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a b s t r a c t

The dispersion characteristics of axisymmetric (n¼0) waves offer a way to gain physical
insight into the low-frequency vibrational behaviour of underground pipe systems. Whilst
these can be found in the literature, they are generally calculated numerically. Coupled
equations of motion for the n¼0 waves that propagate in a buried fluid-filled pipe are

dominated (s¼1) wavenumber. The effect of the frictional stress at the pipe–soil interface
on the dispersion behaviour of the s¼1 wave is characterised by adopting a soil loading
matrix. Overall, the fluid loading has a greater effect on the propagation wavespeed
compared with the soil loading: for metal pipes, the effect of soil loading is negligible; for
plastic pipes, however, simply neglecting the effect of soil loading can lead to a con-
siderable underestimation in the calculation of the wavespeed. The wave attenuation
increases significantly at higher frequencies regardless of pipe material resulting from the
added damping due to radiation into the soil. Theoretical predictions of the s¼1 wave-
number are compared with experimental data measured on an MDPE water pipe. The
degree of agreement between prediction and experiment makes clear that, although the
wavespeed is only slightly affected by the presence of the frictional stress, the frictional
stress at the pipe–soil interface needs to be appropriately taken into account for
attenuation predictions.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Pipes are used all over the world for transporting fluids in many settings, for example in the petrochemical, water and
energy industries. Leakage from such pipes is of major concern due to the potential social, environmental and economic
consequences. As such, it is important not only to be able to detect leaks once they have occurred, but also to identify cracks
and defects early on so that failures can be avoided. An important prerequisite to any of this is, of course, being able to
identify the exact location of the pipe of interest – a simple process when the pipe is above ground but not always
straightforward when the pipe in question is buried (and may have been buried for a number of decades).

Acoustic techniques can be extremely valuable in all of these areas. They are frequently used for detecting leaks, par-
ticularly in the water industry, where such methods have been effective and in common use over the past 30 years [1,2].
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Fig. 1. The coordinate system for a buried fluid-filled pipe and mode shapes.
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More recently they have been adopted to locate underground pipes [3,4] and characterize defects such as cracks, blockages
and corrosion that may cause pipeline failure [5–8]. Understanding the acoustic characteristics of the dominant wave types
which occur in pipes is vital to the success of any of these methods.

The frequency regimes of a fluid-filled pipe are separated by the pipe ring frequency (usually being a few kHz), which
occurs when the circumference of the pipe equals a compressional wavelength. Below the pipe ring frequency, there are
four wave types responsible for most of the energy transfer in fluid-filled pipes [9]: three n¼0 waves and a bending (n¼1)
wave. The n¼0 and n¼1 mode shapes, along with the cylindrical coordinate system used for the analyses are shown in
Fig. 1. Here, n and s denote the circumferential modal order and a particular branch order, representing a unique mode of
propagation, respectively. Of the n¼0 waves, two wave types are primarily longitudinal with some radial motion, denoted
s¼1, 2, which correspond to a fluid-dominated wave and an axial shell-dominated wave; and the third wave, s¼0, is a
torsional wave, which is uncoupled from the fluid and does not have significant radial motion. Axisymmetric (n¼0) waves
that propagate at low frequencies are particularly important for acoustic leak detection, the fluid-dominated (s¼1) wave
being largely responsible for the propagation of leak noise [10–12].

Much previous research has been devoted to studying the wave propagation and energy distribution within elastic fluid-
filled pipes in vacuo [9,13–16]. A complete set of dispersion curves was presented by Fuller and Fahy [15] based on Donnell-
Mushtari shell theory [17]. However, they do not provide expressions for n¼0 wavenumbers per se. Based on the knowledge
of the properties of axisymmetric, n¼0, s¼1, 2 waves, Pinnington and Briscoe [9] derived the approximate analytical
solutions to the wavenumbers from the coupled pipe equations. In their model the shell bending is neglected, and thus the
solutions are only valid below the pipe ring frequency. The possible n¼0 waves that propagate in buried iron water pipes
were also studied numerically by Long et al. [18] within the frequency range up to 25 kHz based on the DISPERSE model. The
full solution to the s¼1 wavespeed was compared with its analytical solution obtained by Muggleton et al. [19] (consistent
with the results given in [9]) for a water-filled cast iron pipe in vacuo. As expected, the analytical solution agreed well with
the full solution at frequencies below 2.5 kHz and deviates as it approaches the pipe ring frequency (calculated as 5640 Hz
as illustrated in Fig. 3 in [18]).

