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Abstract

Spatial aliasing is a challenging issue that faced by most mul-
tiple speech source localization methods. Small-size arrays are
widely used to avoid or mitigate spatial aliasing. But they dete-
riorate the coherence in low frequencies and degrade the perfor-
mance of localization. This paper proposes a phase difference
regression method for multiple speech source localization on a
planar array. The time delay histogram is firstly applied to clas-
sify the frequency bins into clusters that correspond to speech
sources, and then, the phase difference regression is conducted
on each cluster. Since the error of the phase difference is limited
in the range of [—r, 7], the proposed method avoids the ambi-
guity in the period number of phase. Although conventional re-
gression method considers the period number, it does not bring
significant advantage over the proposed method. The experi-
mental results confirm the superiority of the proposed method
on large-size arrays.

Index Terms: Speech source localization, phase difference re-
gression, time delay histogram, spatial aliasing.

1. Introduction

Multiple speech source localization is widely used in numer-
ous applications such as speech enhancement, speech separa-
tion, and speech recognition [1]. A large number of methods are
proposed to localize multiple speech sources based on the prop-
erty of speech sparse distribution in the time-frequency (TF) do-
main. Based on this property, the multiple-source signal model
can be simplified to the single-source model, so the Direction-
of-arrival (DOA) of the bin-dominant source is easily derived
from the simplified model at each bin. Many sparsity-based
methods were presented in the past several decades [2] - [9].

In addition to the acoustic robustness, the spatial aliasing is
a challenging issues that are faced by the sparsity-based meth-
ods. Limiting the inter-microphone space is a simple way to
avoid spatial aliasing [6], [10], whereas the small space will de-
teriorate the coherence at some low frequencies [11]. Travers-
ing all candidates and selecting the most optimal candidates is
another way to resolve spatial aliasing [3], [12]. Nevertheless,
for a large-size array, there are many microphone pairs, and
the candidates from different pairs will form numerous com-
binations. Traversing all possible combinations may lead to
heavy computational load. A closed-form method of spatial
de-aliasing for multiple speech source localization has been p-
resented for real-time speech source localization [13]. But this
method does not perform well under serious aliasing condition
or adverse environment. This paper proposes a method using
phase difference regression which is specially designed for the
periodic variable, so the spatial aliasing is avoided just by limit-
ing the phase difference error between the straightforward phase

difference and the DOA-derived phase difference to [—, 7].
Although phase difference regression is widely utilized to lo-
calize speech sources [3], there are seldom methods reported to
estimate DOA using planar arrays. The range of phase differ-
ence error is usually ignored in conventional methods.

The critical issue is to partition TF bins into several clus-
ters, and then, the regression can be conducted on each clus-
ter. Because the histogram analysis is a simple method to esti-
mate DOAs with high spatial resolution and spatial anti-aliasing
[14], the histogram analysis is used to determine the number of
sources and estimate the initial DOAs. The time delays of each
microphone pair are obtained by picking the peaks of the corre-
sponding histogram of time delays at all times and all frequen-
cies. These delays are combined to estimate the initial DOAs,
which are chosen as the supervised information for bins clas-
sification. Eventually, the DOA of each source is estimated by
means of regression over its associated phase differences.

2. Problem Formulation

Let us consider D speech sources that impinge on a K -element
planar array in a far-field scenario. It is assumed that the size
of the array aperture is small relative to the distance from the
sources to the array. Speech signal has been shown to be s-
parsely distributed in the TF domain [15]. Based on this prop-
erty, the signal received by the kth microphone is represented in
frequency domain as

Yi(wy) = e_jwftpk’dsd(wjv) + Nie(wy), f€{1,...,F},
9]
where
d:argdrerfﬁ)é]|5d(a)f)|, 2)

where 0 < wy < 27 denotes the digital frequency, f de-
notes the frequency index, j = +/—1 denotes the imaginary
unit, ¢, ¢ denotes the propagation time from the dth source to
the kth microphone, Sq(wy) denotes the signal emitted from
the dth source, F' denotes half short-term Fourier transform
(STFT) length, and Ny (wy) denotes the acoustic interferences
that comprise the additive noise and reverberation.

