
Way Prediction Set-Associative Data Cache
for Low Power Digital Signal Processors

Leiou Wang, Donghui Wang
the Key Laboratory of Information Technology for Autonomous Underwater Vehicles,Chinese Academy of Sciences

Institute of Acoustics, Chinese Academy of Science, Beijing, China
Email: wangleiou@mail.ioa.ac.cn

Abstract—In digital signal processors, set-associative caches
achieve low miss rates for typical applications but result in
significant power consumption. Set-associative caches decrease
access time by probing all the data ways in parallel with the tag
lookup, although the output of only the matching way is used.
The power spent access the other ways is wasted. Eliminatingthe
power consumption by performing the data lookup following the
tag comparison definitely increase cache access time, and isun-
acceptable for high performance level 1 caches. In this paper we
propose a way prediction method to reducing set-associative data
cache dynamic power while maintaining high performance. This
method predicts the matching way and only probes the predicted
way, achieving power savings. We evaluate the effectiveness of
this method in reducing level 1 data cache power consumption
and the simulation results show that this proposed technique
achieves a power reduction of up to 18.97% and 14.70% on
average, respectively, with negligible area overheads.

Keywords—Cache; low power; way prediction; replacement
scheme.

I. I NTRODUCTION

The speed gap between processors and memories has
steadily increased. Furthermore, many processor technologies
such as pipeline, Very Long Instruction Word (VLIW) and
multi-issue policies significantly reduce the Clock cycle Per
Instruction (CPI), whereas the reduction of average memory
access time is limited. Therefore, to solve the access latency
gap between the processor and the main memory access delay,
most modern Digital Signal Processors (DSP) employ cache
memories.

For embedded DSP, cache memories are relative large
compared to simple cores, thus caches consume a significant
amount of the total power dissipation [1], [2]. At the same
time, as embedded systems and mobile devices become more
popular, the low power consideration has become an important
design constraint as well as the high performance requirement.

To achieve low miss rates for typical applications, modern
DSP utilizes set-associative caches. Set-associative caches
probe the tag and data arrays in parallel, and then select the
data from the matching ways, which is determined by the tag
comparison. At the time of reading the tag and data arrays,
the matching way is not known. Consequently, conventional
set-associative caches read all the ways but select only oneof
the ways, resulting in wasted power consumption. As shown
in Fig. 1, a two-way set-associative cache discards one of the
two ways on every access, wasting nearly 50% of the power
consumption. For example, the way 1 tag memory does not

include the tag of Instruction 1 (23’h040100), so Instruction
1 accessing way 1 is unnecessary. Likewise, Instruction 2
accessing way 0 is also unnecessary.

This paper proposes a way prediction approach to reduce
set-associative data caches power consumption. Unlike their
general-purpose counterparts, embedded systems typically ex-
ecute a well-defined application program, which results in
a higher predictability of the execution and memory access
patterns. This fact offers additional opportunities for opti-
mizing the power dissipation of the system. Based on this
characteristic, the way prediction approach records necessary
information and predicts the matching way prior to the cache
access, instead of waiting on the tag array to provide the
way number. The approach can effectively reduce power
consumption because only the predicted way is accessed.

The rest of this paper is organized as follows. In section
II, the related work of low power cache techniques will be
reviewed. The proposed method will be presented in Section
III. Finally, simulation results and conclusions are included in
section IV and section V, respectively.

II. RELATED WORK

This section will review similar works in low power cache
design.

First, Megalingam et al. [3] has proposed a phased cache
and the cache access process which are divided into two
phases. In the first phase all the tags are examined in parallel.
In the second phase, if there is a hit, then a data access is only
performed for the hit way. Min et al. [4] has showed a phased
tag cache, this method also divide the cache access process
into two phases. But only a small part of the tag is compared
in the first phase. The remaining bits of the tag are compared
in the second phase to verify whether the result is valid or not.
However, both of these two techniques may seriously result in
performance loss.

Yang et al. [5] has demonstrated that a small number of
distinct values tend to occur very frequently in memory. The
cache data array is partitioned so that one array contains low
bits and the other contains the remaining high bits. Frequent
values are stored in the low bit array while non-frequent values
use the space in both data arrays. Ye et al. [6] has found that
many values rarely need full bit width and has presented a
variable bit-line data cache. This cache data array is divided
into several sub-arrays to adapt each data pattern. But these



Fig. 1. Way prediction cache architecture.

two techniques require significant micro-architectural change
and the control logic is quite complicated.