Muggleton et al., in later work, [20] studied the axisymmetric wave propagation in a fluid-filled pipe surrounded by soil,
with the application for the buried plastic water pipes. In this analysis, the effects of shear in the soil were considered and
the s¼1, 2 wavenumbers were derived under one extreme coupling condition, in which the frictional stress is presumed to
be zero at the pipe–soil interface. Physically, this implies that the pipe–soil interface behaves as a pipe–fluid interface,
although the surrounding soil supports the elastic waves. Of course, in reality, some frictional stresses will always be present
at the interface. Slip or relative motion of pipe and soil at the interface commences only when the shear stress between the
pipe and the surrounding soil reaches the value for limiting friction, this in turn being dependent on the static normal load
on the pipe. The stresses (and strains) required to exceed limiting friction are large [21] and normally only occur in
earthquake-type scenarios. Several numerical and analytical methods have been developed to investigate the vibrational
behaviour of cylindrical underground structures [22] and the sliding at the interface when subjected to earthquake loading
in seismic applications [23,24]. For the low-frequency, n¼0 wave motion induced by water leaks, however, the dynamic
strains will be small, so slippage is unlikely to occur. Therefore, it is more appropriate to assume that the pipe is in perfect
bond with the soil such that there is no slippage between the soil and the pipe wall.

The present paper develops an analytical model to predict the low-frequency dispersion characteristics of the n¼0, s¼1
wave in a buried fluid-filled pipe. This work expands on previous investigations on a cylindrical shell filled with fluid [15],
using the Donnell-Mushtari shell theory as a basis along with some additional assumptions adopted in [9] for the analysis of
the propagating s¼1 wave. It is set out as follows. Section 2 derives the coupled equations of motion for the n¼0 waves for a
thin-walled shell surrounded by an elastic medium. A simplified characteristic equation is further obtained and from this an
expression for the s¼1 wavenumber is formulated in Section 3. Section 4 presents some numerical results of the propa-
gation wavespeed and attenuation for buried water pipes. In Section 5 the theoretical predictions are compared with
experimental measurements. Finally, some conclusions are drawn in Section 6.
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2. Equations of motion

This section derives the coupled equations of motion for the n¼0 waves. Fuller and Fahy [15] have investigated the effect
of an internal fluid by defining a fluid loading term, FL, in the equations of motion for a fluid-filled pipe in vacuo; we use this
as a starting point for the current investigations. Here, however, we also introduce a soil loading matrix SL to characterize
the coupling effect due to the presence of the surrounding soil.

Referring to the cylindrical co-ordinates as illustrated in Fig. 1, u, v and w denote the shell displacements in the x, θ and r
directions, respectively; ux, uθ and ur denote the soil displacements. The pipe has a mean radius a and wall thickness h, and
is assumed to be thin such that h=a51. The internal fluid is assumed to be inviscid and the surrounding soil is assumed to be
elastic, homogenous and isotropic. Both the fluid and the surrounding soil are assumed to be lossless.

2.1. Free vibrations of the fluid-filled pipe

Free vibrations of the fluid-filled pipe are described by the Donnell-Mushtari shell equations. Important assumptions
used in deriving the Donnell-Mushtari equations are that the wall thickness is thin with respect to the smallest wavelength
considered; moreover, the variations in transverse shear and the rotary inertia of the element are ignored. Equations of
motion of free vibrations of the coupled system can be represented in matrix form as [17]
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A31 A32 A33

2
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∂θ4. Here, ρp, Ep and vp are the density, Young's modulus and

Poisson's ratio of the shell; δ is the stiffness factor, δ2 ¼ h2=12a2; pf ðaÞ is the internal pressure at the pipe–fluid interface
r¼a. The shell equations consist of three coupled equations for each axis of motion which must be solved simultaneously.
For n¼0 motion, the variations with respect to θ vanish (∂=∂θ¼ 0) in the matrix A, and thereby it can be seen that the axial
and radial motion is uncoupled from rotational motion. The coupled equations of motion in the axial and radial directions
become
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2.2. Soil vibration

