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In this paper, we deal with the problem of polarimetric diversity
detection for point-like targets in the presence of Gaussian clutter
with unknown covariance matrix. To this end, we jointly exploit the
polarization diversity and the spillover of target energy to
consecutive range samples to improve the performances of detection
and range localization. For estimation purposes, we assume that a set
of secondary data (free of signal components) is available with the
same covariance matrix as the clutter in the cells under test. Because
the uniformly most powerful test does not exist for this problem, we
derive two adaptive detectors: the generalized likelihood ratio test
and the Wald test. Interestingly, these new receivers ensure the
constant false alarm rate property with respect to covariance matrix
of the clutter. The performance assessments conducted on both
simulated data and real recorded dataset reveal that the proposed
detectors outperform, in both detection and localization, the
traditional state-of-the-art counterparts that ignore either the
polarimetry or the spillover.
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I. INTRODUCTION

Techniques for space-time adaptive detection in an
unknown disturbance (i.e., clutter plus noise) environment
stem from the pioneering work of Kelly [1], followed by
Robey and colleagues seminal paper [2], and have
received increasing attention in recent years in the radar
community. In particular, Kelly [1], resorting to the
generalized likelihood ratio test (GLRT), derives a
constant false alarm rate (CFAR) test for detecting signals
known up to a scaling factor, and Robey et al. [2] propose
another CFAR test called adaptive matched filter (AMF)
using the so-called two-step GLRT-based design
procedure. Many recent solutions rely on such GLRT
design procedures. For instance, these tests are extended
versions for the distributed target, the multistatic radar,
and the diagonal loading, respectively, in [3–5], and their
Bayesian versions are introduced in [6]. More recently, in
[7, 8], the authors apply both tests to derive receivers for
detecting a double subspace signal. Other different
solutions as an alternative to the GLRT can be found in the
open literature (see, e.g., [9–18]).

Another important issue concerns the design
assumptions of the nominal target. Specifically, all
aforementioned detectors are based on the assumption that
there is no spillover of the target energy to adjacent
matched filter returns, i.e., they suppose that the target is
exactly at the location corresponding to the sample time.
This assumption is not reasonable because there is no
guarantee that the samples of the matched filter output be
exactly at the peak of the target return. The physical
spillover phenomenon in a radar system happens as the
centroid of the received target pulse is somewhere
between two consecutive range bins [19, 20]. The
spillover causes an important loss in radar signal
processing, making all of the above detectors to suffer
from this loss. As a remedy to this loss some works in
open literature take into account this spillover. In [21, 22],
the spillover information is exploited as a boon rather than
a nuisance; by using two adjacent matched filter samples,
they show that a monopulse radar might resolve up to five
targets instead of two. In [23], this framework is extended
to the context of space-time adaptive processing [24] for a
single polarimetric channel, and two GLRT detectors are
proposed. These detectors attempt to account for the
spillover of target energy to enhance the target
localization. In [25], the authors exploit additional
structure of the clutter covariance matrix, i.e., the
persymmetric property, to improve their robustness in
training-limited scenarios [26, 27].

In this work, we move one step further and design
space-time radar detectors that exploit the spillover of
target energy and also use the polarization diversity to
enhance the detection and range estimation performances.
The polarization diversity is used in [28] and has been
widely shown to enhance the radar detectors during the
last decades both for military and civilian applications.
Following [28], some adaptive detection schemes have
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been proposed in [29–43] by explicitly taking into account
the polarization diversity. For example, the detection of
point-like targets embedded in Gaussian clutter with
unknown spectral properties has been addressed in
[29–31]. The detection of point-like and range-spread
targets in compound-Gaussian clutter with unknown
spectral properties has been considered in [32–35]. More
recently, the polarization detection problem of
multiple-input/multiple-output radar has been investigated
in [37, 38]. Other recent solutions can be found in [39–43]
and references therein.

We generalize the framework proposed in [23] to the
polarimetric case. We first establish the discrete-time
model of the received signal for two different polarimetric
channels and then apply the plain GLRT and the Wald test
to obtain two decision schemes because the uniformly
most powerful (UMP) receiver does not exist for this
problem. Interestingly, these detectors guarantee the
CFAR property with respect to the unknown parameters of
the clutter. Our performance assessment, carried out on
simulated dataset and real dataset, shows that the
exploitation of the polarization diversity can enhance the
performances of detection and range
estimation.

The remainder of the paper is organized as follows.
The next section is devoted to the problem formulation.
Section III focuses on the design of the detectors while
Section IV provides illustrative examples. Section V
contains some concluding remarks and hints for future
work.

II. PROBLEM FORMULATION

In this section, we first describe a space-time spillover
model for a single polarimetric channel and then extend it
for two polarimetric channels. This is because the
derivations and analysis are easier for two channels
[33–35]. Moreover, real data are mostly available for two
polarimetric channels. Our results can be extended to
process the full polarimetric information [31, 32]. For a
single polarimetric channel, the vector of the clutter
returns representing the ith range cell is given by [44]

xi = si + ni ∈ C
N×1, (1)

where N = Na Np, Na is the number of spatial channels, Np

is the number of pulses contained in the coherent
processing interval, and nl ∈ C

N×1 is the clutter
component. For si, we have

si =
⎧⎨⎩αχp(−ε0, f )v, i = l,

αχp(Tp − ε0, f )v, i = l + 1,

0, l �= l, l + 1
(2)

where α is the complex magnitude of the signal, l is the
cell under test, χp(·,·) is the (complex) ambiguity function
of the pulse waveform, ε0 is a residual delay that leads to
target energy spillover, f is the target Doppler frequency of
the signal backscattered by the target, and v is the overall
space-time steering vector. For the sake of brevity of

Fig. 1. Illustration of target spillover as sampling of (ambiguity
function) output of matched filter for rectangular pulse waveform of

duration Tp s.

notations, we omit the dependence on the spatial and the
Doppler frequency. In the absence of clutter, using a
rectangular pulse of duration Tp s as the radar waveform,
the output of the matched filter, i.e., the ambiguity
function is triangular (see [23] for further details) as
illustrated in Fig. 1.

