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Abstract—The improved multiband-structured subband adap-
tive filter (IMSAF) algorithm could enhance the convergence
performance of multiband-structured subband adaptive filter
algorithms and affine projection. However, the original IMSAF
algorithm with a fixed step-size factor have to compromise
between convergence rate and steady-state misalignment. A
new IMSAF algorithm with variable step-size matrix (VSM) is
proposed to address this problem. The power of the subband
a posteriori error is set to equal the power of the subband
noise to deduce the formula for VSM. Two real-time noise
power estimation methods are utilized to calculate the step size.
Simulation results demonstrate that the new algorithms can
achieve better performance both in convergence rate and steady-
state misalignment than the original IMSAF algorithm with a
fixed step-size factor.

Index Terms—Adaptive filter, improved multiband-structured
subband adaptive filter (IMSAF), variable step-size matrix

I. INTRODUCTION

Adaptive filtering is widely utilized for many applications,

such as channel equalization and acoustic echo cancellation

(AEC). For input signals that have a large condition number,

subband adaptive filtering algorithms have advantages in con-

vergence performance. However, the aliasing and band-edge

effects degrade the convergence rate of traditional subband

adaptive filters [1]. To address this problem, a multiband

method that the weighted combination of the subband input

signals adjusted the fullband tap weights was proposed [2]–

[5]. An improved multiband-structured subband adaptive filter

(IMSAF) [6] algorithm was recently presented to deal with

colored signals and long impulse responses. In [7], the IMSAF

algorithm for transient and steady-state was analyzed in detail.

Similar to other LMS-type adaptive filtering algorithms,

step-size factor will obviously affect the convergence per-

formance of the original IMSAF algorithm. The step size

results in a conflict between convergence rate and steady-

state misalignment. Inspired by [8], we propose a method of

variable step-size matrix (VSM) to address this problem. The

central idea is that the power of the subband a posteriori error

is set to equal the power of the subband noise. Consequently,

different step sizes can be assigned to different subbands. Two

real-time estimation methods [9], [10] are adopted to estimate

the power of the subband noise. The performance of the

proposed approach will be evaluated by computer simulations.

II. REVIEW OF THE IMSAF ALGORITHM

The desired signal d(n) can be modeled as follows

d(n) = wT
o u(n) + v(n) (1)

where wo = [w0, w1, · · · , wL−1]
T

is the vector

of the echo path system Wo(z), u(n) =
[u(n), u(n− 1), · · · , u(n− L+ 1)]

T
indicates the far-end

signal, and v(n) is the near-end noise.

The signal flow graph of the IMSAF algorithm is shown

in Fig. 1 [6]. Hi(z) and Fi(z) are respectively the analysis

and synthesis filter banks. Ŵ(z) is the fullband adaptive filter.

↑ N and ↓ N denote N-fold interpolation and decimation. z−1

represents a unit delay. P represents the projection order. The

definitions of input signal U(k), desired signal dD(k), the a
priori error signal eD(k), and the a posteriori error signal

ξD(k) are [11]

U(k) = [U0(k),U1(k), · · · ,UN−1(k)] , (2)

dD(k) =
[
dT
0,D(k),d

T
1,D(k), · · · ,dT

N−1,D(k)
]T

, (3)

eD(k) =
[
eT0,D(k), e

T
1,D(k), · · · , eTN−1,D(k)

]T
= dD(k)−UT (k)ŵ(k),

(4)

ξD(k) =
[
ξT0,D(k), ξ

T
1,D(k), · · · , ξTN−1,D(k)

]T
= dD(k)−UT (k)ŵ(k + 1)

(5)

where

Ui(k) = [ui(k), · · · ,ui(k − P + 1)] , (6)

di,D(k) = [di,D(k), · · · , di,D(k − P + 1)]
T
, (7)

ei,D(k) =
[
ei,D(k), · · · , e(P−1)

i,D (k)
]T

= di,D(k)−UT
i (k)ŵ(k),

(8)

ξi,D(k) =
[
ξi,D(k), · · · , ξ(P−1)

i,D (k)
]T

= di,D(k)−UT
i (k)ŵ(k + 1).

