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The fourth order accuracy finite difference scheme is known advantageous in reducing memory and improving
efficiency. Summation-by-parts finite difference operator is a natural way for wavefield simulation in complicat-
ed domains containing surface topography and irregular interfaces. The application of summation-by-parts
method guarantees the stability of numerical approximation for heterogeneous media on curvilinear grids.
This paper extends the second order summation-by-parts finite difference method to the fourth order case for
the discretization of acoustic wave equation and perfect matched layer in boundary-conforming grids. In partic-
ular, the implementation of the fourth order method for wavefield simulation and reverse time migration in
complicated domains can significantly improve the efficiency and decrease the storage. The ellipticmethod is ap-
plied for boundary-conforming grid generation in complicated domains. Under such grids, the two-dimensional
acoustic wave equation in second order displacement formulation is compactly reformulated for forward
modeling and reverse time migration, and the symmetric and compact form of perfectly matched layers
expressed in a curvilinear coordinate system are applied to suppress artificial reflections. The discretizations of
the acoustic wave equation and perfectly matched layer formula are fourth and second order accuracy in space
and time respectively, where the spatial discretization satisfies the principle of summation-by-parts and is stable.
Numerical experiments are presented to compare the accuracy of the second with fourth order summation-by-
parts finite difference methods and to evaluate the efficiency of reverse time migration by using these two
methods. As well, comparisons are performed between the fourth order accuracy summation-by-parts finite
difference method and central finite difference method to illustrate the stability superiority of summation-by-
parts operators.
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1. Introduction

Finite difference method (FDM) is flexible and easy to implement, it
has been one of the most popular and successful numerical methods in
seismic wavefield simulation for complex heterogeneous media. When
structured meshes are readily generated, FDM can be the most efficient
option for regions including many complex geometries of practical in-
terest (Tarrass et al., 2011; Lan and Zhang, 2011, 2012; Del Rey
Fernández et al., 2014). Applying a general form of transformation
through elliptic partial differential equations, the elliptic method
(Thompson et al., 1977a, 1977b; Thompson et al., 1985; Jeng and Liou,
1992; Kaul, 2003, 2010; Conti et al., 2005) provides a way to generate
such structured boundary-conforming curvilinear grids. The surface
topography and irregular interfaces can be described precisely in
boundary-conforming grids, which enables accurate modeling on real-
istic surface topography and makes FDM a very attractive alternative
to finite element method (FEM) and pseudo-spectral method (PSM)
(Petersson and Sjögreen, 2010; Sjögreen and Petersson, 2014). FEM is
flexible in modeling complicated and irregular boundary conditions.
However, FEM is computationally expensive and requires large amount
of computer memory especially in the three-dimensional (3D) case
(Komatitsch and Tromp, 1999; Liu et al., 2011; Guo and Wang, 2009;
Guo et al., 2012; Sjögreen, 2012). PSM is also well adapted to handle a
curved free surface efficiently. However, to fully utilize the high order
PSM, unstructured high quality grid generation is needed, which is
labor intensive and not easily automated. In addition, PSM leads to inac-
curacies for models with strong heterogeneity or sharp boundaries
(Fornberg, 1987; Kosloff et al., 1990).

The second order finite-difference scheme is a powerful tool in
seismic modeling due to small storage and fast computation speed for
the same grid points. Unfortunately, numerical dispersion affects the
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performance of the second order FDM (Yang et al., 2012). As a result,
high order spatially accurate finite difference schemes are required,
because of their lower phase error (Mattsson, 2003). High order
methods can produce more accurate results on coarser computational
grids compared to low order ones, thus resulting in a decrease in the
overall computational effort (Sherer and Scott, 2005). In particular,
higher order finite-difference methods can offer a significant potential
gain in computational efficiency (Sjögreen, 2012; Del Rey Fernández
et al., 2014).

The main reason that low order FDMs are used in practical
calculations is the difficulty to derive high accurate and stable
operators in curvilinear grids. This fact has limited the use of high
order finite difference method (HOFDM) in practical calculations to
the small class of simple geometries (Del Rey Fernández et al.,
2014). A natural way to obtain a stable and high order accurate
approximation in the framework of HOFDM is to use summation-
by-parts (SBP) operators. The SBP property refers to a discrete
version of integration-by-parts, which leads to an attractive stability
property (Nordstrom and Carpenter, 1998; Mattsson, 2003; Sherer
and Scott, 2005; Hicken, 2012; Sjögreen and Petersson, 2012;
Kozdon et al., 2013). This property ensures that the discretization
can be generalized to curvilinear coordinates. Consequently, it is
possible to account for realistic topography by constructing a
boundary conforming curvilinear grid (Sjögreen and Petersson,
2014; Petersson and Sjögreen, 2015).