Consider the fluid-filled pipe to be surrounded by an elastic medium which can sustain two types of elastic waves,
compressional and shear. For the n¼0 motion considered (i.e., the coupled axial and radial motion), the circumferential
displacement vanishes (uθ ¼ 0), as do the circumferential shear stress ( ~σ rθ ¼ 0) and variations with respect to θ (∂=∂θ¼ 0).
The soil displacements, ux and ur, satisfy the following two equations of motion [25]
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(3a, b)

where ρm, λm and mm are the density and Lamé coefficients of the surrounding soil. The corresponding soil displacements in
cylindrical coordinates may be expressed in terms of two potentials by [25]

ux ¼
∂ϕm

∂x
�∂2ψm

∂r2
�∂ψm

r∂r
; ur ¼

∂ϕm

∂r
þ∂2ψm

∂x∂r
(4a, b)

where ϕm and ψm are the compressional and shear wave potentials respectively. Substituting Eqs. (4a, b) into (3a, b), it can
be found that the compressional and shear wave potentials must satisfy [25]

∇2ϕm ¼ 1
cd

∂2ϕm

∂t2
; ∇2ψm ¼ 1

cr

∂2ψm

∂t2
(5a, b)

where cd and cr are the propagation wavespeeds, cd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλmþ2μmÞ=ρm

p
and cr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μm=ρm

p
, the subscripts d and r referring to
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the dilatational (i.e., compressional) and rotational (i.e., shear) waves respectively. For each s wave, the travelling wave
solutions to Eqs. (5a, b) can be expressed using Hankel function of the second kind and zero order, H0( ), as

ϕm ¼ AmH0ðkrdsrÞeiðωt�ksxÞ; ψm ¼ BmH0ðkrrsrÞeiðωt�ksxÞ (6a, b)

where Am and Bm are potential coefficients; H0ðkrdsrÞ and H0ðkrrsrÞ, represent conical waves radiating outward from the pipe
into the surrounding soil; the radial wavenumbers, krds and krrs, are related to the compressional and shear wavenumbers in

the surrounding medium, kd and kr, by ðkrdsÞ2 ¼ k2d�k2s and ðkrrsÞ2 ¼ k2r �k2s respectively; ks is the axial wavenumber; and ω is
the angular frequency. Substituting Eqs. (6a, b) into Eqs. (4a, b) gives
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 !
eiðωt�ksxÞ (7)
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(9) and eliminating the potential coefficients Am and Bm, the stresses ~σ rx and ~σ rr can be expressed in terms of soil dis-
placements ux and ur by
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where T is a 2�2 matrix, T¼ T2T
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1 , and the elements of which are given by
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(11a–d)
Fig. 2. Displacements and stresses acting at the pipe–soil interface.
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2.3. Coupled equations of motion

Referring to Fig. 2, for the n¼0 motion considered above, the soil applies the the stress ~σ rrðaÞ along the pipe surface in
the radial direction; the frictional stress along the pipe surface τx equals the shear stress ~σ rxðaÞ along the pipe surface in the
axial direction. As a result, the coupled equations of motion given by Eq. (2) become

A11 A13

A31 A33

" #
u

w

� �
¼ 1�v2p

Eph

�τx
pf ðaÞþ ~σ rrðaÞ

 !
(12)

Travelling wave solutions of the equations of motion for each s wave, may be assumed to have the form

u¼ Useiðωt�ksxÞ; w¼Wseiðωt�ksxÞ (13a, b)

where Us and Ws are the amplitudes of shell displacements in the axial and radial directions respectively. Substituting Eqs.
(13a, b) into (12) gives

Ω2�ðksaÞ2 � ivpðksaÞ
� ivpðksaÞ 1�Ω2þβ2ðksaÞ4

2
4

3
5 u

w

� �
¼ 1�v2p

Eph
a2

�τx
pf ðaÞþ ~σ rrðaÞ

 !
(14)

where Ω is the nondimensional frequency, Ω¼ kLa; kL is the shell compressional wavenumber, k2L ¼ω2ρpð1�v2pÞ=Ep. For a
thin-walled pipe h=a¼ 0:05, δ2 ¼ 2:1� 10�4. The product of δ2ðksaÞ4 is very small since the frequency range of interest is
well below the ring frequency and thus it can be ignored. It is clear from Eq. (14) that to obtain the dispersion relationship
for the s wave, the boundary conditions at the interfaces must be defined; this then enables the internal pressure pf(a) and
the stresses τx and ~σ rrðaÞ applied along the pipe to be expressed in terms of the shell displacements u and w.
2.3.1. Pressure at the pipe–fluid interface
Applying the momentum equation and ensuring and displacement continuity in the radial direction at r¼a, the pressure