(9)

The updated formula of the IMSAF algorithm is [6]

ŵ(k+1) = ŵ(k)+μU(k)
[
UT (k)U(k) + δI

]−1
eD(k). (10)

Reference [11] proved that the matrix UT (k)U(k) can be

simplified to a block diagonal matrix without degrading the



Fig. 1. Block diagram of the IMSAF algorithm.

performance significantly. Therefore, the updated formula (10)

can be rewritten as [11]

ŵ(k + 1) = ŵ(k) + μ
N−1∑
i=0

Ui(k)

× [
UT

i (k)Ui(k) + δI
]−1

ei,D(k).

(11)

Subsequently, (11) is adopted to establish the variable step-size

scheme for the IMSAF algorithm.

III. PROPOSED VSM-IMSAF ALGORITHM

A. Derivation of the VSM

A variable individual step size is assigned to each subband.

Then, (11) becomes

ŵ(k + 1) = ŵ(k) +
N−1∑
i=0

μi(k)Ui(k)

× [
UT

i (k)Ui(k) + δI
]−1

ei,D(k)

(12)

where μi(k) represents the step-size factor of the ith subband.

In Fig. 1, the subband desired signal vector can be written as

di,D(k) = UT
i (k)wo + vi,D(k) (13)

where vi,D(k) = [vi,D(k), vi,D(k − 1), · · · , vi,D(k − P + 1)]
T

represents the ith subband noise vector at instant k. By

substituting (13) into (8) and (9), the a priori error signal

ei,D(k) and the a posteriori error signal ξi,D(k) can be

written as

ei,D(k) = di,D(k)−UT
i (k)ŵ(k)

= UT
i (k) (wo − ŵ(k)) + vi,D(k),

(14)

ξi,D(k) = di,D(k)−UT
i (k)ŵ(k + 1)

= UT
i (k) (wo − ŵ(k + 1)) + vi,D(k).

(15)

By substituting (12) into (15), we have

ξi,D(k) = ei,D(k)− μi(k)U
T
i (k)Ui(k)

× [
UT

i (k)Ui(k) + δI
]−1

ei,D(k).
(16)

In (15), given that the fullband adaptive filter approximates

the unknown system, the subband a posteriori error is equal

to the subband noise [8], namely,

ξi,D(k) = vi,D(k). (17)

However, subband noise cannot be obtained in several appli-

cations, such as AEC. Thus, the power of the subband noise

should be estimated with a real-time approach. By taking the

�2 norm of the vectors on both sides of (17), we obtain

E
{∥∥ξi,D(k)∥∥2

}
= E

{
‖vi,D(k)‖2

}
. (18)

Substituting (16) into (18) yields

E{||vi,D(k)||2} = E{||ei,D(k){I− μi(k)U
T
i (k)Ui(k)

× [UT
i (k)Ui(k) + δI]−1}||2}.

(19)

Without any additional simplifications, μi(k) cannot be solved

from (19). To make the problem tractable, we use two assump-

tions [12]. The first one is the simplification UT
i (k)Ui(k) ≈

‖ui(k)‖2I. The second one is that the fluctuations of ‖ui(k)‖2
are assumed to be small in one iteration. Then, (19) can be

rewritten as

E
{
‖vi,D(k)‖2

}
=

(E{‖ui(k)‖2}+δ−μi(k)E{‖ui(k)‖2})2E{‖ei,D(k)‖2}
(E{‖ui(k)‖2}+δ)

2 .
(20)



By solving (20), the formula of the ith subband step-size factor

is as follows

μi(k) =

(
1−

√
E{‖vi,D(k)‖2}
E{‖ei,D(k)‖2}

)
E{‖ui(k)‖2}+δ

E{‖ui(k)‖2}
=

(
1− σvi,D

(k)

σei,D
(k)

)
Mσ2

ui
+δ

Mσ2
ui

(21)

where σ2
vi,D

(k) = E
{
‖vi,D(k)‖2

}
, σ2

ei,D
(k) =

E
{
‖ei,D(k)‖2

}
and σ2

ui
= E

{
‖ui(k)‖2

}
. In practice,

the quantity σ2
ei,D

(k) can be estimated as follows

σ2
ei,D

(k) = ασ2
ei,D

(k − 1) + (1− α)‖ei,D(k)‖2 (22)

where α = 1−N/(κM) is a weighting factor, with κ > 1.