There are in total M = K (K —1)/2 microphone pairs. The
phase difference of Fourier coefficients on the mth microphone
pair, (k1, k2), is represented as

Ym(ws) = F(LYky (W) — LYy (wy), 2) 3
= wiTh) (wy) = 2mhum, g + €(wy)

where /(.) denotes the phase operation, Ay, s is an integer,
&(wy) is the perturbation caused by acoustic interferences, and
operation F (X, T') is defined as

—T)2<F(X,T)=X+Txn<T/2, )
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Figure 1: Azimuth histogram of three speech sources. The dot-
ted lines denote the initial azimuths.

signal Estimation

I | wistogram-based
—>| Time Delays =
Estimation 2
&
=4
I, | Histogram-based E]
Input 7 | TimeDelays 2 Output
I H
8
=
z
]
a
2
=]
3

Iy | Histogram-based
—> Time Delays

| Estimation

uonezijeniu| sy0q paseq-wieidoisiy
suiq 41 uoned

Figure 2: Block diagram of the proposed method.

where the integer n enables F (X, T") to be limited in the range
of [-T/2,T/2]. At speech-dominant bins, the effect of noise
signal can be disregarded, and then the time delay for the dom-
inant source can be estimated from the phase difference,

TS (ws) & (WYm(wr) + 20hum, 1) Jwy- (%)

It should be mentioned that the subscript (.) and the time index
for the frequency bin are omitted in the followings.

For widely spaced array, there are several delay candidates
at each frequency, the potential time delays are given by a set:

B,y = {T‘T ~ (Ym(wy) + 2mhim, f) /wy, ©
—rm/fc <7< rm/c},

where c denotes the sound velocity and r,, denotes the distance
between the mth microphone pair. The cardinality | B;,, f| may
be different from TF bin to TF bin. If |By, r| > 1, spatial
aliasing occurs at this bin. |B,,,¢| = 1 indicates that there is
no spatial aliasing. If | B, s| = 0, the time delay at this TF bin
is invalid and it will be disregarded in the following processing.
For the mth microphone pair, the set of time delay candidates
at all frequencies is given by

T = { By B }, )

where the first frequency is disregarded since it does not con-
tain the information of time delay. The time delay histogram is

constructed on set {Fl, ..., D M} to give the initial DOAs.

3. Proposed method

The basic idea of the proposed method is to partition TF bins
into several clusters, and then, the DOA of each source is esti-
mated by regression over its associated phase differences. Time
delay histograms are firstly used to determine the number of
sources and estimate the initial DOAs.

3.1. Initial estimation

By constructing the time delay histogram of the mth micro-
phone pair using I',,,, the impinging directions and the number

of speech sources can be determined, where each significant
peak with high occurrence is identified as a speech source. It is
expressed as

P Tt ] = #(\J By ), ®)
f

where 7{(.) denotes the histogram operation, | J denotes the u-
nion operation and I,,, denotes the number of distinct peaks. In
desirable acoustic conditions, I, is equal to the source number
D. Under adverse environments, however, I,,, may be greater
than or less than the number of real speech sources. The time
delays from all microphone pairs are expressed as a set

O =J{Fn Tt} ©

In this paper, the DOA is represented by a unit direction
vector 7y, which can be derived from the azimuth « and elevation
B of the source. For a planar array, every two delays (71, 72) can
determine a DOA, which is given by

|:a7'1’7'27§7'1,7'21| = g(7-177-2)7 T # T2, (10)

where G(+) is a regression function that is determined by the
array topology, the detail of which is given in reference [16].
Although we do not know to which source each time delay in ©
corresponds, we can make an hypothesis test to combine every
two time delays. Three facts hold truth in these combination-
s. The first case is that the two delays are associated with the
same speech source, where the determined azimuth is often dis-
tributed around the actual azimuth of this source. The second
case is that the two delays belong to different sources, where the
function in (10) may have no output or the outputs are random-
ly distributed. The third case is that the two delays correspond
to the same microphone pair where the function in (10) has no
output. All tested DOAs are expressed by a set,

A= {(a,ﬁ)‘[a,ﬁ} =G(71,72); V71,72 € O, 71 ;ETQ}.
an

The azimuths in set A are described by set A™). We construct
a histogram to describe the distribution of azimuths. Based on
these facts, each significant peak of the histogram corresponds
to a speech source, and the number of sources is determined by
counting the significant peaks, as shown in Fig. 1. The azimuth
estimation using the histogram is represented as

[@1,...ap) =#(a), (12)

where D is the estimation of the source number. The eleva-
tion is determined based on the azimuth. The samples with an
azimuth similar to the dth estimate is given by a set,

Ay = {Bl(a,ﬂ) € A Jo —aul < 5}, (13)
where § is empirically determined. The dth estimate of the ele-
vation is given by

~ 1 .