The research on HOFDM which satisfies SBP principle is popular
due to the property that ensures the stability. Kress (2003) investi-
gated the fourth order accuracy discretization in time and space for
the wave equation in first order system formulation, but the
discretization was based on staggered grid in space and was not
applicable to curvilinear grids. Sjögreen (2012) implemented the
finite difference scheme satisfying the SBP property for advection
on the sphere, using the cube sphere discretization. Sjögreen and
Petersson (2012) presented the fourth order accuracy SBP finite
difference method (SBPFDM) for the elastic wave equation in second
order formulation, where the boundary conditions were enforced
through ghost points. Petersson and Sjögreen (2014) applied the
super-grid approach combining with fourth order accuracy SBP
operators to derive a stable and accurate numerical method for
wave equations on unbounded domains. However, the effect of
super-grid was not as ideal as perfectly matched layer (PML).
Sjögreen and Petersson (2014) considered the inverse problem to
estimate the parameters describing the source in a seismic event,
Fig. 1.Model 1 with a surface topography. A point source marked as an asterisk is located
at (2000 m, 37 m).
where the synthetic ground motions were obtained as the solution
of a fourth order accuracy SBP finite difference approximation of
the elastic wave equation in a heterogeneous isotropic material.
Dovgilovich and Sofronov (2015) solved elastodynamic anisotropic
problems described by the Navier wave equation in complex geom-
etry based on the SBP approach, and non-reflecting boundary condi-
tions were used. Petersson and Sjögreen (2015) extended the
method for isotropic materials in Sjögreen and Petersson (2012) to
general heterogeneous anisotropic materials on curvilinear grids,
where the fourth order accuracy SBPFDM was applied for
discretizing the anisotropic elastic wave equation in second order
formulation and the super-grid far-field technique was used for
truncating unbounded domains. Duru and Dunham (2016) solved
the first order form of the 3D elastic wave equation by high order ac-
curacy SBP finite difference operators for earthquake rupture dy-
namics on nonplanar faults embedded in geometrically complex,
heterogeneous Earth models.

Previously, we have comprehensively applied the elliptic method
in acoustic wave equation simulation, PMLs and reverse time migra-
tion (RTM) in boundary-conforming grids. The discretizations of the
acoustic wave equation and PML formula were second order accura-
cy, where the spatial discretization satisfied the summation-by-parts
principle (Wang et al., 2015). Here we generalize our technique to
fourth order accuracy in space while the expression for the temporal
derivative is retained second order accuracy, since using fourth order
accuracy expression for the time derivative leads to an enormous in-
crease in the computational effort (Mufti, 1990). The application of
the fourth order SBPFDM in space can efficiently suppress the
numerical dispersion, thus significantly improve the efficiency and
decrease the storage in RTM. Lan et al. (2014) also did some work
in the similar field, where the strategy of a flux-corrected transport
(FCT) algorithm was incorporated in the RTM implementation to
overcome the problem of numerical dispersion. However, the finite
difference scheme is second-order accuracy, and more calculations,
such as diffusion computation and offsetting diffusion, are needed
in FCT-based FD algorithm.

This paper is organized as follows. First, a compactly reformulated
acoustic wave equation is presented in boundary-conforming
coordinates for wavefield simulation and RTM in regions with arbitrary
surface and irregular interfaces, and the time domain PML formula of
symmetric and compact form expressed in boundary-conforming
coordinates is given. Then, the fourth order accuracy SBPFDM is used
for discretization and the stability analysis of the scheme is given.
Finally, three numerical examples with surface topography, irregular
interfaces and complex structures are presented to demonstrate the
accuracy, stability and effect of wavefield simulation and RTM by the
fourth order accuracy SBPFDM in boundary-conforming grids, and to
exhibit the superiority of the fourth order method in efficiency and
storage.

2. Methods

2.1. Acoustic wave equation and reverse time migration in boundary-
conforming coordinates

The two-dimensional acoustic wave equation in second order for-
mulation in Cartesian coordinate system (x,z) takes the form of

1
v2 x; zð Þ

∂2u
∂t2

¼ ∂2u
∂x2

þ ∂2u
∂z2

; ð1Þ

where v(x, z) is the velocity of the media, and u(x, z) is the
displacement.



Fig. 2. Snapshots at 500 ms (a) and (b), and 1000 ms (c) and (d) obtained by SBPFDM of second (a) and (c) and fourth order accuracy (b) and (d). The spatial interval isΔq=Δr=4.0 m.