In [7] Chang et al. has observed most bit values read
from the cache are 0s. So the authors introduce a dynamic
zero sensitivity scheme that reduces average cache power
consumption in reading a 0. And this method is mainly applied
to circuit-level.

In [8] Witchel et al. has proposed a direct addressed
cache that is a hardware-software design for a power efficient
microprocessor data cache. Direct addressing allows software
to access cache data without a hardware cache tag check.
However, this technique requires the compiler to support and
may cause code incompatibility.

Tag overflow buffering [9] provides power efficient cache
memory architecture and it exploits the reduced number of tag
bits. The main idea of this scheme is based on moving a large
number of tag bits from the cache memory into an external
register, called a tag overflow buffer, which identifies a current
memory locality. The tag overflow buffer in this scheme plays
the role of a one entry level 0 cache and it detects the locality
of application programs. In [10], [11] authors have proposed
other versions for further reducing tag bits. However, these
approaches mainly focus on instruction caches.

III. WAY PREDICTION CACHE ARCHITECTURE

As mentioned before, the existing low power cache ap-
proaches usually need to greatly change the micro-architecture
or require the compiler to support. However, this paper de-
scribes a structure-level full-hardware implementation in the

following discussion. Surprisingly, this method is quite simple
and relies on recording tag information.

A. Way Prediction Cache Architecture

Fig. 1 shows a block diagram of the way prediction cache
architecture. The shaded box represents the block which
implements the way prediction function, called a Way Predict
Module (WPM). In this architecture, the tag need to save into
a separate register array, called a Tag Record Buffer (TRB).To
predict the access way number, a Way Record Buffer (WRB)
is also added. The WRB records the saving way number of
corresponding tag in the TRB. For a two-way set-associative
cache, the width of the WRB is two bits.

If the TRB does not include a instruction tag value, the
tag should be saved into the TRB. At the same time, the
corresponding bit in the WRB should be set to 1. If the TRB
already has this tag value and the saving way number of this
tag differs from the corresponding bit in the WRB, the WRB
should be updated. For example, tag 23’h040200 is saved in
way 0 and way 1 of the cache, so way 0 bit and way 1 bit of
the WRB are both set to 1.

When an instruction needs to look up the set-associative data
cache, the TRB should be probed. If there is a hit in the TRB,
and the corresponding bits are 2’b10 in the WRB. It is indicate
that this tag only exists in way 0 of this cache, so the output
signal Way0EnFlag and Way1EnFlag are 1 and 0, respectively.
That is to say, this instruction only needs to access the way 0
tag and data memory of the data cache. If the TRB includes
the tag of this instruction and the corresponding bits are 2’b11



Fig. 2. A replacement example.

in the WRB, or the TRB does not include the tag of this
instruction, the output signal Way0EnFlag and Way1EnFlag
are both 1. In other words, the two ways of this set-associative
data cache all need to be accessed. The functional operations
of this architecture are summarized in Table I.

TABLE I
SUMMARY OF WAY PREDICTION CACHE OPERATIONS

TRB WRB Description
Way 0 Way 1

Hit 1 0 only access way 0
Hit 0 1 only access way 1
Hit 1 1 access way 0 and way 1

Miss - - access way 0 and way 1

B. Replacement Scheme

In order to reduce the entries of the TRB and the WRB, the
Replacement Scheme (RS) should be considered.

Since generally 10% of the loop programs occupy 90%
of the execution time [12]. And the loop programs tend to
save the new tags in a certain pattern. A typical replacement
example is shown in Fig. 2. The tag 23’h040200 is replaced
with the new tag 23’h040202 in the TRB.

So when there is a new tag need to be saved into tag
memory, the replacement scheme operates as follows.

1) : If the TRB does not include this new tag, and the
corresponding bits of an old tag are 2’b11 in the WRB. Then
this old tag will be replaced with the new tag, and the WRB
also needs to be updated.

