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Abstract—In this paper, the methods for estimating and 

tracking sparse doubly spread channels in single-carrier 

coherent communications are investigated. The sparse doubly 

spread channel is parameterized by a few paths with different 

delays, Doppler scales, and gains. Based on the model, a low-

complexity channel estimation algorithm is proposed. The 

channel estimation is divided into two stages, the first for path 

delays, and the second for the corresponding residual Dopplers 

and gains. In either stage, parameters are estimated iteratively 

with the help of adaptive grid optimization, which can 

dramatically reduce computational complexity. We also propose 

a channel tracking algorithm, which takes advantage of the 

estimation result from the previous frame, to further reduce the 

complexity. Simulation results have demonstrated that the 

proposed method can achieve a comparable performance with 

much lower complexity compared to the existing two-stage 

approach with OMP. 
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acoustic channels; grid optimization; channel estimation; channel 
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I. INTRODUCTION 

To achieve high-speed and reliable communications in 
underwater mobile sensor networks of shallow water, the 
greatest challenge is undoubtly from the channel. The shallow 
water mobile acoustic channel is time-varying, and has 
significant multipath-Doppler doubly spread. All of these 
characteristics of the channel make it extremely difficult for 
the receiver to recover signals. Therefore, it is necessary to 
find an effective method to real timely estimate and track the 
channel state information (CSI), so that the receiver can 
compensate for the influence on the received signal caused by 
the poor channel conditions. 

For estimating a shallow water mobile acoustic channel, 
the first problem to solve is to build a mathematical model to 
represent the channel. The simplest and most commonly used 
model to charaterize underwter acoustic (UWA) channel is the 
tapped-delay line model, but it is not appropriate for rapidly 
time-varying or doppler-spread channels. Related studies 

show that many shallow-water channels have sparse structures 
[1], the multipath arrivals of such channels can be resolved in 
delay. According to this, Li and Preisig [2] propose the delay-
Doppler-spread function representation to characterize UWA 
channel. In this model, each channel path is assumned to have 
a constant Doppler shift, so such a representation can be 
regarded as a first-order approximation of the channel’s rapid 
time variation. Under the representation, Li and Preisig [2] 
propose a delay-Doppler-spread function based sparse 
estimation approach, in which the dominant components on 
the delay-Doppler plane are identified via sparse estimation 
techniques. The greedy algorithms, including mathcing pursuit 
(MP) and othogonal matching pursuit (OMP), are used to 
search the parameters. It is the first time that compressed 
sensing algorithms are adopted in the estimation of UWA 
channels. In [3], a fast projected gradient method (FPGM) for 
estimating sparse doubly spread acoustic channels is proposed. 
An “l1-norm”constraint rather than the greedy seaching is 
adopted to estimate the sparse channel’s delay-Doppler-spread 
function. 

Although the delay-Doppler-spread function can 
characterize mobile UWA channel to some extent, it is not 
accurate enough, especially for the channel whose time 
variation is severe and complicated. Xu, Wang and Zhou [4] 
propose to use one polynomial to approximate the amplitude 
variation and another polynomial up to the first order to 
approximate the delay variation within a short period of time. 
Under such a channel parameterization, Qu and Nie [5] derive 
a discrete-time channel input–output relationship for single-
carrier block transmissions, and propose a two-stage approach 
for the estimation of doubly spread acoustic channels. This 
approach can estimate the dynamic path parameters accurately 
and efficiently.  

In this paper, we propose a novel method for estimating 
and tracking sparse doubly spread channels in single carrier 
underwater acoustic communications. With the help of the 
strategy of two-stage estimation [5] and the adaptive grid 
optimization technique [6], the new method can obtain an 
accurate estimate with quite low complexity. We also propose 
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a channel tracking algorithm, which can further reduce the 
complexity by taking advantage of the previous estimate. 

The rest of this paper proceeds as follows. The channel 
model and the corresponding representation of the discrete-
time channel input–output relationship are given in Section II. 
Section III describes the proposed channel estimation and 
tracking method in detail. In section IV, simulation results are 
presented to verify the method’s efficiency and performance. 
Finally, the paper is concluded in Section V. 

II. SEYSTEM MODEL 

Let  denote the transmitted signal, and  denotes the 
received signal. The channel input–output relationship is 

  

where  is the ambient noise,  denotes the time-
varying multipath channel impulse response which can be 
expressed as 

  

where  and  are the amplitude and the delay of the 
th path, respectively, and  denotes the number of discrete 
paths that the channel contains. In a short period of time,  
can be assumed as a contant . 