Bi=—G >, B d=1---.,D. (14)

‘Ad ‘ HEA(M
d

Finally, the initial estimate of the dth source is expressed as

~ ~ 1T
¥, = [COS Qg4 cos Bq sin Qg cos Bq sinﬁd] . (15)



3.2. Phase difference regression

The DOAs of speech sources are refined by phase difference
regression. The TF bins are firstly partitioned to various clusters
by using the initial DOAs as the supervised information and
each cluster corresponds to a speech source. So the multiple
source localization is simplified to single source localization.
The key point is to classify all bins to each source. A distance
from a given bin to the dth source is defined as

M
L(f.d) = Y |F@m(ws) — wrrmghda/e,2m|, (16

m=1

where the unit vector €, = [gm,1, gm,2,0]” denotes the direc-
tion of the mth microphone pair. Their third dimension being
set to zero indicates that all microphones lie in a plane. By us-
ing the distance, each bin is classified to the dominant speech
source. The classification is expressed as

I’(f) —arg min L(f,d). 17

de[1:D]

Accordingly, the bins correspond to the dth source is given by

Ad:{f|f€[2:F], z’(f):d}. (18)

The unit direction vector of the dth source is estimated by
regression over all phase differences in A4. For a given TF bin,
the phase difference is expressed as Eq. (3). For a given DOA,
the phase difference is expressed as

Y (w5) = WiTmBmYa/C: (19)
The cost function is defined as the mean square error be-
tween the two phase differences, which is given by
—~ 2
) = D D [Fnwr) = dmtwp), 20, @0)
m feENg
The phase difference error is denoted as (m (wy) = Ym(wy) —
m (wy). DOA is estimated by minimizing £(-y,), as following:
54 = mine(y),
Y 2D
subject to: 'yT'y =1.
The optimal estimator in sense of (21) is constructed by us-

ing the Kuhn-Tucker necessary condition for constrained mini-
mization. The gradient Lagrange equation is given by

Z(var ) =e(va) + n(vava — 1), (22)

where p is the Lagrange Multiplier. When a group of integer n
computed, Eq. (22) can be confirmed to be a concave function
with only one minimum. From V~,Z(~a, 1) = 0, the closed-
form solution to DOA is given by

/’?l,d o 2 2 /' 'T -1
(24)-[Z 3 wirhehei/e]

m fely

X |:Z Z (]:(Cm(wf)72ﬂ') JrOJfT'mgg'?d/C)w'fT‘mg;n],
m fe€Ty
Toa=\/1=30— T 23)

where g, = [gm.1, Gm,2] "

The error of the phase difference is limited in the range of
[—m, 7], so the proposed method avoids the ambiguity in the
period number of phase.

4. Implementation

The block diagram of the proposed method is shown in Fig. 2,
where the histogram analysis has been used twice. One is to
estimate time delays of microphone pairs, and the other is to
give the initial azimuths in order to estimate the initial DOAs.
Spurious peaks in the histograms are smoothed out by a Han-
ning window. Here, each significant peak is defined as one with
occurrence greater than threshold A, which is given by

A = Oa'ug + n(omaz - Oavg)> (24)

where Oavg and Omaz denote the average and maximum of
the smoothed occurrence respectively, and the coefficient 7
(0 < m < 1)is set by experience. The estimation algorithm
is summarized in Algorithm 1.

Algorithm 1 : DOAs estimation

1: Calculate phase differences at all frequencies using (3).

2: Calculate time delay candidates at all frequencies using (5),
(6) and (7).

3: Construct the time delay histograms to estimate the pair-
wise delays using (8) and (9).

4: Calculate the DOAs of every two delays in © using (10).

5: Construct the azimuth histogram and determine the number
of speech sources D.

6: Calculate the initial DOAs using (12) - (15).

7: Partition TF bins to each source using (16), (17) and (18).

8: Regression over all phase differences corresponding to each
source to estimate the final DOAs using (23).

5. Evaluation

This section evaluates the proposed method by the simulated
and real environments. The proposed method was tested using
an eight-element uniform circular array. The evaluation focused
on the arrival azimuths. The scenarios were simulated using the
image source method [17] to control reverberation time. The
traffic noise was artificially added to the simulated signal at S-
NR of 10 dB. The continuous speech taken from the TIMIT [18]
database was used as source signal. The signal was re-sampled
to 8000 Hz.