We further assume that the returns from a coherent
pulse train at two different polarimetric channels are
sampled simultaneously to the corresponding
back-scattered echoes at both polarizations [33–35]. For
example, the radar transmits the horizontal polarization
(or, equivalently, the vertical polarization) and two linear
orthogonal polarizations, denoted as HH and HV (VH
and VV), are received. Alternatively, we may assume that
both the horizontal and the vertical polarizations are
transmitted and that the HH and the VV polarizations are
received.

These assumptions imply that the two polarimetric
channels receive identical proportion of target spillover
with possibly different signal magnitudes as the effective
target cross section depends on the polarization.
Moreover, the considered polarimetric scenario implies
that the N spatial channels use the same polarization
modes, for instance, HH and HV, or HH and VV.

In order to facilitate the mathematical derivation and
make full use of polarization diversity, we stack the two
N-dimensional vectors of the returns, samples from the
baseband equivalent at each polarization, and form a
2N-dimensional vector. Moreover, we alternatively define
the residual delay ε evaluated with respect to the ith range
subbin accounting for the target position surrounding the
lth subbin center as follows

ε =
{

ε0, if i = l and 0 ≤ ε0 ≤ Tp/2,

ε0 − Tp, if i = l + 1 and Tp/2 ≤ ε0 ≤ Tp.
(3)

As customary, we assume that a secondary data
Y = [y1, . . . , yK ] ∈ C

2N×K is available, which does not
contain any target echoes and yk shares the same
covariance matrix as the primary data X = [xl–1, xl, xl + 1]
under the clutter-only hypothesis.
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With the above definitions in mind, the decision
problem to be solved can be formulated in terms of the
following binary hypothesis test:

H0 :

{
xl−1 = n1, xl = n2, xl+1 = n3,

yk = nk+3, k = 1, . . . , K,

H1 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{
xl−1 = n1,

xl+1 = χp

(
Tp − ε, f

)
Vα + n3,

0 < ε ≤ Tp

2 ,{
xl−1 = χp

(−Tp − ε, f
)

Vα + n1,

xl+1 = n3,
− Tp

2 ≤ ε ≤ 0,

xl = χp (−ε, f ) Vα + n2,

yk = nk+3, k = 1, . . . , K,

(4)
where H0 and H1 denote the clutter-only hypothesis and
the signal-plus-clutter hypothesis, respectively,
α = [α1, α2]T ∈ C

2×1(T denotes transpose) is a complex
vector whose elements are parameters accounting for both
the channel effects and the target polarimetric
characteristics, and nk, k = 1,. . ., K + 3, are independent
complex normal random vectors with zero mean and
covariance matrix M. As to V ∈ C

2N×2, it is given by

V =
(

v 0N,1

0N,1 v

)
(5)

with v ∈ C
N×1 the nominal steering vector, and 0m,n the

matrix of m × n zeros.

III. DETECTOR DESIGN

For the problem in (4), the UMP detector does not
exist because the likelihood ratio depends on the unknown
covariance matrix. Thus, we aim to find decision statistics
that achieve higher detection probability with reasonable
computational complexity and result in a CFAR [45]. In
order to meet these goals in this section, we derive two
suboptimum decision rules using the GLRT and the Wald
test, respectively. The GLRT might provide better
detection performance than the Wald test, whereas the
Wald test might require less computational complexity.
Note also that the GLRT and the Wald test can be
designed under a CFAR constraint; they are separating
function estimation tests and have identical asymptotic
performance for large sample sizes (see [46] for more
details).

We assume that Tp, v, and f are known a priori, while
ε, α, and M need to be estimated. Moreover, we denote by
Z = [X Y] ∈ C

2N×(K+3) the overall data matrix, with
X = [xl−1, xl , xl+1] ∈ C

2N×3 the primary data matrix,
Y = [y1, . . . , yK ] ∈ C

2N×K the secondary data matrix, and

χ (ε) ={[
χp(−Tp − ε, f ), χp(−ε, f ), 0

]T
, −Tp/2 ≤ ε ≤ 0,[

0, χp(−ε, f ), χp(Tp − ε, f )
]T

, 0 < ε ≤ Tp/2.

(6)

A. The GLRT-Based Detector

The GLRT based on primary and secondary data is
given by [47]

max
ε,α,M

f1(Z; M, α, ε)

max
M

f0(Z; M)

H1
>
<
H0

η, (7)

where η is the threshold value to be set according to the
desired probability of false alarm (Pfa), and fj (Z;·) is the
probability density function (PDF) of Z under Hj, j = 0,1,
i.e., [48]

f1(Z; M, α, ε) = exp
{−tr

[
M−1T1

]}[
π2N det(M)

]K+3

f0(Z; M) = exp
{−tr

[
M−1T0

]}[
π2N det(M)

]K+3 (8)

where (·)H denotes conjugate transpose, det(·) and tr (·)
denote the determinant and the trace of a square matrix,
respectively, and

T1 = [
X − VαχT (ε)

] [
X − VαχT (ε)

]H + S,

T0 = XXH + S (9)

with S = YYH the K times sample covariance matrix of
the secondary data.