Fig. 3. Shot gathers of Model 1 computed by the SBPFDM of second (a) and fourth order accuracy (b). A part of zoomed direct wave is shown. The spatial interval is Δq=Δr=4.0 m.
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Fig. 4. Snapshots at 1000 ms (a) and (b), and 1250 ms (c) and (d) obtained by the SBPFDM of second (a) and (c) and fourth order accuracy (b) and (d). The spatial interval is
Δq=Δr=8.0 m.
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In boundary-conforming coordinate system (q,r) generated by ellip-
tic method (Thompson et al., 1977a, 1977b; Wei et al., 2000), Eq. (1) is
reformulated as

J
v2

∂2u
∂t2

¼ ∂
∂q

Mqq
∂u
∂q

� �
þ ∂
∂q

Mqr
∂u
∂r

� �
þ ∂
∂r

Mqr
∂u
∂q

� �
þ ∂
∂r

Mrr
∂u
∂r

� �
;ð2Þ

where J= xqzr− xrzq, Mqq= J(qx2+qz
2), Mqr= J(qxrx+qzrz), Mrr=

J(rx2+ rz
2).xq denotes ∂ x(q, r)/∂q,xqq denotes ∂2x(q, r)/∂q2, and

similarly in other cases. The structure of Eq. (2) is symmetric and
compact, which favors efficient computation. However, Eq. (2)
becomes more complicated with four additional coefficients. In
special, when J=1, Mqq=1, Mqr=0, Mrr=1, Eq. (2) reduces to the
form of acoustic wave Eq. (1) in Cartesian coordinate system. After
the realization of coordinate transformation, one can easily conduct
the acoustic wavefield simulation in irregular regions by solving
Eq. (2).

RTM has been known as a powerful tool for imaging steeply
dipping reflectors and complex structures in complicated velocity
models. Using the boundary-conforming grids, RTM can be extend-
ed to irregular regions with arbitrary surface topography and
interfaces. RTM in boundary-conforming coordinate system is sim-
ilar to that in the Cartesian coordinate system, involving the source
wavefield propagation along the positive time direction, the re-
ceiver wavefield propagation along the negative time direction,
and the application of imaging conditions. Here, we choose the
zero-lag cross-correlation imaging condition

I q; rð Þ ¼
Z

S q; r; tð ÞR q; r; tð Þdt; ð3Þ

because it provides correct kinematics and is easy to implement. In
Eq. (3) I(q, r) stands for the imaging function, S(q, r, t) and R(q, r, t)
represent the source and receiver extrapolated wavefield
respectively.

2.2. Perfectly matched layer in boundary-conforming coordinates

The PML technique is used for truncating unbounded domains. Orig-
inally proposed by Berenger (1994) and later improved bymany others,
PML has been very successful for electromagnetic wave simulations.
PML has superior non-reflecting properties (Chen et al., 2013). It is



Fig. 6. Shot gathers (a) and (b) of Model 1 and corresponding seismograms of two receivers (c) and (d) obtained by the SBPFDMwith temporal intervals of 0.83 ms (a), (c) and 0.85 ms.

Fig. 5. Shot gathers of Model 1 obtained by the SBPFDM of second (a) and fourth order accuracy (b). The spatial interval is Δq=Δr=8.0 m.
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Fig. 7. Shot gathers (a) and (b) of Model 1 and corresponding seismograms of two receivers (c) and (d) obtained by the central FDM (a), (c) and SBPFDM (b), (d). The temporal interval is
Δt=0.84 ms. The locations of receivers are marked by inverted triangles in (a) and (b).
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pointed out that the PML technique has stability issues when applied to
the elastic wave equation and some anisotropic wave equations, where
heterogeneous material properties and free surface boundary condi-
tions can cause instability (Petersson and Sjögreen, 2009, 2014;
Sjögreen and Petersson, 2014). It makes the super-grid technique an al-
ternative for elastic wave equation in curvilinear grids. However, the
super-grid technique cannot achieve the “perfect” non-reflecting prop-
erty of PML (Petersson and Sjögreen, 2015). Since our method is based
on the acoustic wave equation in second order displacement formula-
tion, the instability encountered in elastic wave equation can be
avoided. With a lot of evidence to show the effect of PML in
boundary-conforming grids for acoustic wave equation (e.g. Rao and



Fig. 8. Model 2 with surface topography and an irregular interface. Point sources marked as asterisks are located at (664 m,93 m), (1328 m,15 m), (2000 m,29 m), (2664 m,−59 m),
(3328 m,44 m).
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Wang, 2013; Yuan et al., 2014;Wang et al., 2015), or elastic wave equa-
tion (e.g. Lan et al., 2016), the PML technique is applied to suppress the
artificial reflections in this paper.