Within one data frame’s duration , the time-varying 
amplitude of each path is approximated as a th-order 
polynomial 

  

While the time-varying delay of each path is approximated as a 
first-order polynomial 

  

where  is the initial delay, and  is termed as the Doppler 
scaling factor, which reflects the path’s first-order dynamics, 
e.g., the platform is moving at a constant speed [5]. With such 
approximations, (2) can be rewritten as  

  

and then the expression of the received signal in (1) can be 
derived 

  

Applying the expression of the received signal (6), the 
discrete-time representation of the the channel imput-output 
relationship for single carrier coherent communication can be 
derived. 

The transmitted coherent communication signal in 
passband is given by 

  

where  is the th coherent communication symbol,  
denotes the symbol duration,  is the carrier frequency and 

 is a rectangular window function 

  

The receiver should first remove the dominant Doppler 
scale of the received signal  in passband by resampling 
with the estimated mean Doppler scaling factor , leading to 

. Then the signal is shifted to baseband by 
removing the carrier, and filtering with a low pass filter. That 
is, . Downsampling  at 
symbol rate, the th sample (the sampling instant is set as 

) can be expressed in detail as 

  

where  is the residual Doppler factor of the th path after 
resampling, which is defined as 

  

Stack the transmitted symbols and received samples into 
vectors:  and . Then 
(9) can be written in a matrix-vector formula for simplicity 

  

where  is the vector of ambient noise, and 

   

is the channel matrix, in which is an  diagonal 

matrix with the element 



  

and  is an  matrix with the element 

  

III. DOUBLY SPREAD CHANNEL ESTIMATION METHODS 

The discrete-time representation of the the channel imput-
output relationship for single-carrier coherent communications 
in time-varying doubly spread channels is given in section II 
(see (9), (11) and (12)). With the model, the channel 
estimation becomes the problem to estimate the parameter 

triplets  via the received signals in 

baseband and the known training sequence, so that we can use 
these parameters to reconstruct a channel matrix  to recover 
the unknown transmitted symbols. Accordingly, we establish 
the measurement equation for channel estimation 

  

where  denotes the vector of measurement noise,  and  
denote the vector of training symbols and the corresponding 
observation vector , respectively. For sparse channels, the 
number of paths  is quite small compared to the dimension 

of , so it is appropriate to use compressed sensing algorithms 
to solve the measurement equation with limited number of 
measurements. The most direct way to solve the problem is to 
construct a dictionary containing all possible combinations of 

, and find the ones that match the observation vector 
best. However, this method is too difficult for pratical use, 
because the amount of possible combinations is usually very 
large, leading to the extremely high column dimension of the 
dictionary. In that case, we have to use a long observation 
vector to solve the measurement equation, making the 
computational complexity too high. So it’s necessary to find a 
way to lower the dimension of the dictionary for estimation. 

A. Two-stage Strategy 

The first strategy we adopt to lower the dimension of the 
dictionary for estimation is to divide the estimation into two 
stages, searching for  and  in each stage, respectively and 
sequentially, rather than searching the two-dimensional 
parameter pair  in one stage. This strategy, termed as 
two-stage approach [5], turns the estimation from a two-
dimensional searching problem into a one-dimensional 
searching problem. The brief description of the strategy is as 
follows. 

For a frame of symbols, one training sequence is inserted 
at the beginning of the frame (in front of the data sequence), 
and another at the back of the frame (behind the data 
sequence). The channel estimation of the frame is devided into 
two stages. 

For the first stage, within the duration of the preceding 
training sequence,  is so small that  has little influence on 

the phase shift of the sample, so we can assume that , 
and try to find the right initial delays on the given grid 

  

with the resolution , where  is an integer, defined as 
the resolution factor of the desighed delay grid. Then the 
estimation problem can be fomulated as 

  

where  denotes the front training sequence, and 

  

is the dictionary whose columns correspond to the initial delays 

on ,. and  denotes the zeroth-order 

polynomial coefficients of the corresponding path gains. 
Searching over  with OMP, we can obtain the estimated 
initial delays . 

For the second stage, within the duration of the back 
training sequence, construct the residual Doppler factor grid 



with the resolution  based on the estimated initial delay 

grid , and  is an integer, defined as the 
resolution factor of the given Doppler grid. Assuming that one 
platform is moving at a constant speed for simplicity, we just 
need to take the zeroth’s path gains into account, and then the 
fomulation of the estimation problem can be expressed as 

  

where  denotes the back training sequence, and 



Searching over  with OMP, we can obtain the estimate of the 

residual Doppler factors  and the estimate of 

polynomial coefficients of the corresponding path gains 
. 