In order to compute max
ε,α,M

f1(Z; M, α, ε), observe that

the maximum of f1 (Z; M,α, ε) with respect to M is
attained by substituting the true covariance matrix with the
sample covariance [1]

M̂ = 1

K + 3
T1. (10)

Substitution of M̂ into (8) yields

f1(Z; M̂, α, ε) ∝ det (T1)−(K+3), (11)

where ∝ stands for proportionality. Maximizing (11) over
α is tantamount to the following minimization

min
α

det
([

X − VαχT (ε)
] [

X − VαχT (ε)
]H + S

)
. (12)

From (12), a closed-form estimate of α is given by (see
Appendix A for the proof)

α̂ =
(
VH S−1

1 V
)−1

VH S−1
1 X

‖χ (ε)‖ , (13)

where ‖χ (ε)‖2 = χT (ε)χ∗(ε) and

S1 = S + X̄⊥X̄H
⊥ , X̄ = Xχ̄H ,

X̄⊥ = Xχ̄H
⊥ , χ̄ = χT (ε)

‖χ (ε)‖ . (14)

In (14), χ̄⊥ ∈ C
2×3 is a matrix orthogonal to χ̄ that

satisfies χ̄⊥χ̄H = 02,1 and χ̄⊥χ̄H
⊥ = I2, with In the

n-dimensional identity matrix. It follows that the
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compressed likelihood under H1 can be written as

f1(Z; M̂, α̂, ε) ∝
det

[(
X − Vα̂χT (ε)

) (
X − Vα̂χT (ε)

)H + S
]−(K+3)

.

(15)
Moreover, the compressed likelihood under H0 is

given by

f0(Z; M̂) ∝ det
[
XXH + S

]−(K+3)
. (16)

Thus, we conclude that the GLRT for (4) can be recast
as

max
ε∈[− Tp

2 ,
Tp

2 ]

det
[
XXH + S

]
det[(X−Vα̂χT (ε))(X−Vα̂χT (ε))H + S]

H0
>
<
H1

η,

(17)

where η is the suitable modification of the threshold in (7).
To gain additional insight into the test statistic, it is shown
in Appendix B that the test statistic can be equivalently
expressed as

max
ε∈[−Tp/2,Tp/2]

X̄H S−1
1 V

(
VH S−1

1 V
)−1

VH S−1
1 X̄

1 + X̄H S−1
1 X̄

H0
>
<
H1

η. (18)

For the maximization with respect to ε, we use a grid
search because a closed-form estimate of ε (termed as ε̂) is
not available. More precisely, ε takes on values in
{ n−Nε

2Nε
Tp}2Nε

n=0 with 2Nε is the number of search points. In
the sequel, we refer to this grid-search implementation as
the polarimetric GLRT with localization capabilities
(P-GLRT-LC).

B. The Wald Test Detector

In this subsection, we derive a detector based on the
Wald test. More precisely, we derive the Wald test
assuming that ε is known, then maximize the derived test
with respect to ε.

As a preliminary step toward the derivation of the
receiver, denote by θ ∈ R

4+N2
the parameter vector, i.e.,

θ = [αr,1, αr,2, αi,1, αi,2, f(M)T ]
T = [θT

A θT
B]

T

, (19)

where

1) αr,t and αi,t denote the real and imaginary part of αt,
t = 1, 2;

2) θA = [αr,1, αr,2, αi,1, αi,2]T ∈ R
4 and

θB = f(M) ∈ R
N2

; observe that θA contains the parameters
of interest while θB contains the nuisance parameters; and

3) f(M) ∈ R
N2

is a vector that contains in univocal
way the real and the imaginary parts of the elements of M.

Finally, let J(θ) be the Fisher information matrix,
which can be written as follows [49]

J(θ )−1=
[

JAA(θ) JAB(θ )
JBA(θ) JBB(θ)

]−1

=
[

CAA(θ) CAB(θ)
CBA(θ) CBB(θ)

]
, (20)

where

CAA(θ ) = [
JAA(θ ) − JAB(θ)J−1

BB(θ )JBA(θ)
]−1

. (21)

Step 1. Known ε: The Wald test is given by [47]

θ̂T
A,1

[
CAA(θ̂1)

]−1
θ̂A,1

H0
>
<
H1

η, (22)

where θ̂1 = [θ̂T
A,1 θ̂T

B,1]T with θ̂A,1 and θ̂B,1 the maximum
likelihood estimates of θA and θB under H1, respectively,
and η is the threshold to be set to achieve a predetermined
probability of Pfa.

For our problem, it is proved in Appendix C that

JAA(θ ) =
[

Re{φ(θ)} −Im{φ(θ)}
Im{φ(θ)} Re{φ(θ)}

]
,

JAB(θ ) = 04,N2, (23)

where Re{·} and Im{·} denote the real and the imaginary
parts of the argument, respectively, and

φ(θ) = ‖χ (ε)‖2VH M−1V. (24)

Plugging (23) into (21) yields

CAA(θ ) =
[

Re{φ(θ)} −Im{φ(θ)}
Im{φ(θ)} Re{φ(θ)}

]−1

. (25)

Moreover, we have

θ̂A,1 =
[

2Re{α̂}
2Im{α̂}

]
=

⎡⎢⎢⎣2Re

{
(VH S−1

1 V)
−1

VH S−1
1 X

‖χ(ε)‖

}
2Im

{
(VH S−1

1 V)
−1

VH S−1
1 X

‖χ(ε)‖

}
⎤⎥⎥⎦.