Considering attenuations along the q- and r-axis simultaneously, the
scalar u is split into three terms, u=u1+u2+u3, u1 ,u2 ,u3 represent the
splitting displacements. The time domain split PML formulae with a
symmetric and compact form in boundary-conforming coordinate sys-
tem are expressed as

J
v2

∂t þ dq
� �2u1 ¼ ∂

∂q
Mqq

∂u
∂q

� �
−Mqq

∂dq
∂q

exp −dqt
� � � ∂u

∂q
;

J
v2

∂t þ dq
� �

∂t þ drð Þu2 ¼ ∂
∂q

Mqr
∂u
∂r

� �
þ ∂
∂r

Mqr
∂u
∂q

� �
;

J
v2

∂t þ drð Þ2u3 ¼ ∂
∂r

Mrr
∂u
∂r

� �
−Mrr

∂dr
∂r

exp −drtð Þ � ∂u
∂r

;

8>>>>>>><
>>>>>>>:

ð4Þ

where dq and dr represent the damping functions in the PML region, and
∗ stands for temporal convolution. Eq. (4) is applied to the PML regions
to attenuate the wavefield exponentially, and the original wave Eq. (2)
is solved in the interior regions.

2.3. Discretization and stability analysis

The major innovation of this paper lies in the application of the
fourth order SBP finite difference scheme to acoustic wavefield simula-
tion and RTM in boundary- conforming grids. The key ingredient of SBP
method is the discretization of second derivative with variable coeffi-
cient, which satisfies a summation by parts identity and guarantees sta-
bility of the scheme. The discretization is consistent with previous
summation by parts stencils for approximating first derivatives (e.g.
Strand, 1994; Carpenter et al., 1999; Mattsson, 2003; Sjögreen and
Petersson, 2012). Higher order summation by parts operators for ap-
proximating first derivatives are well known (for example, Strand,
1994). Operators in the literature approximate the first derivative to
pth order accuracy in the interior, for p=2,4 ,6 ,8 ,10. We mainly
focus on the case of p=4 in the component form in this paper. Similar
as the fourth order accuracy FDM in Cartesian coordinate system, the
fourth order accuracy SBPFDM in boundary-conforming grids is advan-
tageous in suppressing the numerical dispersion and improving the ef-
ficiency. Here, the SBP finite difference scheme is adopted on non-
staggered grids for discretizing Eqs. (2) and (4).We discretize themedi-
um with the nodes

qi ¼ i−1ð ÞΔq; i ¼ 1;…;Nq;

r j ¼ j−1ð ÞΔr; j ¼ 1;…;Nr ;
where Δq and Δr are the intervals in the q- and r-directions, i , j are
the indexes of spatial steps, Nq and Nr are the number of grid nodes in
q- and r- directions respectively.

With the introduction of the operator D and G to denote the fourth
order accuracy SBP finite difference approximations of the first and
second derivative in the interior (r-direction for example)

D rð Þuj ¼
1

12Δr
−ujþ2 þ 8ujþ1−8uj−1 þ uj−2
� � ¼ ur r j

� �þ O h4
� �

; ð5Þ

G rð Þ σð Þuj ¼
1

12Δr2
Er σ j−1
� �

uj−uj−2
� �

−16Er σ j−1=2
� �

uj−uj−1
� �

þ16Er σ jþ1=2
� �

ujþ1−uj
� �

−Er σ jþ1
� �

ujþ2−uj
� �� �

;

¼ ∂
∂r

σ
∂u
∂r

� �
þ O h4

� �
ð6Þ

and the averaging operators

Er σ j
� � ¼ 1

2
3σ j−1−4σ j þ 3σ jþ1
� �

; ð7Þ

Er σ jþ1=2
� � ¼ 1

8
σ j−1 þ 3σ j þ 3σ jþ1 þ σ jþ2
� �

; ð8Þ

Eq. (2) is discretized as

J
v2

ukþ1−2uk þ uk−1

Δt2
¼ G qð Þ Mqq

� �
uk þ D qð Þ MqrD

rð Þuk
� �

þD rð Þ MqrD
qð Þuk

� �
þ G rð Þ Mrrð Þuk

; ð9Þ

where Δt is the time interval, and k is the index of time step.
Similarly, the application of finite difference operators to Eq. (4)

leads to

ukþ1
1 ¼ 1

1þ dqΔt

2−d2qΔt
2

� �
uk
1− 1−dqΔt
� �

uk−1
1

þ v2Δt2

J
G qð Þ Mqq

� �
uk þMqqC

k
1

h i
8><
>:

9>=
>;;

ukþ1
2 ¼ 1

1þ dq þ dr
2

Δt

2−dqdrΔt2
� �

uk
2− 1−

dq þ dr
2

Δt
� �

uk−1
2

þ v2Δt2

J
D qð Þ MqrD

rð Þuk
� �

þ D rð Þ MqrD
qð Þuk

� �h i
8>><
>>:

9>>=
>>;;

ukþ1
3 ¼ 1

1þ drΔt

2−d2rΔt
2

� �
uk
3− 1−drΔtð Þuk−1

3

þ v2Δt2

J
G rð Þ Mrrð Þuk þMrrC

k
2

h i
8><
>:

9>=
>;;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð10Þ



Fig. 9. Snapshots of Model 2 computed by the second (a) and (c) and fourth (b) and (d) order SBPFDM. (a) and (b) at 270 ms, (c) and (d) at 540 ms.
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Fig. 10. Shot gathers (a) and (b) ofModel 2 and corresponding seismograms of one receiver (c) and (d) calculated by the second (a), (c) and fourth (b), (d) order SBPFDM. The locations of
receivers are marked by inverted triangles in (a) and (b).
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where

Ck
1 ¼ −

∂dq
∂q

exp −dqt
� � � ∂u

∂q

����
k

¼ exp −dqΔt
� �

Ck−1
1 −

Δt
2
∂dq
∂q

exp −dqΔt
� �

D qð Þuk−1 þ D qð Þuk
h i

;

and

Ck
2 ¼ −

∂dr
∂r

exp −drtð Þ � ∂u
∂r

����
k

¼ exp −drΔtð ÞCk−1
2 −

Δt
2
∂dr
∂r

exp −drΔtð ÞD rð Þuk−1 þ D rð Þuk
h i

:

The variables of ui(i=1,2,3) in Eq. (10) are computed respectively

to constitute u ¼ ∑
3

i¼1
ui , which represents the wavefield in the PML

region.
Eq. (9) is stable under the time step restriction of

Δt≤
ffiffiffi
3

p
=2

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
J

Mqq

h2q
þMrr

h2r

 !vuut :

ð11Þ

The derivation of Eq. (11) is given in Appendix A. The application of
SBP operator in boundary-conforming grids leads to an attractive stabil-
ity advantage over traditional central finite difference scheme.
3. Numerical examples

Three simulation examples (Model 1, 2 and 3) are presented to eval-
uate the performances of the fourth order accuracy SBP finite difference
scheme for wavefield simulation and RTM in boundary-conforming
grids via elliptic method. The PML absorbing boundary condition (4) is
enforced to suppress the artificial reflections. Thirty-layer PMLs are ap-
plied to each side of themodels. Simulations by the SBP finite difference
scheme of second and fourth order accuracy are individually performed
to compare the accuracy and efficiency. Simulation results by fourth
order SBP scheme with different temporal intervals are compared to
verify the correctness of the stability condition (11). Comparisons be-
tween the simulations by fourth order accuracy SBP and central finite
difference schemes are also respectively conducted to illustrate the sta-
bility advantage of SBP operator. The positive r-axis is assumed down-
ward in numerical models. All numerical examples are performed on a
personal computer equipped by CPU of Intel Core i7, 2.4GHz.
3.1. Sinusoidal surface homogeneous model

Model 1 with sinusoidal surface topography is designed with two
purposes: firstly, to compare the simulations in complicated domains
by the SBPFDM of second and fourth order, and secondly, to verify the
stability condition (11) and to illustrate the stability advantage of
SBPFDM over the central FDM. For simplicity, the velocity is a constant
illustrated in Fig. 1. The size of the model is 4000 m × 3000 m. One
point source of Ricker wavelet with the dominant frequency of 20 Hz



Fig. 11. RTM results of Model 2 obtained by the second (a) and fourth (b) order SBPFDM.
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is located at (2000m, 37m),which ismarked as an asterisk in Fig. 1. The
receivers are placed along the surface.

(1) Comparisons between the SBPFDM of second and fourth order.
Two groups of parameters, including the spatial interval, temporal

interval and size of grids, are set for simulation as follows. Group 1:
Δq=Δr=4.0 m, Δt=0.5 ms, Nq=1001 , Nr=751; Group 2:
Δq=Δr=8.0 m, Δt=0.5 ms, Nq=501, Nr=376. Each group of pa-
rameters is applied to both simulations by the second and fourth
order accuracy finite difference schemes.

Figs. 2 and 3 illustrate the simulation results by the parameters in
Group 1. Fig. 2(a)–(d) depicts snapshots of wavefield at 500 ms and
1000 ms respectively, where Fig. 2(a) and (c) are simulated by the sec-
ond order SBPFDM, and Fig. 2(b) and (d) are those of the fourth order
SBPFDM. Shot gathers obtained by the two accuracy SBPFDMs are
shown in Fig. 3. For seeing clearly the simulation results, zoomed part
of the direct wave is shown in the lower right corner of Fig. 3(a) and
(b). Since the spatial interval is fine, the two simulation results are sim-
ilar. The effect of PMLs is also validated in the simulations.