B. Estimations of Subband Noise Power

The power of the vector vi,D(k) must be estimated to

calculate the variable step-size factor μi(k) in (21). A usual

assumption is that the power of system noise can be easily

estimated during silence [8]. However, this method has several

limitations in practical applications because system noise

could be time-variant and thus impossible to estimate in real

time. Thus, the power of system noise may be biased. In the

following, two real-time estimation methods are introduced to

calculate the power of subband noise.

Iqbal et al. used a noise power estimation method based on

the cross-correlation between the input signal and the a priori
error signal [9]. Through this method, the power of subband

noise can be estimated as follows

σ2
vi,D

(k) = σ2
ei,D

(k)− RT
i (k)Ri(k)

σ2
ui,D

(k)
(23)

where Ri(k) = αRi(k − 1) + (1 − α)Ui(k)ei,D(k) is the

cross-correlation matrix and σ2
ui,D

(k) can be estimated as

(22) similarly. When using the estimation method in (23), the

variable step-size algorithm is called VSM-IMSAF-I.

Another estimation method proposed by Paleologu et al.
is based on the assumption that the fullband filter vector has

converged [10]. Thus, the echo signals can be approximated by

the output signals of adaptive filter. Assuming that the subband

noise and the echo signals yi,D(k) are uncorrelated, we have

σ2
vi,D

(k) ≈ σ2
di,D

(k)− σ2
ŷi,D

(k) (24)

where ŷi,D(k) indicates the output signal of the ith subband

adaptive filter. Similarly, σ2
di,D

(k) and σ2
ŷi,D

(k) can be esti-

mated as (22). When using the estimation method in (24),

the variable step-size algorithm is called VSM-IMSAF-II.

The performance of these two methods is compared in the

following simulation.

C. Computational Complexity

The complexities of the proposed VSM-IMSAF-I and VSM-

IMSAF-II algorithms are evaluated in this section. The sole

difference between the proposed VSM algorithms and the

standard IMSAF algorithm is in the calculation of the step

size in (12). Table I presents the computational complexities

of calculating the variable step size in the VSM-IMSAF-I and

VSM-IMSAF-II algorithms. The complexity of VSM-IMSAF-

I is much higher than that of VSM-IMSAF-II, particularly in

several applications, such as AEC, in which the adaptive filter

has thousands of coefficients. Several low-implementation

schemes of the IMSAF algorithm can be found in [11],

and they can be utilized in the proposed algorithms in a

straightforward manner.

TABLE I
COMPUTATIONAL COMPLEXITIES OF CALCULATING VSM

VSM-IMSAF-I VSM-IMSAF-II
Additions (P+1)M+2P+3 3P+3

Multiplications (P+2)M+3P+4 3P+6
Divisions 2 1

Square-roots 1 1

IV. SIMULATION RESULTS

The VSM-IMSAF-I and VSM-IMSAF-II algorithms are

evaluated in the context of system identification and AEC.

L = 512 is the length of measured impulse response, and

M = 512 is the length of adaptive filter. The sampling rate

is 8 kHz. The analysis and synthesis filter banks consist of

N = 4 channels of cosine modulated filters. AR(1) signals

which has one pole at 0.9 and speech signals are used as

input signals. The signal to noise ratio (SNR) of the near-

end signal is 10 dB or 25 dB. Performance is evaluated

with the normalized mean square deviation (NMSD) which

is 10log10

[
‖wo − ŵ(k)‖2

/
‖wo‖2

]
. When the input signals

are AR(1) signals, the learning curves are the average of 50

trials. To satisfy the assumption in (24), the step-size factor of

VSM-IMSAF-II is set to 1 in the initial M iterations.

Fig. 2 shows a comparison of the NMSD curves of the

original IMSAF algorithm with μ = 0.8 and μ = 0.11 and

two proposed VSM-IMSAF-I and VSM-IMSAF-II algorithms

at SNR = 25 dB. As shown in Fig. 2, the performance of the

IMSAF algorithm with a fixed step size depends on its step-

size factor μ. When the step size μ = 0.8, the convergence rate

of the original IMSAF algorithm is fast but the steady-state

misalignment is also high. When the step size μ = 0.11, the

steady-state misalignment of the original IMSAF algorithm is

low, but the convergence rate is also slow. Both VSM-IMSAF-

I and VSM-IMSAF-II algorithms can achieve more obvious

advantages in convergence rate and steady-state misalignment

than the original IMSAF algorithm.