With the two-stage strategy, the column dimension of the 
dictionary is reduced by a large margin, leading to a significant 
reduction in the observation length. Besides, the strategy can 



avoid the interference between the parameters, resulting in 
more accurate estimate [5]. So we can obtain a better 
performance with much lower complexity compared to the 
method using OMP in only one stage. 

B. Grid Optimization based Channel Estimation 

In either stage of the aforementioned original two-stage 
approach, the estimation is performed based on a designed 
fixed grid, and the estimated values of the channel parameters 
are selected from the candidates that uniformly located on the 
grid. The accuracy of the estimated results all depends on the 
resolution of the grid. Hence, for high accuracy, the interval of 
the grid should be set as small as possible at the cost of more 
candidates on the grid. To obtain an accurate estimate of path 
delays or residual Doppler factors the grid needs to contain 
quite a number of candidates, leading to considerably high 
complexity of the estimation. 

To obtain acceptable accuracy with lower complexity, we 
propose a novel channel estimation algorithm based on the 
two-stage strategy. The new method also uses the idea of 
greedy searching. In the first stage, unlike the aforementioned 
two-stage approach with OMP, the proposed algorithm 
estimates the path’s initial delays by adaptively optimizing the 
delay grids during each iteration [6]. In the second stage, 
based on the estimatd path delays the residual Doppler factors 
are estimated in a similar way, and the corresponding path 
gains are obtained by the least squares method. The new 
method is summarized in Algorithm I as follows. 

Algorithm I 

Stage 1: Estimate the path delays  with the front 

training symbols  and the corresponding received obser-
vation sequence : 

1) Parameter initialization: Initialize the delay grid
. Set the residual 

vector , the set of the estimated values of initial 

path delays , and let  be an empty matrix. Set the 

maximum iteration number  for every path, and the 
maximum path number . Set the threshold for the final 
residual power as , and the threshold for the difference 
between the residual powers of two adjacent estimates of 
path delays as . Set the initial path number , and the 
end flag . 

Loop 1: while  and  and  

2) Estimate the initial delay of the th path: 

i. Perform the rough estimation of  with the formula 

， 

where ; 

ii. Set ;  

Loop 2: while  

iii. Set a new delay grid based on :  

 

iv. Update the estimate of  to make it finer with the 

formula 

 

v. Set ; 

End Loop 2. 

vi. Set the final estimate of the path delay: . 

3) Solve the least squares problem: 

, 

where . 

4) Update the residual vector: . 

5) Perform the following condition statement: 

if , 

 set , and ; 

else 

 set , and ; 

end if 

End Loop 1. 

6) Obtain the total number of paths: . 

Stage 2: Estimate the path residual Doppler factors  

and the path gains  with the back training symbols 

 and the corresponding received observation sequence : 

7) Parameter initialization: Initialize the Doppler grid 

. Reset 

the residual vector , and  as an empty matrix. 

Set the maximum iteration number as . 

Loop 3: for  

8) Estimate the residual Doppler factor of the th path: 

 i. Perform the rough estimation of  with the formula  

 

where . 

ii. Set ;  

Loop 4: while  

iii. Set a new Doppler grid based on : 

 

iv. Update the estimate of  to make it finer with 

 



v. Set ; 

End Loop 4. 

9) Solve the least squares problem:  

, 

where . 

10) Update the residual vector: . 

end Loop 3 

11) Obtain the estimate of all the path gains: Set the 
estimated vector of path gains . The final estimate of 

the th path gain is . 

In either stage of Algorithm I, we first design a rough 
parameter grid, on which the elements are equally distributed. 
Based on the grid we start the iterations to search each path. In 
each iteration, a new grid with three candidates is designed 
based on the result of the last iteration, and the interval is 
reduced to half of the previous one, thus narrowing the search 
and increasing the resolution. By greedy searching over the 
updated grid, a new estimate is obtained. In this way, the 
estimate approaches the true value as the iterations progress, 
and the total candidates of all the grids are much less than 
those in the original two-stage approach with OMP. 

C. Path Tracking Method 

Since the duration of a frame is quite short, the changes in 
both path numbers and path delays between two adjacent 
frames are very small [7], [8]. Therefore, based on the 
estimate of the delays within the previous frame, we can 
construct some new searching grids with fewer candidates to 
track the current channel. 

Considering the th frame of the received signal, given 
the estimated path delays of the last frame: , 

, where  is the estimated path 
number within the previous frame. The tracking method is 
summarized in Algorithm II as follows. 