(26)
Now, it remains to replace M in (24) with its maximum
likelihood estimate under H1, which is given by
substituting α̂ into (10), i.e.,

M̂1 = 1

K + 3

([
X − Vα̂χT (ε)

] [
X − Vα̂χT (ε)

]H + S
)

.

(27)
Observe that

VH M̂−1
1 V = (K + 3)

[
VH S−1

1 V − VH S−1
1 ppH S−1

1 V

1 + pH S−1
1 p

]
= (K + 3)VH S−1

1 V, (28)

where p = X − ‖χ (ε)‖Vα̂, and the last equality follows
from

VH S−1
1

(
X̄ − ‖χ (ε)‖ Vα̂

) = 02,1. (29)

It follows that the Wald test can be recast as

X̄H S−1
1 V

(
VH S−1

1 V
)−1

VH S−1
1 X̄

H0
>
<
H1

η. (30)

Step 2. Adaptive Detector: In order to make the
derived detector have the ability to localize a target, we
need to maximize (30) with respect to ε, i.e.,

max
ε∈[−Tp/2,Tp/2]

X̄H S−1
1 V

(
VH S−1

1 V
)−1

VH S−1
1 X̄

H0
>
<
H1

η. (31)
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This detector with a grid-search-based implementation
will be referred to in the sequel as the polarimetric Wald
with localization capabilities (P-WALD-LC).

REMARK 1. The P-GLRT-LC and P-WALD-LC ensure
the CFAR property with respect to M. Proofs of such
statements, not reported here for the sake of brevity,
follow the lead of [1] and references therein.

REMARK 2. Comparing the similarity in the expressions
[18, 30], we argue and expect that these tests perform very
similarly where X̄H S−1

1 X̄ is approximately 0, e.g., when
the secondary data size that increases their performance
gap is expected to reduce.

REMARK 3. Because X̄ and S−1
1 are functions of ε, they

need to be calculated for each ε value that involves a
heavy computation burden. In order to reduce the
computation cost, in Appendix D, we rewrite the
expressions in (31) and (18) as

βWALD =
(

z1 + z1z2

1 + z2

)(
VH T−1

0 V + zH
1 z1

1 + z2

)−1

×
(

z1 + z1z2

1 + z2

)H

βGLRT = βWALD

1 + z2 + z2
2

1+z2

, (32)

where z1 = UH V ∈ C
1×2, z2 = X̄H U ∈ C

1×1,

U = T−1
0 X̄ ∈ C

2N×1, and T0 given by (9). Thus, we
propose the following procedure to calculate the statistics
(31) and (18):

S1) Calculate T−1
0 based on the overall data matrix as

well as VH T−1
0 V. There are O(8N3 + 4KN2 + 8N)

floating-point operations (flops) involved, where O(n) is
the usual Landau notation and means that the
implementation requires a number of flops proportional to
n [50].

S2) For each ε, calculate z1 and z2, and then calculate
βWALD as well as βGLRT. The involved computational
complexity is O((4N2 + 6N) × (2Nε + 1)).

S3) The maximal values of βGLRT and βWALD are the
test statistics of the P-GLRT-LC and P-WALD-LC,
respectively.

These proposed procedures involve a computational
cost of order of O(8N3 + 4KN2 + 8N + (4N2 + 6N)
× (2Nε + 1)) flops instead of O((8N3 + 4KN2 + 12N)
× (2Nε + 1)) flops required by directly calculating (31)
and (18).

IV. PERFORMANCE ASSESSMENT

This section is devoted to the performance assessment
of the proposed detection algorithms in terms of
probability of detection (Pd) and RMS error in the range.
To this end, we compare the proposed detectors with their
nonpolarimetric counterparts, i.e., the so-called modified
GLRT (M-GLRT) and modified AMF (M-AMF)
introduced in [23]. Moreover, the new receivers are

compared to the state-of-the-art polarimetric detectors that
ignore the spillover, i.e., the polarization-space-time
GLRT (P-GLRT) and polarimetric AMF (P-AMF) derived
in [29] and [30], respectively.

A. Simulated Data

Because the closed-form expressions for both the Pfa

and Pd are not available, we resort to standard Monte
Carlo techniques and evaluate the thresholds necessary to
ensure a preassigned value of Pfa resorting to 100/Pfa

independent trials. The Pd values and the RMS range
errors are estimated over 104 and 103 independent trials,
respectively. All the illustrative examples assume Pfa =
10–4, fc = 109 Hz, Tp = 0.2 μs, c = 3 · 108 m/s, and f = 0
Hz. It is reasonable to assume that the residual position of
the target is (independent from trial to trial) uniformly
distributed over (–Tp/2, Tp/2). In the sequel, we specify the
clutter and target models for the further developments.

Clutter model: We assume a clutter-dominated
environment with the covariance matrix given by

M = Mc ⊗ �, (33)

where ⊗ denotes the Kronecker matrix product,
� ∈ C

N×N is a matrix that accounts for the covariance
between returns from the same polarimetric channel, and

Mc =
(

1 ξc

√
δc

ξ ∗
c

√
δc δc

)
(34)

is the clutter polarimetric scattering matrix. As customary,
we model � as an exponentially shaped matrix with
one-lag correlation coefficient ρc.