Figs. 4 and 5 illustrate the simulation results by the parameters in
Group 2. Fig. 4(a)–(d) depicts snapshots of wavefield at 1000 ms and
1250ms respectively, where Fig. 4(a) and (c) are simulated via the sec-
ond order SBPFDM, and Fig. 4(b) and (d) are by the fourth order
SBPFDM. The simulation result obtained by the fourth order method is
accurate, however, that by the second order scheme suffers from the
numerical dispersion. Shot gathers calculated by these two schemes
are shown in Fig. 5. The simulation results calculated by the second
Table 1
Elapse time and storage requirement of RTM per shot for Model 2 tested with the second and

Accuracy Grid size The number of grids Time step

2nd order 4 m 1001 × 251 0.3 ms
4th order 8 m 501 × 126 0.6 ms
Savings 75%
order accuracy method (Fig. 5a) show evident numerical dispersion,
while those obtained by using the fourth order accuracy method are
free of dispersion (Fig. 5b).

The simulation results obtained by using different accuracymethods
with different spatial intervals show that the fourth order accuracy
SBPFDM is more advantageous in suppressing numerical dispersion.
To achieve a desired accuracy, the use of the fourth order accuracy
SBPFDM reduces the number of points needed in the discretization
and consequently reduces the computational cost.

(2) Comparisons between fourth order accuracy SBPFDM and cen-
tral FDM.

Simulation results via fourth order SBP scheme with different tem-
poral intervals are compared to verify the correctness of the stability
condition (11). According to (11), the time step restriction that ensures
the stability of fourth order accuracy SBPFDM in boundary-conforming
grids for Model 1 is Δt≤0.84 ms. Two temporal intervals, Δt=0.83 ms
and Δt=0.85 ms, are used for simulations respectively. Stable simula-
tion as illustrated in Fig. 6 (a) and (c) is obtained by using
Δt=0.83 ms. However, the simulations by using Δt=0.85 ms suffer
from instability, i.e., overflow occurs during simulation. The wavelet is
covered up by the overflow (Fig. 6d), resulting in error information in
the shot gathers (Fig. 6b).

The locations of receivers are marked by inverted triangles in
(a) and (b).

The simulations by centralfinite difference and SBPmethods are com-
pared to illustrate the stability superiority of SBP operator in boundary-
fourth order SBPFDM.

Temporal sampling points Elapse time Storage requirement

10,000 289.8 s 12.2 GB
5000 83.3 s 1.94 GB
50% 71.26% 84.10%



Fig. 12. Model 3 with sinusoidal topography and a depression, 9 sources are marked as
asterisks.
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conforming grids. The accuracy is fourth order and the spatial interval is
Δq=Δr=4.0 m for both methods. The critical value of Δt=0.84 ms
from the stability condition (11) is used as the temporal interval in the
Fig. 13. Snapshots for Model 3 calculated by the second (a) and (c) and fourth
simulations. The results by central finite differencemethod are not stable,
as illustrated in Fig. 7(a) and (c). The application of SBP finite difference
method guarantees the stability of the simulations (Fig. 7b, d). These
simulations prove the stability superiority of SBPFDM over central finite
difference scheme in boundary-conforming grids.

3.2. Two-layer model with irregular surface and interface

Model 2 with surface topography and an irregular interface is de-
signed to test the effect and efficiency of RTM performed by the fourth
order SBPFDM in complicated domains. The surface undulation repre-
sents topography with a combination of two hills and two depressions,
as illustrated in Fig. 8, in which the velocities are given. The size of the
model is 4000 m × 1000 m. Five point sources of Ricker wavelet with
the dominant frequency of 20 Hz are located at (664 m,93 m),
(1328 m,15 m), (2000 m,29 m), (2664 m,−59 m), (3328 m,44 m)
marked as asterisks. The receivers are placed along the surface at all grids.

To compare the efficiency, both the secondand fourth order SBPFDM
are applied for the simulation and RTM. Given the fact that the second
order method is more subject to grid dispersion, the spatial and tempo-
ral intervals for the second order method are Δq=Δr=4.0 m and
Δt=0.3 ms, and those for the four order method are Δq=Δr=8.0 m
and Δt=0.6 ms.
(b) and (d) order SBPFDM. (a) and (b) at 500 ms, (c) and (d) at 800 ms.



Fig. 14. Shot gathers (a) and (b) ofModel 3 and corresponding seismograms of one receiver (c) and (d) computed by the SBPFDMof (a), (c) second and (b), (d) fourth order accuracy. The
locations of receivers are marked by inverted triangles in (a) and (b).
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Fig. 9 depicts snapshots ofwavefield at 270ms and 540ms calculated
by the second and fourth order accuracy methods, excited at
(2000 m,29 m). The black lines in the snapshots indicate the interface.
It is seen from Fig. 9 that the wavefields are correctly simulated by the
twomethods, with reflections arising at the interface and no artificial re-
flection occurring near the boundary. Shot gathers and corresponding
seismograms of one receiver obtained by the two methods are similar
as shown in Fig. 10, where the locations of receivers are marked by
Fig. 15. RTM results of Model 3 calculated by the SBPF
inverted triangles. The direct wave and reflections are clear in the shot
gathers. Due to the surface topography, the travel time curve for the di-
rect wave is not a straight line. Fig. 11 gives the RTM results obtained
by the second and fourth order accuracy SBPFDM. The migration results
are basically consistent with the interface for both methods. It should
be noted that the images have been filtered by a Laplacian filter (Zhang
and Sun, 2009) to suppress low frequency artifacts. The artifacts will
become weak if the number of sources increases.
DM of (a) second and (b) fourth order accuracy.