pf(a) is given by [15]

pf ðaÞ ¼
ω2ρf

krf s

J0ðkrf saÞ
J00ðkrf saÞ

w (15)

where, J0 is a Bessel function of order zero, representing the internal fluid field, the internal fluid radial wavenumber, krf s, is
related to the fluid wavenumber, kf, by ðkrf sÞ2 ¼ k2f �k2s and kf ¼ω=cf ; cf is the free-field fluid wavespeed, cf ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Bf =ρf

q
; Bf and

ρf are the bulk modulus and density of the internal fluid; and J00 ¼ ð∂=∂rÞJ0ð Þ. Eq. (15) shows that the internal pressure pf(a)
is directly proportional to the radial displacement of the pipe wall, w, since a fluid does not support shear.
2.3.2. Stresses at the pipe–soil interface
The boundary conditions at the pipe/soil interface are less easy to determine. Here we consider two extremes: that of

“compact contact”, when the pipe wall is in perfect bond with the soil; and that of “lubricated contact” [20].
When the pipe is in perfect bond with the soil, there is no relative motion at the pipe–soil interface, and continuity of

displacement must be satisfied in both the axial and radial directions, i.e., u¼ux(a) and w¼ur(a). Noting τx ¼ ~σ rxðaÞ, the
stresses τx and ~σ rrðaÞ are obtained from Eq. (10) by

τx
~σ rrðaÞ

 !
¼ T

u

w

� �
(16)

which relates the stresses τx and ~σ rrðaÞ along the pipe wall to the shell displacements u and w.
For lubricated contact [20], the displacement continuity condition is still satisfied in the radial direction, i.e. w¼ur(a);

however, there is no frictional stress applied in the axial direction τx ¼ 0, so the shear stress also vanishes along the
soil interface, i.e., ~σ rxðaÞ ¼ 0. Physically, the soil motion in the axial direction is unconstrained under this assumption.
Table 1
Properties of the pipe, soil and water.

Properties Cast iron PVC Soil A Soil B Water

Density (kg/m3) 7100 2000 2000 2000 1000
Young's modulus (N/m2) 1e11 5.0e9 – – –

Bulk's modulus (N/m2) – – 5.3e7 4.5e9 2.25e9
Shear modulus (N/m2) – – 2e7 1.8e8 –

Poisson's ratio 0.29 0.4 – – –

Material loss factor 0.001 0.065 – – –
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From Eq. (10), the stress ~σ rrðaÞ can be found to be

~σ rrðaÞ ¼ �T12T21

T11
þT22

� �
w (17)

Subsituting Eqs. (11a–d) into (17) gives
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Similar to the internal pressure pf(a) given by Eq. (15), it can be seen from Eq. (18) that the stress ~σ rrðaÞ applied by the soil
only depends upon the radial displacement of the pipe wall w. Therefore, the pipe–soil interface under lubricated contact
can be considered to behave as a pipe–fluid interface.

2.3.3. Soil loading vs fluid loading
Under the “perfect bonding” boundary condition, we substitute Eqs. (15) and (16) into Eq. (14). By neglecting the product

δ2ðksaÞ4 and eliminating the harmonic terms ei ωt�ksxð Þ, the coupled equations of motion for the axisymmetric s wave in a
buried fluid-filled pipe are obtained in compact form as

L11 L13
L31 L33

" #
Us

Ws

 !
¼ 0 (19)

where the elements of the matrix L are given by

L11 ¼Ω2�ðksaÞ2�SL11
L13 ¼ � ivpðksaÞ�SL12

L31 ¼ � ivpðksaÞ�SL21

L33 ¼ 1�Ω2�FL�SL22 (20a-d)
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The fluid loading term, FL, (first introduced by Fuller and Fahy [15]) and the soil loading matrix, SL, represent the
coupling effects of the fluid and soil respectively, and are given by

FL¼ ρf

ρp

a
h
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krf sa
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(21)

and
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Applying the approximation for the Bessel function ratio at low frequencies, given in the Appendix, Eq. (21) becomes
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k2f a2�k2s a2
(23)