Target model. We consider a fluctuating target, i.e.,
we use the product model proposed in [41] to describe the
aspect angle variability of the target. More precisely, we
set α = √

γ g, where γ is a Gamma random variate with
the following PDF

fγ (x) = 1

γ̄ �(ν)

(
x

γ̄

)ν−1

exp

{
− x

γ̄

}
, (35)

and � (·) is the Eulerian gamma function, v is the shape
parameter, and the scale parameter γ̄ is related to the
mean radar cross section. The zero-mean complex
Gaussian bivariate g has the covariance matrix of

Mt =
(

1 ξt

√
δt

ξ ∗
t

√
δt δt

)
. (36)

The typical values of ξ c, δc, ξ t, δt are obtained from Table I
of [41]. Some of them were not explicitly provided in [37],
such as εt and εc. However, they can be easily computed
using Table 1 of [37]. These parameters are for the
polarimetric measurement data of typical ground targets
and meadow clutter, and have been widely exploited in
most existing works, such as [33–35]. According to above
assumptions, the signal-to-clutter ratio (SCR) is defined as

SCR = E
[
αH

(
VM−1V

)
α
]

= νγ̄ vH�−1vtr
[
M1/2

t M−1
c M1/2

t

]
. (37)
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TABLE I
Specifications of the Analyzed Sea Clutter Dataset

Dataset226

Date November 17, 1993
Time 13.16
Number of pulses Nt 12288
Number of cells Ns 68
Polarizations HH, VV
RF frequency 9.39 GHz
Pulse length 200 ns
Pulse repetition frequency 1000 Hz
Sampling frequency 10 MHz
Radar scan mode Fixed azimuth
Radar azimuth angle 135.0439 deg
Elevation angle 359.5111 deg
Range 2001–3006 m
Radar beam width 0.9 deg
Range resolution 30 m sampled at 15 m
Quantization bit 8 bit
Mean/max wind speed 20 km/h
Sea state: mean/max wave height 1/1.6 m

Fig. 2. Pd versus SCR for P-GLRT-LC, P-WALD-LC that process HH
and HV channels, and M-GLRT and M-AMF that process single

polarimetric channel with simulated data; N = 8, K = 32, Nε = 5, Pfa =
10–4, v = 1.0, ρc = 0.9, ξ t = 0, δt = 0.19, ξ c = 0, δc = 0.18.

It is worth mentioning that when HH and HV (or,
equivalently, VV and VH) are employed, target and clutter
returns at different channels can be assumed independent
random vectors and, hence, ξ c = ξ t = 0.

1) Comparison with Localization Detectors. In Figs.
2 and 3, we compare the P-GLRT-LC and P-WALD-LC
with the M-GLRT and M-AMF, assuming N = 8, K = 32,
v = 1, ρc = 0.9, and Nε = 5. In particular, in Fig. 2 we
plot Pd versus SCR, while in Fig. 3 the comparisons are in
terms of range RMS error. Moreover, the figures refer to a
radar that processes the HH and the HV channels.
Accordingly, we set ξ t = 0, δt = 0.19, ξ c = 0, δc = 0.18
[41]. We used the target 1 mode and have not changed
these parameters during the simulations.

The curves in Fig. 2 show that the P-GLRT-LC and
P-WALD-LC guarantee better detection performance than
the M-GLRT and M-AMF, which only process the HH or
HV channel. More precisely, the P-GLRT-LC have the

Fig. 3. RMS errors in range versus SCR for P-GLRT-LC, P-WALD-LC
that process HH and HV channels, and M-GLRT and M-AMF that

process single polarimetric channel with simulated data; N = 8, K = 24,
Nε = 5, Pfa = 10–4, v = 1.0, ρc = 0.9, ξ t = 0, δt = 0.19, ξ c = 0,

δc = 0.18.

Fig. 4. Pd versus SCR for P-GLRT-LC, P-WALD-LC that process HH
and VV channels, and M-GLRT and M-AMF that process single

polarimetric channel with simulated data; N = 8, K = 32, Nε = 5, Pfa =
10–4, v = 1.0, ρc = 0.9, ξ t = 0.28, δt = 1, ξ c = 0.5, δc = 1.6.

best performance, whereas the P-WALD-LC experiences a
loss of about 0.3 dB at Pd = 0.9; such a loss increases to
about 3.0 dB for the M-GLRT and M-AMF. On the other
hand, Fig. 3 shows that the P-GLRT-LC and P-WALD-LC
have superior performance in terms of capability of target
localization with respect to the M-GLRT and M-AMF. For
instance, the range RMS errors of the P-GLRT-LC and
P-WALD-LC are about 2.5 m when SCR = 25 dB, and
such RMS errors increase to about 2.9 m for the M-GLRT
and M-AMF. These results highlight the benefits provided
by polarimetric diversity, i.e., the polarization diversity
enhances the performance of a radar system about 3 dB in
SCR.