Table 2
Elapse time and storage requirement of RTM per shot for Model 3 tested with the second and fourth order SBPFDM.

Accuracy Grid size The number of grids Time step Temporal sampling points Elapse time Storage requirement

2nd order 4 m 1001 × 751 0.2 ms 10,000 986.2 s 32.055 GB
4th order 8 m 501 × 376 0.4 ms 5000 180.0 s 4.556 GB
Savings 75% 50% 81.75% 85.79%
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Although the effects of snapshots, shot gathers andmigration results
are similar for the second and fourth accuracy SBPFDM, the elapse CPU
time and storage requirement are quite different. The details of the costs
for RTM per shot for Model 2 by the two methods are listed in Table 1.
The low dispersion allows the fourth order SBPFDM to use a coarser
grid, which is 2 times of the grid in the second order method, thus the
number of grids for the fourth order method is 75% less than that for
the second order method. According to the stability condition, a coarser
grid indicates that a larger time interval (2 times of that in the second
order method) can be used. For a given length of record, the temporal
sampling points in the fourth order method are only half of those in
the second order method. When applying the fourth order method, it
takes only 28.74% of the elapse time and 15.9% of the storage of the sec-
ond order method. The efficiency is greatly improved and the storage is
significantly decreased by the fourth order accuracy SBPFDM, with the
comparable simulation and migration results.

3.3. Multi-layer model with sinusoidal topography and a depression

Model 3 shown in Fig. 12 having a sinusoidal topography and a
depression is built to further verify the applicability and efficiency of
wavefield simulation and RTM by the fourth order accuracy SBPFDM
in irregular domains by boundary-conforming grids. The size of the
model is 4000 m×3000 m. Nine point sources marked as asterisks are
located at (400 m,84 m), (800 m,67 m), (1200 m,8 m),
(1600 m,−9 m), (2000 m,38 m), (2400 m,85 m), (2800 m,67 m),
(3200 m,9 m), (3600 m,−9 m). The receivers with a spatial interval
of Δq are placed along the surface. The record length is 2 s. Similar to
Model 2 case, both the second and fourth order accuracy SBPFDM are
applied to the simulations and RTM. For the second order method,
Δq=Δr=4.0 m and Δt=0.2 ms, and for the fourth order one,
Δq=Δr=8.0 m and Δt=0.4 ms.

Fig. 13 exhibits the wavefield snapshots at 500 ms and 800 ms ob-
tained by the second and fourth order accuracy SBPFDM, in which the
interfaces are indicated. Because of the existence of two planar inter-
faces and a depression, the wavefield is complicated with plentiful re-
flections. It is obvious that the simulation results for these two
methods are similar.

Shot gathers and corresponding seismograms of one receiver calcu-
lated by these twomethods are shown in Fig. 14. Directwave and reflec-
tions are correctly and clearly presented in both the shot gathers, and no
visible artificial reflections occur due to the application of PMLs. The
shot gathers and the seismograms obtained by themethodswith differ-
ent accuracy are similar. Fig. 15 illustrates the RTM images obtained by
the two methods. Similar to Model 2, the interfaces and the structure
are well imaged. It means that either method is applicable to RTM by
boundary-conforming grids in regions containing surface topography,
complicated structure and irregular interface. The migration results by
these two methods are similar.

Table 2 gives the costs of RTM per shot for Model 3 by these two
methods. Similar to the cost analysis inModel 2, comparedwith the sec-
ond order method, the application of coarser grid and larger time inter-
val in the fourth order method decreases the numbers of grids and
temporal sampling points to 25% and 50% respectively. In contrast to
the second order method, the fourth order one can save 81.75% of CPU
time and 85.79% of storage space. It can also be concluded that due to
the larger size of Model 3 than Model 2, the savings of CPU time and
storage for RTM in Model 3 are more evident.