For “imperfect bonding” we substitute Eqs. (15), (18) into (14). This again leads to the coupled equations of motion Eq.
(19) but here with the soil loading matrix obtained by

SL11 ¼ 0; SL12 ¼ 0; SL21 ¼ 0;
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(24a-d)
3. Approximate s¼1 wavenumber

The non-trivial solutions to the swavenumbers, for either soil coupling condition, can be obtained from the characteristic
equation, i.e., by setting the determinant of the matrix L in the coupled equations of motion to zero. Analytical solutions are
not straightforward to obtain. However, some approximations may be made which make the characteristic equation
more tractable. For the s¼1 wavenumber, it is assumed that k1 is much larger than the shell compressional wavenumber kL,
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i.e., k2144k2L [9]. Setting det½Lðk2s Þ� ¼ 0 and noting ðk1aÞ2cΩ2, the simplified characteristic equation which describes the
propagation of the s¼1 wave becomes

1�Ω2�FL�SL22�
ðvp� iSL12=k1aÞ2
1þSL11=k

2
1a2

¼ 0 (25)

Substituting the fluid loading term FL given by Eq. (23) into Eq. (25) and rearranging gives the approximate solution to
the complex s¼1 wavenumber as

k21 ¼ k2f 1þ β

1�Ω2þα

� �
(26)

where α and β are measures of the effects of soil and fluid loading on the pipe wall, and given by

α¼ �SL22�
ðvp� iSL12=k1aÞ2
1þSL11=k

2
1a2

; β¼ 2
Bf a
Eph

ð1�v2pÞ (27a, b)

respectively. From Eq. (27b), the fluid loading term, β, can be determined in a straightforward manner. It remains to
determine the soil loading, α, given by Eq. (27a); this must be calculated recursively since it is a function of the wavenumber
k1. Thus no simple formulae can be further obtained to quantify the effect of the soil loading on the acoustic characteristics
of the s¼1 wave. Clearly the complex α leads to a complex value of k21. Taking the square root of k21 gives rise to a complex
wavenumber k1, the real and imaginary parts of which give the wavespeed and attenuation respectively. Consider the
following soil coupling conditions:

(1) For the fluid-filled pipe in vacuo, setting SL¼0 in Eq. (27a) gives α¼ �v2p . As a result, the s¼1 wavenumber given by Eq.
(26) becomes

k21 ¼ k2f 1þ β

1�v2p�Ω2

 !
(28)
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This is consistent with the result represented in [9, Eq. (13)]. It can be seen that at lower frequencies (Ω251) the s¼1 wave
always travels slower than the free-field fluid wavespeed cf (i.e., k

2
14k2f ) due to the effect of the fluid loading term, β. The

s¼1 wavespeed decreases with frequency (increasing Ω2) and with decreasing the pipe wall stiffness (increasing β).
(2) For a buried fluid-filled pipe under lubricated contact, Eq. (27a) reduces to α¼ �v2p�SL22. Substituting SL22 from Eqs.

(24d) into (26), after some manipulation, leads to the same s¼1 wavenumber presented in [20] (Eq. (36)). Similar to
“perfect bonding”, the resultant wavenumber k1 for this case is always complex indicating the s¼1 wave decays as it
propagates in the fluid-filled pipe, whether or not there are losses within the pipe wall material. With reference to Eq.
(26), the effect of the soil medium will be clarified further in the next section when compared with the in vacuo case.
4. Numerical results and discussions

This section presents some numerical examples. The effects of pipe material and soil loading are of particular interest.
The results are also compared with the case of no surrounding soil. Losses within the pipe wall are included but the
surrounding medium is assumed to be lossless. Both a metal (cast iron) and a plastic (PVC) pipe are considered, buried in
each of two representative soils typical of sandy soil (A) and clay/chalky soil (B), to be consistent with Ref. [18]. The material
properties of the pipe, soil and fluid are shown in Table 1. The s¼1 wavenumbers are calculated up to 1 kHz. The wave-
speeds are normalised by the free-field wavespeed cf, and the attenuations are defined by the loss in dB per unit propagation
distance (measured in pipe radii) by

LossðdB=unit distance aÞ ¼ �20
Im ksa
� �

lnð10Þ (29)