Algorithm II 

Stage 1: Track the path delays  with the front 

training symbols  and the corresponding received obser-
vation sequence : 

1) Parameter initialization: Set the maximum iteration 
number  for every path, and the maximum path number . 
Initialize the path delay grid as 

, 

in which  

 

 is defined as the initial resolution factor of the estimation of 
the delay. Set the residual vector , the set of the 

estimated values of initial path delays , and let  be 

an empty matrix. Set the threshold for the final residual power 
as , and the threshold for the difference between the residual 
powers of two adjacent estimates of path delays as . Set the 
initial path number , and the end flag . 

Loop 1: while  and  and  

2) Update estimate of the delay of the th path: Perform 
the same operations as step 2) in Algorithm I to obtain the 
updated estimate of the initial path delay . 

3) The same as step 3) in Algorithm I. 

4) The same as step 4) in Algorithm I. 

5) Abandon the used candidates of the delay grid: Set 

. 

6) Perform the following condition statement:  

if , 

 set , and ; 

else 

 set , ,and ; 

end if 

End Loop 1. 

7) Estimate the new paths’ initial delays: 

Reset ; 

Loop 2: while  and  and  

Perform the same operations as steps 2) to 5) in 
Algorithm I; 

end Loop 2. 

8) Obtain the total number of paths with the current 
frame: . 

Stage 2: Estimate the residual Doppler factors  and 

the path gains  with the back training symbols  

and the corresponding received observation sequence  

9) Perform the same operations as stage 2 of Algorithm 
I: Obtain the estimate of path residual Doppler factors 

 and the estimate of path gains 

. 

In Algorithm II, first we design a initial delay grid based 
on the estimate of the delays within the previous frame. Then 
we update the estimate of each path delay with the same 
adaptive grid optimization technique in Algorithm I, and 
determine whether the path survives or not according to the 
decrement of the residual vector’s power. If the decrement is 
small enough, we discard the path and search for new paths. 
The process of tracking the residual Doppler factors and path 
gains is the same as that of stage 2 in Algorithm I. 

D. Analysis of Complexity 

For the compressed sensing algorithms with greedy 
searching, like OMP, the computational complexity is 
dominated by the dictionary’s size [9] at each iteration. Let  



denote the length of training sequence, and  the number of 
candidates on the searching grid, then the complexity of an 
iteration is . Since  is fixed for estimation, so the 
complexity of a channel estimation/tracking method is 
proportional to . Thus the number of all candidates on the 
grids constructed during the estimtion can be regarded as a 
measure of complexity. We use  to denote it for convenience.  

Now we compare the computational complexities of the 
one-stage method with OMP, the two-stage method with OMP, 
the proposed estimation algorithm and the proposed tracking 
algorithm. Given: the channel to be estimated contains  
paths; the final resolution of the estimate of delays is 

, and the final resolution of the estimate of 

Doppler factors is . Thus, we can figure out the 
theoretical complexity of the one-stage method with OMP  

  

the theoretical complexity of the two-stage method with OMP 

  

the theoretical complexity of the proposed estimation method 

  

and the theoretical complexity of the proposed estimation 
method can be represented as 

  

The theoretical computational complexities of those four 
methods with the parameter  are compared in Fig. 1. If the 
other parameters are fixed, the estimation accuracy will be 
determined by . The larger  is, the more accurate the 
estimate will be. We can see clearly from the figure that when 

, the complexities of the proposed algorithms are much 
lower than those of the other two algorithms, and grow much 
slower as  increases. 

 

Fig. 1. The curves of four algorithms’ complexities in relation to . 

IV. SIMULATION RESULTS 

Considering such a doubly spread shallow water UWA 
channel with the depth 100m, the average sound speed 1500 
m/s and the initial communication distance 2 km. Suppose the 
transmitter is moving towards the receiver at a horizontal 
speed 5m/s, which is quite large for UWA application, leading 
to serious Doppler spread. We use the Bellhop model [10] to 
calculate the channel state information including path delays, 
path Doppler scales, path attenuations, etc. 4 paths are selected 
for simulaiton for simplicty. The basic channel information is 
shown in TABLE I. 

TABLE I.  BASIC CHANNEL INFORMATION 

Path Number 1 2 3 4 

Delay/s 1.33375 1.33415 1.34371 1.34543 

Gain 3.4195e-4 2.0825e-4 0.9848e-4 0.5266e-4 

Doppler Scale 3.343445e-3 3.342417e-3 3.318691e-3 3.314377e-3 

A. Comparison of Performance 

A quadrature phase-shift keying (QPSK) signal with 
symbol rate 2 kbaud and carrier frequency 4 kHz is 
employed for transmission. Each frame contains 2500 
symbols,.of which the first 150 are the front training symbols 
for estimating path delays and the last 300 are the back 
training symbols for estimating path residual Dopplers and 
gains. After resampling with the estimated mean Doppler 
scale and removing the carrier, the received signal in baseband 
can be used for estimating/tracking the channel. 