2) : If the TRB does not include this new tag, and any
tag corresponding bits are not 2’b11 in the WRB. Then the
new tag should be saved into a new entry, and there is no
replacement operation occurs.

th tl i o

n

Fig. 3. Address decomposition for tag architecture.

C. TRB Optimization

In this subsection, we further discuss the TRB optimization.
Fig. 3 shows the address decomposition of tag architecture,

and n is the total number of entire address bits. In this address
model, the tag field is further divided into th and tl. The index
and offset field is the same as the conventional cache.

In the address decomposition of tag architecture, the th field
in the entire address plays the role of locality detection. If
the embedded application program exhibits memory access
locality [9] [10], then most tag bits of successive processor
requests will be the same, except for a few differences in the
tl. In this case, the width of the TRB should be optimized to
tl bits.

IV. EXPERIMENTAL RESULTS

In this section, Simulations had been conducted to verify
this way prediction method.

A. Simulation Environment

The low power way prediction method of set-associative
data cache was applied to SuperV DSP, which implemented
with the four-issue VLIW and eight-stage pipeline architec-
ture, operating at 500MHz. Since a 5 bits tag is enough to
provide the same level of full bits tag performance [9] [10]
[11], our cache parameters are a two-way set-associative, 1KB,
4B line data cache.



The data cache power consumption was evaluated on gate-
level with the power analysis tool based on the circuit switch-
ing activity and capacitance of different components. The gate-
level netlist was generated by the synthesis tool with the
technology library of 90nm CMOS process.

In order to evaluate the proposed method, some classic DSP
benchmarks [13] and the Powerstone benchmarks [14] were
utilized.

B. Simulation Results

The first simulation aims to determine the proper number of
the TRB and the WRB entries for our proposal. As the number
of the TRB and the WRB entries increase, we can record more
tag information of application programs. However, the TRB
and the WRB also have power consumption and definitely
increase area overhead. Therefore, the replacement scheme
was utilized in this way prediction method.

Table II shows the number of the TRB and the WRB
entries. From the simulation results, we can find that the
replacement scheme can effectively reduce the entries for
various application programs. Table II also provides that the
optimum width of TRB was 10 bits.

TABLE II
NUMBER OF TRB/WRB ENTRIESAND WIDTH OF TRB

Applications Number of Entries Width of TRB(bits)

Without RS With RS Tag Effective Tag

autocor 5 3 23 10

bexp 4 2 23 10

blit 17 3 23 10

crc 3 3 23 10

dotprod 4 2 23 10

dotp sqr 4 3 23 10

engine 2 2 23 10

firlms2 4 3 23 10

matmul 2 2 23 10

maxidx 3 3 23 10

maxval 3 3 23 10

minval 3 3 23 10

vector max 9 2 23 10

vector mul 3 3 23 10

vector sum 34 3 23 10

Embedded systems execute a few specific predefined ap-
plication programs. Therefore, system architectures should be
determined for the specific predefined embedded application
programs in the system development time. In this paper, we
decide that the proper number of the TRB and the WRB entries
was three, and the width of the TRB was 10 bits. And we
hope that some other system architects can choose their own
candidate based on our results.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

access reduce (%)

Fig. 4. Cache access reduction.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Conventional dcache way prediction dcache way prediction total

Fig. 5. Cache power reduction.

Fig. 4 reports the cache unnecessary access reduction. The
more unnecessary access is reduced, the more power savings
can get. And the unnecessary access reduction was up to
19.02% and 15.45% on average.

Fig. 5 reports the cache power reduction compared to
the conventional cache. The way prediction total power also
includes the WPM, which was actually negligible with respect
to the cache power consumption. And the power reduction was
up to 18.97% and 14.70% on average.

A prediction miss causes a cache miss. And these operations
clearly impact miss rates, which in turn affect the overall
performance of the memory hierarchy. The impact of the
miss rates on the total execution time (in cycles) for the
various benchmarks is shown in the Fig. 6. We notice that
the performance penalty was always below 0.5%, and with
an average of 0.09%. In other words, this way prediction
cache provided comparable performance with the conventional
cache.

Although our proposal requires additional hardware over-
head, such as the TRB and the WRB, it is almost trivial. The
additional hardware TRB is just a three-entry 10 bits width



0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

Performance Penalty

Fig. 6. Execution time increase.

small buffer rather than a memory. The size of the WRB is
even less than TRB.