4. Conclusions

In this paper, we consider the extension of the second order SBPFDM
for RTM and PMLs in boundary-conforming grids. The acoustic wave
equation is reformulated to boundary-conforming coordinate system
for wavefield simulation and RTM, and the corresponding PML formula
is expressed symmetrically and compactly in such coordinate system.
The fourth order SBPFDM is presented to discretize the wave equation
and PML formulae. By comparing the simulation results of the second
and fourth order SBPFDM, we illustrate the advantages of the fourth
order one in high accuracy and low dispersion, allowing coarser grids.
In addition, comparisons are conducted between the fourth order
SBPFDM and central finite difference method, to illustrate the stability
superiority of SBP operator. The results of RTM by both methods are
proved satisfying with the structures and interfaces well imaged. How-
ever the fourth order accuracy scheme is shown to be substantially
more efficient than the secondorder one, in both efficiency andmemory
requirement. Although the work in this paper is confined to two-
dimensional regions, the ideas and equations can be easily extended
to three dimensions, and it is our future work.
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Appendix A. Stability analysis of Eq. (9)

In numerical computations, Fourier analysis is applied to analyze the
stability of Eq. (9). Since Fourier analysis is limited to the periodic prob-
lem with homogeneous material properties, the parameters ofMqq,Mrr

and J are assumed as constants. In boundary-conforming grids, β=0 is
essential to guarantee the orthogonality of the coordinate lines, it can be
concluded that Mqr=0. Thus Eq. (9) is simplified as

unþ1−2un þ un−1 ¼ v2Δt2

J
MqqG

q unð Þ þMrrG
r unð Þ
 �

: ðA1Þ

The spatial finite difference operators in Eq. (A1) correspond to

Gq unð Þ→−e2ikqhq þ 16eikqhq−30þ 16e−ikqhq−e−2ikqhq

12h2q
ûn

¼
−4sin2 kqhq

2
sin2 kqhq

2
þ 3

� �
3h2q

ûn

:¼ −ψ kq
� �
h2q

ûn
;

ðA2Þ
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Gr unð Þ→−e2ikrhr þ 16eikrhr−30þ 16e−ikrhr−e−2ikrhr

12h2r
ûn

¼
−4sin2 krhr

2
sin2 krhr

2
þ 3

� �
3h2r

ûn

:¼ −ψ krð Þ
h2r

ûn
:

ðA3Þ

After Fourier transform, Eq. (A1) is written as

ûnþ1−2ûn þ ûn−1 ¼ −2δûn
; ðA4Þ

where

2δ ¼ v2Δt2

J
ψ kq
� �
h2q

Mqq þ ψ krð Þ
h2r

Mrr

" #
; ðA5Þ

û is the spatial Fourier transform of the wavefield u, kq ,kr is the wave
number components, and i is the imaginary unit. Eq. (A4) is equivalent
to the following form of matrix

ûnþ1

ŵnþ1

� 

¼ 2−2δ −1

1 0

� 

ûn

ŵn

� 

; ðA6Þ

where the augmentedmatrix on the right hand side of Eq. (A6) is denot-
ed as G. When the spectral radius of G satisfies that ρ(G)≤1, i.e., the
moduli of all eigenvalues of G are not larger than 1, the finite difference
scheme is stable. The eigenvalue λ ofG satisfies the following character-
istic equation

λ2− 2−2δð Þλþ 1 ¼ 0: ðA7Þ

The roots of Eq. (A7) are

λ1;2 ¼ 1−δ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2δþ δ2

q
: ðA8Þ

We have two cases:

1. δ2−2δ=δ(δ−2)N0. Then δN2 and λ2 ¼ 1−δ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2δþ δ2

p
b−1,

or δb0 and λ1 ¼ 1þ jδj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jδj þ jδj2

q
N1. Thus, the scheme is unstable.

2. 0≤δ≤2. Now δ2−2δ≤0 and we get complex conjugated roots,

λ1;2 ¼ 1−δ� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δ−δ2

p
; ðA9Þ

and

λ1;2
�� ��2 ¼ 1−δð Þ2 þ 2δ−δ2 ¼ 1: ðA10Þ

We conclude that the scheme (A1) is stable for

0≤2δ ¼ v2Δt2

J
ψ kq
� �
h2q

Mqq þ ψ krð Þ
h2r

Mrr

" #
≤4: ðA11Þ

SinceMqq

J ¼ q2x þ q2z ≥0,
Mrr
J ¼ r2x þ r2z ≥0, 0≤ψ(kq)≤16/3, 0≤ψ(kr)≤16/3, so

2δ≥0. ψ(kq) and ψ(kr) take the maximum at kq ¼ π
hq
and kr ¼ π

hr
respec-

tively, thus,

v2Δt2
ψ kq
� �
h2q

Mqq

J
þ ψ krð Þ

h2r

Mrr

J

" #
≤
16
3

v2Δt2
Mqq

h2q J
þMrr

h2r J

" #
≤4: ðA12Þ
Hence, Eq. (9) is stable under the time step restriction

Δt≤
ffiffiffi
3

p
=2

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
J

Mqq

h2q
þMrr

h2r

 !vuut :

ðA13Þ
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