4.1. Cast iron pipe

The normalised wavespeed and attenuation are shown in Fig. 3(a) and (b) for a cast iron pipe buried in sandy soil (A). It
can be seen from Fig. 3(a) that without the surrounding soil (in vacuo), the s¼1 wavespeed decreases slightly with fre-
quency at the frequencies considered, compared with the free-field fluid wavespeed (1500 m/s). At low frequencies (Ω251),
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Eq. (26) reduces to

k21 ¼ k2f 1þ β
1�v2p

 !
(30)

from which the s¼1 wavespeed can be approximated by

c1 ¼ cf 1þ2Bf a
Eph

� ��1=2

(31)

This is the well known Korteweg equation given in [26]. For the cast iron pipe filled with water, the fluid loading,
ReðβÞ ¼ 0:33, is less than unity. The fluid loading term in Eq. (30), Reðβ=1�v2pÞo1, indicating that the fluid loading is light.
Eq. (31) provides a good approximation of the s¼1 wavespeed for the cast iron water pipe in vacuo, c1 ¼ 0:86cf , as shown in
Fig. 3(a). Hence the s¼1 wave can be considered to be non-dispersive at low frequencies. It can be seen from Fig. 3(a), for a
buried fluid-filled pipe under both bonding conditions, the effect of the surrounding soil is to increase the wavespeed,
particularly at lower frequencies, with the effect being larger for “perfect bonding”, relative to the in vacuo case. None-
theless, except at very low frequencies for “perfect bonding” (where there is a slight increase in the wavespeed except for an
error up to 0:01cf for “perfect bonding”), Eq. (31) still results in good approximation of the wavespeed. As can be seen in
Fig. 4(a), for both bonding conditions, the real parts of α, Re(α), decrease with frequency more markedly for “perfect
bonding”, and approach the in vacuo value, α¼ �v2p (calculated as �0.084) at high frequencies. Re(α) is considerably
smaller than Re(β), suggesting that the propagation wavespeed is mainly affected by the fluid loading; furthermore, in this
case, the effect of soil loading can be neglected in the calculation of the propagation wavespeed.

Loss within the pipe wall is represented by a complex elastic modulus, Epð1þ iηÞ, where η is the material loss factor given
in Table 1. As can be seen from Eq. (30), without the surrounding soil, the attenuation is governed by the material losses.
Fig. 3(b) shows that the attenuation for the in vacuo pipe varies approximately linearly with frequency; this is as expected
since the imaginary part of β, Im(β), (shown in Fig. 4(b))is frequency invariant. When the pipe is surrounded by a soil
medium, it can be seen from Eq. (29) that the attenuation arises from both material losses within the pipe wall and radiation
losses due to the added damping effect of soil loading. Fig. 4(b) shows the soil loading component, Im(α), has major
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influence on the attenuation, in particular, for “perfect bonding”, in that Im(α) is much greater than Im(β) throughout the
frequency range of interest. Correspondingly, as shown in Fig. 3(b), for the cast iron pipe buried in sand soil (A), the “perfect
bonding” results in a marked increase of the attenuation compared to “imperfect bonding” as a result of the soil loading.

A similar trend can be found in the wavespeeds plotted in Fig. 5(a) for the cast iron pipe buried in clay soil (B). The effect
of soil loading leads to an increase in the wavespeeds for both bonding conditions at lower frequencies; however, at higher
frequencies a decrease is observed compared with the in vacuo case. The real parts of α and β are plotted in Fig. 6(a). As can
be seen from the figure, “perfect bonding” results in a larger change in Re(α) compared to “imperfect bonding”. For both
bonding conditions, Re(α) drops below the value of the in vacuo case α¼ �v2p at higher frequencies. For the light fluid
loading seen here, Re(α), regardless of the surrounding medium, is relatively small compared with Re(β). Thus it is
anticipated that the propagation wavespeed is unlikely to be significantly affected by the presence of the surrounding soil.
Figs. 3(a) and 5(a) show that, indeed, a good approximation of the wavespeed can always be obtained using Eq. (31) for a
metal pipe; this is regardless of the soil properties and pipe–soil coupling conditions.

Turning our attention to the wave attenuation, comparing Figs. 3(b) and 5(b), it is found that the attenuation is greatly
altered by the soil loading, with the largest being in clay soil (B) for “perfect bonding” and the smallest in sandy soil (A) for
“imperfect bonding”. The effect of the soil loading on the attenuation can be readily explained with reference to Figs. 4
(b) and 6(b). For both coupling conditions, the attenuation can be seen to be dominated by the added damping due to the
soil loading, as Im(α) is much greater than Im(β). In turn, Im(α) is controlled both by the soil properties and the pipe–soil
coupling conditions.