First we initialize the parameters: set the maximum value 

of the estimate of path delays  = 0.02048 s, the maximum 

value of the estimate of path residual Dopplers 5.12e-5, 

the maximum iteration number for each path 3, the 

resolution factor of the initial delay grid 256, and the 

resolution factor of the initial residual Doppler grid 16. 

Then we use the original two-stage method with OMP and our 

proposed new estimation method to estimate the channel 

parameters with the final delay 

resolution 1e-5 s and Doppler resolution 

4e-7, respectively. The estimation results under 

the signal-to-noise ratio SNR=18 dB are shown in Fig. 2. 

From Fig. 2. we can see the estimaion errors of the two 

methods are both very small compared to the true channel 

information. It’s hard to tell whose performance is better from 

the perspective of estimation accuracy. 

Next we compare the recovery performance of the 

equalizers constructed by the estimates with different methods. 

With the estimated parameter set , the 

channel matrix  can be construct using (12), (13) and (14). 

Once the channel matrix is obtained, the transmitted symbols 

can be recovered by linear minimum mean square error 

(MMSE) equalization [11] 



 

(a) 

 

(c) 

 

(b) 

 

(d) 

Fig. 2. (a) The distribution of the true channel parameters, the estimation results obtained by the exising two-stage OMP method.and the estimation results 

obtained by Algorithm I on the delay-Doppler plane. (b)The true channel parmeters. (c) The estimate obtained by the exising two-stage method with OMP. (d)The 

estimate obtained by the proposed estimation altoritm. 

  

where  denotes the noise variance,  denotes the identity 
matrix. With (13), we use the original two-stage OMP method, 
the proposed Algorithm I and Algorithm II to recover the 
transmitted sequences, respectively, and compare their symbol 
error rate (SER) performance and mean square error (MSE) 
performance. The three methods’ SER curves and MSE curves 
are illustrated in Fig.3. and Fig.4. respectively. As is shown in 
both of the figures, all algorithms have good performances, 
which are quite close to the performance obtained with the true 
channel information. From the perspective of symbol recovery, 
the diffrence among the three algorithms’ performances is 
negligible. 

B. Comparison of Computational Complexity 

Finally, we compare the computational complexity of the 
existing two-stage method with OMP, the proposed estimation 
algorithm and the proposed channel tracking algorithm. The 
theoretical complexities (the number of all candidates on the 
used searching grids during the estimation) of each algorithm 
can be calculated according to (19), (20) and (21) with the 
parameter we design. The theoretical complexities of the three 
algorithms are listed in TABLE II for reference. And the 

actual average running time of each algorithm in simulations 
is also listed there. Either from the perspective of theoretical 
complexity, or from the perspective of the running time, the 
proposed tracking algorithm has the lowest computational 
comlexity. The proposed estimation algorithm’s complexity is 
a little higher than the proposed tracking algorithm’s, but is far 
lower than the complexity of the existing two-stage method 
with OMP.  

TABLE II.  COMPLEXITY COMPARISON OF 3 ALGORITHMS 

Term 

Algorithm 

Theoretical 

Complexity 

Average Running Time 

in the Simulation/s 

Two-stage OMP 12,296 7.500 

Algorithm I 1,208 2.115 

Algorithm II 776 1.232 

In conclusion, according to the comparison of performance 
and the comparison of computational complexity, the 
proposed channel estimation and tracking method can achieve 
the same performance as the exixting two-stage OMP method 
with much lower complexity. 



 

Fig. 3. SER performance comparison 

 

Fig. 4. MSE performance comparison 

V. CONCLUSION 

In this paper, a low-complexity method tailored for 
estimating and tracking sparse doubly spread channels in 
single-carrier coherent communications is proposed. In the new 
method, the strategy of two-stage estimation is adopted. In the 
first stage, the channel path delays are estimated iteratively via 
greedy searching over some adaptively optimized grids, which 
can dramatically reduce computational complexity. In the 
second stage, based on the estimated delays, the corresponding 
path residual Doppler factors are estimated iteratively with grid 
optimization as well, and the path gains are estimated one by 
one with the least squares method. According to the reasonable 
assumption that the path delays changes very little during a 
short period of time, we also propose a channel tracking 
algorithm. It takes advantage of the previous frame’s 
esimation/tracking result, and updates each path’s delay on the 
new optimized grids. In this way, the complexity is further 
reduced. Simulation results have demonstrated that the 
proposed method can achieve an identical performance with 
the existing two-stage method using OMP, but with far lower 
complexity. 
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