the PM motor, four different
operating conditions are examined, the rotational speeds of which are
4300, 6400, 8000 and 11,000 revolutions per minute. The
corresponding frequencies of these four operating conditions are
72, 107, 133 and 183 Hz. Fig. 8 presents the radiated noise
spectrum under the four operating conditions mentioned above.
It can be seen that the radiated noise energy of the operating
condition of 11,000 r/min is generally at a higher level than
the other operating conditions. For the operating condition of
11,000 r/min, the amplitude of radiated noise energy at frequency
Table 7 Material properties of the main components of the motor’s
rotor shaft assembly

Component Material Elasticity
modulus, GPa

Density,
kg/m3

Poisson
ratio

shaft 30CrMnSiA 172 7850 0.28
PM Sm2Co17 100 8400 0.30
radial
bearing

Cr–Ni alloy
steel

207 7810 0.29

Fig. 8 Radiated noise spectrum under different operating conditions

IET Electr. Power Appl., 2017, Vol. 11, Iss. 7, pp. 1245–1253
1251& The Institution of Engineering and Technology 2017



Table 8 First order of the critical speed calculated from two different
discretisation methods

GDDM Empirical formula

critical rotational speed, revolutions/min 11,100 11,760
corresponding angular velocity, rad/s 1162 1232
corresponding frequency, Hz 185 196
183 Hz corresponding to this rotational speed is much greater than
the other locations. From these two evidences, it is reasonable to
conclude that the rotational speed 11,000 r/min is one of the
critical speeds of the rotor system in this PM motor [16].

The first order of critical speed calculated from the discrete model
obtained from the proposed GDDM and the empirical formula is
shown in Table 8, which complies well with the experimental
analysis above that excessive vibration and higher power of
radiated noise is to be expected near the rotational speed of
11,000 r/min.

Comparing the results calculated from the two different
discretisation methods, the discrete model obtained from the
proposed GDDM gives a relative error of 0.87% to the measured
value 11,000 r/min, whereas the relative error of the discrete
model obtained from the empirical formula is 6.9%. Thus, the
superior performance of the proposed GDDM over the empirical
formula is validated through the radiated noise data analysis.
6 Conclusion and discussion

This paper focuses mainly on the pre-processing of the TMM used in
the critical speed analysis of the rotor-bearing assembly, which is the
discretisation of the system model. A new discretisation method,
derived according to the principles of mass equivalence, is
introduced, examined and proved capable of giving answers with
better precision than the empirical formula by the simulations of a
certain rotor-bearing system in the Riccati TMM. The empirical
formula is more likely to generate Jd with negative value, hence
the poor approximation of the rotor-bearing system.

Furthermore, better precision could be achieved by appropriately
increasing the element number under the GDDM. However, excess
number of elements cannot improve the accuracy of computation,
but only add to the redundant workload. It is suggested in this
paper that the optimised lower limit of the number of elements,
given by the GDDM, would be appropriately enough for the
discretisation of a rotor-bearing assembly in the engineering
applications. In addition, the superior performance of the proposed
GDDM over the empirical formula is validated through radiated
noise data analysis.

Of great interest is the future work on the solution of the upper
limit of the number of elements. It can be concluded that the poor
precision results from the calculation of the cumulative product of
TM and the number of times doing the multiplication is closely
related to the number of elements. Thus, a relationship between
the number of elements and the calculation accuracy requirement
could be obtained. However, the complex structure of the rotor
shaft complicates this process. The correlative study will be
reported in future publication.
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9 Appendix

9.1 Appendix 1

Let x̄ be the approximation of true value x, then the absolute error of
x̄ is defined as

e−x = x− x̄ (24)

Another concept used to measure the extent of approximation is the
relative error which is

r−x = e−x
x̄

= x− x̄

x̄
(25)

Since the difference in value between x and x̄ is relatively small, we
use the differential form of x to denote the absolute error e−x

e−x = x− x̄ = dx (26)

We continue by defining z as a function of x and y [see (27)]. This
function, meanwhile, is regarded as differentiable with respect to x
and y

z = f x, y
( )

(27)

If we employ the approximations of x and y, which are x̄ and ȳ, to
calculate the value of f x, y

( )
, we have

z̄ = f x̄, ȳ
( )

(28)
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Table 9 First four orders of the critical angular speed calculated from
the discrete model with 98 elements created under GDDM

Order of critical
speed

Reference value,
rad/s

Calculated value,
rad/s

Relative
error, %

1 93.5719 95.4074 1.962
2 287.5432 291.8599 1.501
3 459.9533 467.9162 1.731
4 498.8326 498.3659 0.094

Fig. 9 Vibration mode curves corresponding to the discrete models with 98
elements under GDDM
Then the absolute error of z̄ can be described as

e−z = z− z̄ = f x, y
( )− f x̄, ȳ

( )
(29)

According to (26), e−z could also be written as

e−z = dz = df x, y
( ) = ∂f

∂x
· dx+ ∂f

∂y
· dy (30)

We can substitute dx and dy in (30) with e−x and e−y , respectively,
yielding

e−z = ∂f

∂x
· e−x + ∂f

∂y
· e−y (31)

Thus, the relative error of z̄ can be expressed as

r−z = e−z
z̄
= ∂f

∂x
· x̄
z̄
· e

−
x

x̄
+ ∂f

∂y
· ȳ
z̄
· e

−
y

ȳ
(32)

The specific form of the function f x, y
( )

we are interested in is

z = f x, y
( ) = x− y (33)

By substituting (33) into (32), we arrive at the result

r−z = x̄

x̄− ȳ
· r−x − ȳ

x̄− ȳ
· r−y (34)

In addition, we note that for values of ȳ = Kx̄ (K is a real constant),
(34) can be simplified as

r−z = r−x − K · r−y
1− K

(35)
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Since the values of x̄ and ȳ are very large, they could be quite close
quantitatively in the computing processing, which makes K approach
the value 1, and hence

lim
K�1−

r−z =
−1, r−x , r−y
1, r−x . r−y

{

lim
K�1+

r−z =
1, r−x , r−y
−1, r−x . r−y

{
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(36)

Equation (36) indicates that the relative error in computation could
be so large that numerical instability might occur in the process of
calculating the subtraction of two large numbers.
9.2 Appendix 2: discrete model with 98 elements under
the GDDM

See Table 9 and Fig. 9.
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