4.2. PVC pipe

The dispersion curves for the s¼1 wave are plotted for the PVC water pipe in Fig. 7 for sandy soil (A) and in Fig. 9 for clay
soil (B). Figs. 8 and 10 give the corresponding graphs for the soil and fluid loading terms in sandy and clay soils respectively.
For the PVC water pipe, the fluid loading is heavy, ReðβÞ ¼ 6, i.e. the fluid loading term in Eq. (31), Reðβ=1�v2pÞc1. Thus
without the surrounding soil, the calculated propagation wavespeed is much less than the free-field fluid wavespeed cf. The
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real part of the soil loading term, Re(α), are found, in Figs. 8(a) and 10(a), to be similar to those observed with the cast iron
pipe. The effects of the soil loading on the wavespeed are therefore similar (although slightly greater) than those observed
with the cast iron pipe – a small increase compared with the corresponding in vacuo cases occurs, as shown in Figs. 7(a) and
9(a). As for the cast iron pipe, the wavespeed for “perfect bonding” is greater than that for “imperfect bonding” in particular
at lower frequencies, as a result of the presence of the frictional stress at the interface. It should be noted that for heavy fluid
loading, a slight underestimation may occur in the calculations of the s¼1 wavespeed using Eq. (31).

Again, it is observed that the attenuation increases with frequency, but with significantly higher levels than for the cast
iron pipe. This accords with what is found in practice: leak noise signals in plastic pipes are more heavily attenuated than
those in metal pipes and, in consequence, of narrower bandwidth; this, in turn, dramatically limits the water leakage
detection ranges for plastic pipes. Soil loading is found to have a considerable effect on the attenuation, particularly at
higher frequencies, as shown in Figs. 8(b) and 10(b). At very low frequencies this effect, controlled by Im(α), is relatively
small and losses within the pipe wall dominate; at higher frequencies Im(α) increases to a similar magnitude to Im(β).
Similar to the cast iron pipe, for both bonding conditions, there is a greater increase of the attenuation for “perfect bonding”
than for “imperfect bonding”, in particular at higher frequencies.

In summary, for PVC pipes, the effect of soil loading needs be accounted for in the analysis of both the propagation
wavespeed and wave attenuation.
5. Experimental work

Wavenumber measurements of the axisymmetric, fluid-dominated (n¼0, s¼1) wave in both in-air (to represent the in
vacuo case) and buried fluid-filled plastic pipes have been made and reported previously [20,27]. For the in vacuo pipe, the
measurements were found to agree well with the theory presented in [27]. For the buried pipe, the model of the wave-
number under lubricated contact (termed “imperfect bonding” in the present paper) was adopted to predict the real part of
the wavenumber and the attenuation [20]. It was found that the real part of the wavenumber decreases relative to the in air
case and good agreement was shown between the measurements and the predictions; however, the attenuation prediction
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gave a slight underestimate when compared with the measurements. This could be rectified by slightly altering the elastic
modulus used in the predictions, but not without compromising the degree of agreement in the real part of the wave-
number. Here, the experimental results are again presented, in the light of the theory described in the current paper. The
details of the experimental setup and analysis can be found in [27] and are not reproduced in detail here. However, the key
features are highlighted. The test rig comprised a 34 m length, 180 mm diameter, MDPE pipe buried at a depth of
approximately 1 m in loose, sandy soil, as shown in Fig. 11. The material properties assumed are given in Table 2. Mea-
surements were made outside when the ground temperature was only a few °C, so the wavenumber predictions presented
here are obtained by adopting the elastic modulus of MDPE at low-temperature as given in the table. The pipe was
instrumented with a number of hydrophones along its length. It was excited with a modified moving-coil underwater
loudspeaker mounted in a flange at one end of the pipe. The loudspeaker was excited with a stepped sine input from 30 Hz
to 1 kHz at 1 Hz intervals. Signals from a pair of hydrophones spaced approximately 2 m apart were analysed in order to
calculate the s¼1 wavenumber in the buried pipe.