The trend observed in Figs. 2 and 3 is confirmed by the
curves in Figs. 4 and 5, for the same parameters and
employing the HH and VV channels. Following [41], we
set ξ t = 0.28, δ t = 1, ξ c = 0.5, δc = 1.6. An interesting
phenomenon is that the Pd curves for the M-GLRT and
M-AMF using the HH channel are higher than those using
the VV channel. As to the range RMS errors, the curves
using the HH channel are lower than those using the VV
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Fig. 5. RMS errors in range versus SCR for P-GLRT-LC, P-WALD-LC
that process HH and VV channels, and M-GLRT and M-AMF that

process single polarimetric channel with simulated data; N = 8, K = 32,
Nε = 5, Pfa = 10–4, v = 1.0, ρc = 0.9, ξ t = 0.28, δt = 1, ξ c = 0.5,

δc = 1.6.

Fig. 6. Pmd versus SCR for P-GLRT-LC that processes HH and HV
channels with simulated data; N = 8, K = 32, Pfa = 10–4, v = 1.0, ρc =

0.9, ξ t = 0, δt = 0.19, ξ c = 0, δc = 0.18, and several cases of Nε .

channel. We argue that this performance difference is
because of δt

δc
< 1, which means the HH channel has

higher SCR than the VV channel.
In the above simulations, we use a fixed value for Nε

that obviously limits the accuracy of the range estimation.
In fact, at very high SCRs using a grid search over ε, the
range estimation error is an uniformly distributed random
variable over (− Tpc

4Nε
,

Tpc

4Nε
) and has a standard deviation

equal to Tpc

8
√

3Nε

. For example in Fig. 3, we observe a range

RMS error of 0.88 m, which is comparable with Tpc

8
√

3Nε

=
0.866 m for Nε = 5 [23]. In Fig. 6, we study the effect of
Nε on the detection performance of the P-GLRT-LC.
Therein, we plot the probability of miss detection (Pmd)
versus SCR for Nε{1, 3, 10} where other parameters are
set the same as in Fig. 2. The figure shows that the
improvement of the detection performance is quickly
saturated as Nε increases. Compared with the increased
computational complexity for large Nε, the improvement
on the detection probability may be insignificant whereas
the improvement on the accuracy of localization is

Fig. 7. RMS errors in range versus SCR for P-GLRT-LC that processes
HH and HV channels with simulated data; N = 8, K = 32, Pfa = 10–4, v

= 1.0, ρc = 0.9, ξ t = 0, δt = 0.19, ξ c = 0, δc = 0.18, and several cases
of Nε .

considerable. Hence, the main incentive to use larger
values for Nε is to enhance the range accuracy.

For large values of Nε, the variance of ε̂ is proportional
to the variance of the clutter, i.e., proportional to 10− SCR

10

(SCR in decibels). Moreover, the quantization errors of ε̂

is proportional to 1
N2

ε
. This means that it is reasonable to

choose 1
N2

ε
to be proportional to 10− SCR

10 . Thus, to have a
reasonable trade-off between the performance and
computational cost, we propose to choose Nε as

Nε =
⌈
c × 10

SCR
20 + 2

⌉
, (38)

where �·
 denotes the smallest integer not less than the
parameter, and c = 0.316 is an empirical value. Fig. 7
shows the effect of (38) on the range estimation, i.e., the
range RMS error versus SCR of the P-GLRT-LC for
Nεε{1, 3, 5} and for Nε calculated by (38). Fig. 7
highlights that by using (38), we obtain lower range RMS
errors for medium-high SCR values than the fixed values
of Nε. Moreover, the higher the SCR values, the superior
the range estimation capability with respect to the fixed
values. The above results suggest selecting Nε based on
the system requirements. If only the detection
performance is important, we may use some small value
for Nε and use (38) for most accurate range estimation. To
save simulation time hereafter, we fix value of Nε.

2) Comparison with Polarimetric Detectors. In Figs.
8 and 9, we compare new receivers with state-of-the-art
polarimetric detectors. Specifically, we plot Pd versus SCR
for the P-GLRT-LC, P-WALD-LC, P-GLRT, and P-AMF,
assuming N = 8, Nε = 5, v = 1, ρc = 0.9, and two values
of K. Fig. 8 refers to a radar that processes the HH and the
HV channels, whereas Fig. 9 corresponds to a system
employing the HH and VV channels. The figures show
that the P-GLRT-LC and P-WALD-LC outperform the
P-GLRT and P-AMF in detection performance. Moreover,
the smaller the K, the higher the Pd of the P-GLRT-LC
with respect to other three detectors. For instance, the Pd

gain of the P-GLRT-LC with respect to the P-WALD-LC
is 1.2 dB for Pd = 0.9 and K = 20, and such gain reduces
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Fig. 8. Pd versus SCR for P-GLRT-LC, P-WALD-LC that process HH
and HV channels, and P-GLRT and P-AMF with simulated data; N = 8,
Nε = 5, Pfa = 10–4, v = 1.0, ρc = 0.9, ξ t = 0, δt = 0.19, ξ c = 0, δc =

0.18, and K as parameter.

Fig. 9. Pd versus SCR for P-GLRT-LC and P-WALD-LC that process
HH and VV channels, and P-GLRT and P-AMF with simulated data; N
= 8, Nε = 5, Pfa = 10–4, v = 1.0, ρc = 0.9, ξ t = 0.28, δt = 1, ξ c = 0.5,

δc = 1.6, and K as parameter.

to about 0.3 dB for K = 32. This result is accordance with
what we expect in Remark 2. We do not evaluate the range
RMS errors for the considered detectors due to the fact that
the P-GLRT and P-AMF do not have the ability of subbin
range localization. In summary, the performed analysis
highlights that the proposed receivers result in enhanced
performances compared to the receivers that exploit either
polarimetric diversity or the energy spillover of the target.