The area and delay overheads are shown in the Table III.
In comparison with the conventional data cache, the area
overhead was only 0.52%.

TABLE III
AREA AND DELAY OVERHEADS

Overheads Area Delay

Value(µm2) Percentage(%) Value(ns)

Conventional 269445 100 1.10

WP 270839 100.52 1.25

The additional delay in cache access for our proposal was
also small, and the delay overhead was 0.15ns. Considering
the fact that the reduction in power consumption obtained with
this method, we think this extra overheads in area and delay
are acceptable.

V. CONCLUSION

For embedded DSP, set-associative caches consume a sig-
nificant amount of the total power dissipation, and the key
to power reduction is to pinpoint the matching way without
probing all of the ways. This paper has derived a way
prediction method to reduce level 1 set-associative data cache
dynamic power while maintaining high performance. It is
demonstrated that the proposed method provides a reductionin
power of up to 18.97% and 14.70% on average, respectively,
with negligible area overheads.

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China under Grant 612774025.

REFERENCES

[1] C. J. Zhang, V. Frank, J. Yang and W. Najjar, “A Way-Halting Cache for
Low-Energy High-Performance Systems,”in Proc. ISLPED04, Californi-
a, USA, 2004, pp. 126-131.

[2] M. Zhang, X. T. Chang and G. Zhang, “Reducing Cache EnergyCon-
sumption by Tag Encoding in Embedded Processors,”in Proc. ISLPED07,
Portand, Oregon, USA, 2007, pp. 367-370.

[3] R. K. Megalingam, K. B. Deepu, I. P. Joseph and V. Vandana,“Phased
Set Associative Cache Design For Reduced Power Consumption,” in Proc.
ICCSIT09, Los Alamitos, USA, 2009, pp. 551-556.

[4] R. Min, W. B. Jone and Y. M. Hu, “Phased Tag Cache: An Efficient Low
Power Cache System,”in Proc. ISCAS04, Los Alamitos, USA, 2004, pp.
805-808.

[5] J. Yang and R. Gupta, “Frequent Value Locality and its Applications,”
ACM Trans. Embedded Computing Systems, vol. 1, no. 1, pp. 79-105,
Nov. 2002.

[6] J. Ye and T. Watanabe, “A Variable Bitline Data Cache for Low Power
Design,” in Proc. APCPRME10, Los Alamitos, USA, 2010, pp. 174-177.

[7] Y. J. Chang and F. P. Lai, “Dynamic Zero-Sensitivity Scheme for Low-
Power Cache Memories,”IEEE Micro, vol. 25, no. 4, pp. 20-32, Jul.
2005.

[8] E. Witchel, S. Larsen, A. C. Scott and K. Asanovic, “Direct Addressed
Caches for Reduced Power Consumption,”in Proc. ISM01, Los Alamitos,
USA, 2001, pp. 124-133.

[9] M. Loghi, P. Azzoni and M. Poncino, “Tag Overflow Buffering: Reducing
Total Memory Energy by Reduced-Tag Matching,”IEEE Trans. VLSIS,
vol. 17, no. 5, pp. 728-732, Apr. 2009.

[10] J. W. Kwak and Y. T. Jeon, “Compressed tag architecture for low-power
embedded cache systems,”Journal of Systems Architecture, vol. 56, pp.
419-428, 2010.

[11] J. Gu, H. Guo and P. Li, “An on-chip instruction cache design with
one-bit tag for low-power embedded systems,”Microprocessor and Mi-
crosystems, vol. 35, pp. 382-391, 2009.

[12] J. Villarreal, R. Lysecky, S. Cotterell and F. Vahid, “Astudy on the loop
behavior of embedded programs,”Department of Computer Science and
Engineering, University of California, Riverside, Tech. Rep. UCR-CSE-
01-03, Dec. 2001.

[13] TMS320C62x DSP Library Programmers Reference, Texas Instruments
Inc, 2003. Available: http://www.ti.com/lit/ug/spru402b/spru402b.pdf.

[14] A. Malik, B. Moyer and D. Cermak, “A Low Power Unified Cache
Architecture Providing Power and Performance Flexibility,” in Proc.
ISLPED00, Rapallo, Italy, 2000, pp. 241-243.