The proposed method was compared with Circular Har-
monics Beamforming (CHB) [4], Steered minimum variance
(STMV) [19] and MUItiple Slgnal Classification (MUSIC).
CHB is a typical sparsity-based method, in which the grid
search is conducted to find the azimuths of the bin dominant
sources. The speech sources are eventually identified by the az-
imuth histogram. The STMYV is actually a typical beamformer-
based method, which steers the frequency-averaged covari-
ance matrix to various directions. The directions with local
maximum coherence are identified as the directions of speech
sources. The MUSIC is a famous signal subspace method that
tests the orthogonality between the noise subspace and the s-
teering vector by grid search. The CHB and STMV determine
the number of sources by counting the number of significant
peaks in the histogram or the spatial spectrum power, just simi-
lar to the proposed method. Because MUSIC can not determine
the number of sources, the number is assumed to be known in
all following experiments. CHB, STMV, and MUSIC perform
hypothesis grid search at 1° intervals.

The first experiment compared the influences of the array
radius and reverberation on performance. Three speakers were
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Figure 3: Error rate versus error threshold under various array radii and reverberations.
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Figure 4: Histogram of output azimuths for AV16.3 data set.
The dotted lines denote the true azimuths.

Table 1: Performance comparison on AV16.3 data set.

Algorithm RMSE | PDR | FDR
TF-CHB 4.07° | 74% | 7.5%
STMV 3.00° | 81% | 12%
MUSIC 0.90° | 92% | 0%
Proposed method || 1.01° | 94% | 0.1%

respectively located at a horizontal distance of 1.15 m, 0.86 m,
and 0.63 m from the array center, and at the azimuth angles
of 74°, 309.6°, 352.7°. The experimental setup is similar to
AV16.3 corpus [20]. Experiments conducted on the continuous
speech segments with duration of 1.6 seconds. The array radius
is respectively set to 10 cm, 14 cm, and 18 cm. The reverber-
ation time (T60) was respectively set as Oms, 300 ms, and 600
ms. The error rate versus error threshold under all condition-
s are plotted in Fig. 3. Two-thirds of the detection azimuth-
s are used here to guarantee there are no incorrectly detected
sources, because the incorrect result may have a large influence
on the error rate. Generally speaking, the accuracy on large-size
arrays are better than small-size of all methods because the s-
patial resolution of large-size array is higher. Results show that
the proposed method achieves the best detection accuracy under
all conditions. This experimental results confirmed the superi-
ority of the proposed method in spatial anti-aliasing and under
reverberation condition.

The second experiment was conducted in real environment.
The real data was taken from the publicly available AV16.3 cor-

pus. The signal used in this evaluation is the fourth fragment of
the corpus recording, which is labeled “seq37-3p-0001”. The
signals were re-sampled to 8000 Hz. The radius of microphone
array is 10 cm. The azimuth histogram is plotted in Fig. 4. The
detected sources are separated into two categories, namely the
correctly detected sources and the incorrectly detected sources.
The detection is considered to be correct if the estimated az-
imuth deviates no more than 8° from the actual azimuth of any
source. The incorrectly detected sources consist of the ghost
sources (detected but non-existing sources) and the inaccurate-
ly detected sources. In this experiment, the incorrectly detected
sources are seldom present, and so, RMSE is utilized to evaluate
the absolute error between the actual azimuths and the estimat-
ed azimuths. Besides, the positive detection rate (PDR) (i.e.,
the ratio of the number of correctly detected sources to the total
number of sources) and the false detection rate (FDE) (i.e., the
ratio of the number of incorrectly detected sources to the total
number of sources) are used to evaluate the detection correct-
ness. The RMSE, PDR and FDR are summarized in Table 1.
The experimental results show that the proposed method out-
performs TF-CHB and STMYV and is competitive with MUSIC.

6. Conclusions

This paper proposes a phase difference regression method to
localize multiple speech sources. Because the error of phase
difference is limited in the range of [-, 7], the period number
of phase is no longer considered in the regression. The proposed
method significantly simplifies regression, especially on large-
size planar arrays. Since the ambiguity in the period number of
phase difference is resolved by the histogram and the regression,
the proposed method can be applied on any size planar arrays.
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