B. Real Dataset

In the above simulations, the clutter is generated by a
complex Gaussian process, which matches the design
model. In this subsection, we present a performance
analysis based on the real radar measurements collected by
the McMaster IPIX radar, which contain many challenging
real-world effects, including heterogeneous terrain and
array errors. Specifically, the measurements were collected
in November 1993 using the McMaster IPIX radar from a
site in Dartmouth. The radar was mounted on a cliff facing
the Atlantic Ocean, at a height of 100 feet above the mean
sea level and was used in fixed azimuth mode. The IPIX
radar employed a coherent receiver and was capable of

Fig. 10. Pd versus SCR for P-GLRT-LC, P-WALD-LC that process HH
and VV channels, and M-GLRT and M-AMF that process single

polarimetric channel with IPIX data; N = 8, K = 32, Nε = 5, FA = 15, v
= 1.0, ξ t = 0.28, δt = 1.

operating in a dual-polarized mode. More details on the
experiment can be found in [51]. The specifications of the
considered dataset containing are reported in Table I.

For the analysis, the nominal steering vector is
temporal (namely N = Np). We use the data in range cells
49–51 as the primary data, and the range cells adjacent to
the primary data as the secondary data. Moreover, there are
two guard cells between the primary data and secondary
data, namely, the range cells 31–46 and 54–69 for K = 32.
The resulting N(K + 3) data window, centered on the
CUT, is slid in index N along the 12 288 time pulses until
the end of the dataset. The total number of different data
windows is � 12288

N
�, where �·� denotes the nearest integer

less than or equal to the argument. This number coincides
with the total number of trials used to estimate both the
number of false alarms (FA) and Pd of each receiver.

We investigate the behaviors of the P-GLRT-LC and
P-AMF-LC under the same number of FA because the
limited amount of real data do not allow a Monte Carlo
estimation of the Pfa. Specifically, we set FA = 15, which
corresponds to an obtained Pfa of about 10–2. As to target
parameters, we set ξ t = 0.28 and δt = 1. This is because
the considered real data are collected from HH and VV
channels. In order to evaluate the Pd, we simulate a
synthetic target using the same model as in sub-Section
IVA and inject it into the 49th–51st cells. We set the
Doppler frequency f at 0 Hz, which is tantamount to
considering the worst case of target embedded in deep
clutter coinciding with the peak of the clutter power
spectral density [52].

Figs. 10 and 11 show the Pd and the range RMS errors
of different detectors versus SCRr, respectively, for N = 8,
K = 32, and Nε = 5. The SCRr is defined as

SCRr = E
[
αH

(
VM̃−1V

)
α
]

(39)

where M̃ is the estimated sample covariance matrix using
all the returns of the range cells 49-51.

Inspection of Figs. 10 and 11 highlights that
P-GLRT-LC and P-WALD-LC ensure better performances
in terms of both detection and range estimation than the
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Fig. 11. RMS errors in range versus SCR for P-GLRT-LC,
P-WALD-LC that process HH and VV channels, and M-GLRT and

M-AMF that process single polarimetric channel with IPIX data; N = 8,
K = 32, Nε = 5, FA = 15, v = 1.0, ξ t = 0.28, δt = 1.

Fig. 12. Pd versus SCR for P-GLRT-LC and P-WALD-LC that process
HH and VV channels, and P-GLRT and P-AMF with IPIX data; N = 8, K

= 32, Nε = 5, FA = 15, v = 1.0, ρc = 0.9, ξ t = 0.28, δt = 1.

M-GLRT and M-AMF, which agrees with that observed
on simulated data. Meanwhile, for low-medium SCR
values, the P-GLRT-LC has a little lower range RMS error
than the P-WALD-LC. As for high SCR values, the RMS
errors become identical due to the fact that they achieve
the lower bound given by the grid resolution. On the other
hand, Fig. 12 shows that the proposed detectors enhance
the detection performance compared with the
state-of-the-art polarimetric detectors [29, 30] by
exploiting the spillover of target energy. It is also seen that
the P-GLRT performs very close to the P-WALD-LC and
experiences a loss of about 0.4 dB at Pd = 0.9. As in
[53–55], we conjuncture that the existing gap between the
curves for the experimental data and the simulated ones
should be caused by the covariance mismatch in the range
cells of the experimental dataset.

As a final remark, the case where the M-GLRT and
M-AMF process both polarimetric channels is equivalent
to doubling the number of antennas for these two
detectors; they still exhibit a performance loss with respect
to the P-GLRT-LC and P-WALD-LC. This is because they
are not operating under the assumed conditions for which
they are designed, namely, α1 �= α2.

V. CONCLUSIONS

In the present work, we have proposed two adaptive
decision schemes with enhanced detection and range
estimation capabilities for point-like targets buried in
Gaussian clutter with unknown covariance matrix. For the
sake of deriving these new detectors, we jointly exploited
the polarization diversity information as well as the
spillover of target energy to consecutive range samples
and used the plain GLRT and the Wald test. Remarkably,
both of them possessed the CFAR property with respect to
the unknown clutter covariance matrix. The performance
assessment, carried out using simulated data and the IPIX
dataset, confirmed that the proposed polarimetric detectors
outperformed their nonpolarimetric counterparts in terms
of probability of detection and range estimation.
Moreover, they could provide superior detection
performance with respect to the state-of-the-art
polarimetric detectors that do not consider the spillover.
Future work will involve the extension of our results to the
case of more than two channels [31, 32] in order to further
improve the detection and range estimation performances.
It is also of interest to extend the proposed framework to
detect multiple point-like targets [56] or operate under
non-Gaussian clutter [57–59].
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APPENDIX A. DERIVATION OF THE CLOSED-FORM
ESTIMATE OF α