The real parts of the measured and predicted s¼1 wavenumber and the corresponding attenuation are plotted in Fig. 12
(a) and (b) respectively. As can be seen from the figures, some fluctuations in both the real and imaginary parts of the
measured results occur below 160 Hz; these are likely to be the result of reflections at the pipe ends and the various
connections. Above 550 Hz the measured data becomes increasingly erratic and unreliable; this is probably associated with
the “noise floor” being reached for the hydrophone pairs.

To evaluate the effect of frictional stress at the pipe–soil interface, wavenumber predictions are presented under both the
“perfect bonding and “imperfect bonding” conditions. For the real part of the wavenumber, Fig. 12(a) shows that, the dis-
crepancy in the predictions induced by the frictional stress is insignificant. There is a slight decrease (hence an increase of
the wavespeed) under “perfect bonding” compared to “imperfect bonding”, as expected in Section 4. The predictions are in
good agreement with the experimentally measured results within the frequency range between 160 Hz and 550 Hz. A
further check on the corresponding soil and fluid loading terms, as plotted in Fig. 13(a), reveals that for the test MDPE pipe,
the fluid loading is very heavy, ReðβÞ ¼ 14:5 compared to the real part of the soil loading term, Re(α), as expected. Thus the
effect of frictional stress is negligible in the calculation of the wavespeed.

For the wave attenuation, Fig. 12(b) shows that it increases under “perfect bonding” relative to “imperfect bonding” due
to the effect of the frictional stress at the pipe–soil interface, as discussed in Section 4. Fig. 13(b) shows that the imaginary



Fig. 11. The test rig under construction [27].
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part of the soil loading Im(α) increases with frequency, being greater for “perfect bonding”. For heavy fluid loading, Im(β) is
large compared with Im(α) at very low frequencies and thus losses within the pipe wall dominate; at higher frequencies
both losses within the pipe and losses due to radiation contribute. It can be seen from Fig. 12(b) that good agreement is now
achieved between the measurements and the predicted attenuation under “perfect bonding”. This suggests that the fluid-
filled pipe can be appropriately considered to be in perfect bond with the surrounding soil and, in order to be able to
accurately predict the wave attenuation, the frictional stress at the pipe–soil interface must be properly taken into account.



Table 2
Properties of the MDPE pipe, soil and water.

Properties MDPE Soil Water

a (m) 0.0845 – –

h (m) 1.1e–2 – –

Density (kg/m3) 900 1500 1000
Young's modulus (N/m2) 2.0e9 – –

Bulk's modulus (N/m2) – 4e7 2.25e9
Shear modulus (N/m2) – 1.5e7 –

Poisson's ratio 0.4 – –

Material loss factor 0.06 – –
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6. Conclusions

The dispersion characteristics of the n¼0, s¼1 wave have been investigated in this paper. A simplified characteristic
equation of a buried fluid-filled pipe has been established based on Donnell-Mushtari theory together with some simplifying
assumptions confined to low frequencies. The effect of soil loading on the pipe response is characterised by introducing a soil
loading matrix and the s¼1 wavenumber has been derived with the frictional stress at the pipe–soil interface included.

Numerical results have shown that the fluid loading is the dominant factor in the prediction of the wavespeed. In particular,
for light fluid loading, as is the case for metal pipes, the effect of soil loading can be neglected and the wave can be considered to
be non-dispersive at low frequencies; for plastic pipes, the fluid loading is heavy and simply neglecting the effect of soil loading
can lead to a slight underestimation in the calculation of the wavespeed. For both metal and plastic pipes, the soil loading adds
damping to the coupled system, with the increase being more significant for the coupling case considered here, compared with
the lubricated contact case studied previously. This effect increases with frequency and hence increases the wave attenuation
more significantly at higher frequencies. The theory presented in this paper has been applied to wavenumber measurements
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made on a buried MDPE water pipe. It has been found that although the wavespeed is not significantly affected by the inclusion
of the frictional stress in the modelling, the wave attenuation increases markedly when the frictional stress is taken into account
at the pipe–soil interface. The degree of agreement between prediction and experiment makes clear that the frictional stress
need be properly accounted for in the attenuation predictions.
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Appendix A. Properties of Bessel and Hankel functions

In this appendix, the properties of Bessel and Hankel functions used in the paper are given as follows [28]:
� For small argument x-0, J0ðxÞ=J00ðxÞ � �2=x;
� For argument x, H0

1ðxÞ ¼H0ðxÞ�H1ðxÞ=x and H0
0ðxÞ ¼ �H1ðxÞ.
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