Fig. 2 also displays the tracking performance of the three

algorithms. At t = 5.0s, the echo path system wo is suddenly

multiplied by -1. The change in the system can be quickly

tracked by VSM-IMSAF-I and VSM-IMSAF-II. The reaction

rate of VSM-IMSAF-II is slower than that of VSM-IMSAF-

I. To explain the difference in reaction rate between VSM-

IMSAF-I and VSM-IMSAF-II, we present the estimated noise

power and step size in Fig. 3 in a single experiment for the

4th subband. As shown in from Fig. 3(a), at t = 5.0 ∼ 7.0s
the estimated noise power of VSM-IMSAF-II is much larger

than the true value. Due to the sudden change in impulse
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Fig. 2. Learning curves of IMSAF and VSM-IMSAF: δ = 15σ2
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P = 2, L = M = 512, κ = 6, SNR = 25 dB, AR(1) input.
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Fig. 3. Estimated noise power and step size of VSM-IMSAF: δ = 15σ2
u,

N = 4, P = 2, L = M = 512, κ = 6, SNR = 25 dB, AR(1) input.

response wo in this time interval, the assumption in (24) is

not satisfied. The relationship between the step-size factor and

subband noise power in (21) suggests that with the increase in

subband noise power, the corresponding step size decreases.

This result is in agreement with the result in Fig. 3(b), in which

the step size of VSM-IMSAF-II is smaller than that of VSM-

IMSAF-I after the unknown system changes. This explains

that the tracking rate of VSM-IMSAF-II is slower than that of

VSM-IMSAF-I.

Fig. 4 shows the NMSD curves for the three algorithms

at a low SNR with 10 dB. Two fixed step-size factors are

employed: μ = 0.5 and μ = 0.11. The other parameters are

similar to those utilized in Fig. 2. The steady-state misalign-

ment of VSM-IMSAF-II is lower than that of VSM-IMSAF-I

by 4 dB. In Fig. 5, we also present the estimated noise power

and variable step size for the 4th subband. As shown in Fig.

5(a), the estimated noise power of VSM-IMSAF-II is larger

than that of VSM-IMSAF-I. Therefore, the step size of VSM-

IMSAF-II is smaller than that of VSM-IMSAF-I according

to (21), which is also confirmed by Fig. 5(b). The VSM-
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Fig. 4. Learning curves of IMSAF and VSM-IMSAF: δ = 15σ2
u, N = 4,

P = 2, L = M = 512, κ = 6, SNR = 10 dB, AR(1) input.
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Fig. 5. Estimated noise power and step size of VSM-IMSAF: δ = 15σ2
u,

N = 4, P = 2, L = M = 512, κ = 6, SNR = 10 dB, AR(1) input.

IMSAF-II algorithm has lower steady-state misalignment than

the VSM-IMSAF-I algorithm at a low SNR.

Fig. 6 shows the NMSD curves for the three algorithms with

a speech input signal. The projection order is P = 4 and two

fixed step-size factors are utilized: μ = 1 and μ = 0.2. The

other parameters are similar to those used in Fig. 2. As shown

in Fig. 6, for the speech input signal, the proposed VSM-

IMSAF-I and VSM-IMSAF-II algorithms have a conclusion

similar to Fig. 2.

V. CONCLUSION

To resolve the conflict between convergence rate and steady-

state misalignment of the original IMSAF algorithm, two

variable step-size matrix IMSAF algorithms were developed

in this study. Two real-time noise power estimation methods

are adopted to calculate the variable step-size matrix. The

performances of two algorithms are also analyzed. Computer

simulations demonstrated that both VSM-IMSAF-I and VSM-

IMSAF-II exhibit a significant improvement in convergence

rate and steady-state misalignment. VSM-IMSAF-I achieves
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more accurate estimated noise power and faster tracking rate

than VSM-IMSAF-II, but the former has higher computational

complexity.
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