In this appendix, we give the proof of (13). From the
definitions in (14), it is easy to prove that

χ̄H χ̄ + χ̄H
⊥ χ̄⊥ = I3. (40)

Multiplying X by I3 on the right and using (40), we
have

X = X̄χ̄ + X̄⊥χ̄⊥,

XXH = X̄X̄H + X̄⊥X̄H
⊥ . (41)

This easily yields

T1 = (
X̄ − ‖χ (ε)‖ Vα

) (
X̄ − ‖χ (ε)‖ Vα

)H + S1, (42)

where S1 is given by (14).
The optimization problem in (12) can be expressed as

min
α

det
[(

X̄ − ‖χ (ε)‖ Vα
) (

X̄ − ‖χ (ε)‖ Vα
)H + S1

]
= det[S1]

[
1+(

X̄−‖χ (ε)‖ Vα
)H

S−1
1

(
X̄−‖χ (ε)‖ Vα

)]
,

(43)

The derivative of the last factor in (43) with respect to
α is given by

∂

∂α

[
1 + (

X̄ − ‖χ (ε)‖ Vα
)H

S−1
1

(
X̄ − ‖χ (ε)‖ Vα

)]
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= ‖χ (ε)‖ VH S−1
1

(
X̄ − ‖χ (ε)‖ Vα

)
. (44)

Because V has full column rank 2, VH S−1
1 V is positive

definite and invertible. Setting (44) to zero yields (13).

APPENDIX B. DERIVATION OF (18)

By using (13) and Appendix A, we have

f1(Z; M̂, α̂, ε) ∝ det[S1]
[
1 + X̄H QX̄

]
(45)

where

Q = S−1
1 − S−1

1 V
(
VH S−1

1 V
)−1

VH S−1
1 . (46)

It follows that (17) can be recast as

det
[
XXH + S

]
det[S1]

[
1 + X̄H QX

]
= 1 + X̄H S−1

1 X̄

1 + X̄H S−1
1 X̄ − X̄H S−1

1 V
(
VH S−1

1 V
)−1

VH S−1
1 X̄

. (47)

It is easy to show that (47) is equivalent to (18).

APPENDIX C. DERIVATION OF THE FISHER
INFORMATION MATRIX

Let us begin with JAA (θ), which is the 4 × 4 matrix
whose (i, j)th entry is

JAA(θ)(i, j ) = −E

[
∂ ln f1(Z; M, θ)

∂θA(i)θA(j )

]
, i, j ∈ (1, 2)

(48)
where θA(t) denotes the tth element of the vector θA.

It can be shown that for ∀l, kin(1, 2),

∂ ln f1(Z; M, θ )

∂αr,l∂αr,k

= −2Re
{
tr
[
χ∗(ε)eT

l VH M−1Vekχ
T (ε)

]}
∂ ln f1(Z; M, θ )

∂αr,l∂αi,k

=
{

2Im
{
tr
[
χ∗(ε)eT

l VH M−1Vekχ
T (ε)

]}
, l �= k

0, l = k

∂ ln f1(Z; M, θ )

∂αi,l∂αi,k

= −2Re
{
tr
[
χ∗(ε)eT

l VH M−1Vekχ
T (ε)

]}
∂ ln f1(Z; M, θ )

∂αi,l∂αr,k

=
{

2Im
{
tr
[
χ∗(ε)eT

l VH M−1Vekχ
T (ε)

]}
, l �= k

0, l = k,

(49)

where e1 = [1, 0]T, and e2 = [0, 1]T.
It follows that JAA(θ) can be recast as

JAA(θ) =
[

Re{φ(θ)} −Im{φ(θ)}
Im{φ(θ)} Re{φ(θ)}

]
, (50)

where φ (θ) is given by (24). On the other hand, JAB(θ) is
a 4 × N2 matrix whose (i, j)th element is

JAB(θ )(i, j ) = −E

[
∂ ln f1(Z; M, θ )

∂θA(i)θB(j )

]
,

i ∈ (1, . . . , 4), j ∈ (1, . . . N2) (51)

where θB(t) denotes the tth element of the vector θB. It is
easy to show that JAB(θ)(i, j) are linear function of [X –
VαχT(ε)]. Thus, we can conclude that JAB (θ) = 04,N2 ,
because of E[X – VαχT(ε)] = 02N,3.

APPENDIX D. DERIVATION OF (32)

Observe that S1 can be written as

S1 = T0 − X̄X̄H . (52)

Using the generalized Woodbury identity [60], we have

S−1
1 = T−1

0 + T−1
0 X̄X̄H T−1

0

1 + X̄H T−1
0 X̄

. (53)

It follows that

X̄H S−1
1 X̄ = X̄H T−1

0 X̄ +
(
X̄H T−1

0 X̄
)2

1 + X̄H T−1
0 X̄

= z2 + z2
2

1 + z2
.

(54)

Similarly, X̄H S−1
1 Vand VH S−1

1 V can be recast as

X̄H S−1
1 V = z1 + z1z2

1 + z2
, (55)

VH S−1
1 V = VH T−1

0 V + zH
1 z1

1 + z2
. (56)

Plugging (54)–(56) into (31) and (18), we obtain (32).
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