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Abstract: Rayleigh wave exploration is based on an elastic layered half-space model. If 
practical formations contain porous layers, these layers need to be simplified as an elastic 
medium. We studied the effects of this simplification on the results of Rayleigh wave 
exploration. Using a half-space model with coexisting porous and elastic layers, we derived 
the dispersion functions of Rayleigh waves in a porous layered half-space system with porous 
layers at different depths, and the problem of transferring variables to matrices of different 
orders is solved. To solve the signifi cant digit overfl ow in the multiplication of transfer matrices, 
we propose a simple, effective method. Results suggest that dispersion curves differ in a low-
frequency region when a porous layer is at the surface; otherwise, the difference is small.
Keywords: layered media, porous media, Rayleigh waves, matrix optimization

Introduction

Porous formations are common in oil and gas 
exploration and are typically studied using Rayleigh 
waves based on a layered half-space model of elastic 
solid media (Zhang et al., 2004; O’Neil and Matsuoka, 
2005; Lu and Zhang, 2006; Luo et al., 2007, 2008; Zhou 
et al., 2014). To better simulate field conditions and 
improve accuracy, porous layers should be considered 
in excitation and propagation mechanisms of Rayleigh 
waves in layered half-space systems. Yaroslav and 
David (2003) studied the dispersion of Rayleigh waves 
in a porous layered half-space system, and Zhou and 
Xia (2007) and Zhao et al. (2012) studied the dispersion 
in fluid-saturated porous media. Zhang et al. (2015) 

discussed the propagation of Rayleigh waves on the 
free surface of porous media with different connected 
conditions of fluid. Tajuddin and Ahmed (1991) 
computed the dispersion of Rayleigh waves in a porous 
two-layer half-space model. Parra and Xu (1994) 
investigated the dispersive characteristics of several 
modes of Rayleigh waves in layered media, and Xia 
et al. (2004) analyzed the dispersion characteristics of 
Rayleigh waves in open and closed elastic half-space 
systems with a saturated porous cover. Chai et al. (2015) 
studied the dispersion of multiple modes of Rayleigh 
waves in several layered porous media using the thin-
layer method. However, most of these studies were based 
on a porous layered half-space model and focused on the 
regular pattern of Rayleigh waves and their dependence 
on medium properties. None of them considered the 
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coexistence of an elastic solid and a porous layer or 
investigated the characteristics of Rayleigh waves in a 
different model. 

On the other hand, the transfer-matrix method is widely 
used to study acoustic wave propagation in layered 
media because it is fast, simple, and yields physically 
meaningful results. Nevertheless, the precision of this 
method deteriorates at high frequencies. Furthermore, the 
loss of precision is maximized because of the presence 
of slow longitudinal waves and attenuation. Abo-Zena 
(1979) and Menke (1979) proposed a method to avoid 
the loss of precision in elastic solid layered half-space 
systems. The method was subsequently optimized by 
Zhang et al. (1996, 1998). All abovementioned methods 
are based on the relation between dispersion and the 
transfer matrix of elastic solid media, and they cannot 
readily account for the dispersion of Rayleigh waves in 
porous layered half-space systems. 

This study aims to describe the dispersion of Rayleigh 
waves in porous layered half-space media and investigate 
the excitation and propagation of Rayleigh waves in 
porous layers. Moreover, an optimization method is 
proposed to improve the precision in the transfer-matrix 
method at high frequencies. 

Boundary conditions and dispersion 

A layered half-space model consists of arbitrarily 
mixed elastic solid and porous layers. Figure 1 shows 
the model and boundaries.

Assuming that the jth layer is elastic, then the relation 
of the displacement–stress vector between the top and 
bottom interfaces is

               1
1( ) ( ),j j j j j j jz zS M M S  (2)

where the derivations of 1, , and j j jM M  are given in 
detail in Zhang et al. (1996).

In a porous medium, the displacement–stress vector is 

2 2 2( / , / , / , / , / , / ) ,d d d d d d d T
B f P P P Bu k P u k w kS  

  (3)

where Pfd is the pore fluid pressure, upd and uBd are the 
displacement components of the solid phase in the 
porous medium, wpd is the relative seepage displacement, 
and τpd and τBd are the stress components in the porous 
medium. Therefore, the recursive relation that can be 
obtained when the jth layer is porous is as follows:
 

               1
1( ) ( ) ( ).d d d d d

j j j j j j jz zS S  (4)

Detai led der ivat ions  of  1, , and ( )d d d
j j jM M  a re 

provided in Wu et al. (1993).
For convenience, equations (2) and (4) are transformed to

             
1

1

( ) ( )
.

( ) ( )
j j j j j

d d
j j j j j

z z

z z

S P S

S H S
  (5)

The transfer matrix Pj is a fourth-order square matrix 
for elastic layers, and Hj is a sixth-order square matrix 
for porous layers. Hence, we cannot directly compute the 
transfer function when porous and elastic layers coexist 
in a layered half-space system. Furthermore, boundary 
conditions for the free surface and acoustic propagation 
are different; thus, we need to derive new dispersion 
functions for the different relative positions of porous 
and elastic layers.

In the (b, p, c) coordinate system, there is no coupled 
relation between P – SV- and SH- waves; hence, they 
can be separately processed in the same manner. 
Consequently, we only discuss P – SV- waves. Vectors in 
elastic and porous media are 
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Fig.1 Layered half-space model with porous layers.

We adopt the BPC coordinate system for convenience 
(Ben-Menahem and Singh, 1968). S represents the 
displacement–stress vector in elastic media and is 
expressed as

       2 2( / , / , / , / ) ,TB P P Bu k u kS  (1)

where uP and uB are the displacement components and τP 
and τB are the stress components normal to the interface. 
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where  and ψ represent the potential functions of P- and 
SV- waves in the elastic medium, respectively, 1 and 2 
represent the fi rst and second longitudinal wave potential 
functions, respectively, and ψ1 represents the SV-wave 
potential function in the porous medium. Superscripts 
“+”and “–” denote wave propagation along and opposite 
to the z axis.

When a porous layer is the j + 1th layer，boundary 
conditions for zj are 
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 (7)

When a porous layer is located at different depths, 
there are two types of boundary conditions (pressure 
release surface)
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Because there is no upward-moving wave, there are 
two propagation conditions for acoustic waves in a 
bottom layer

                    0
,

0
   (9a)

                    
1

2
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0

0 .

0

  (9b)

Using different combinations of equations (8) and 
(9), one can obtain different dispersion functions for 
Rayleigh waves, which we discuss below.

Porous layer at the bottom
In this case, the porous layer is the j + 1th layer and all 

upper layers are elastic

                       1
1( ) ( ).d j d d jz zM S   (10)

Based on boundary conditions (first four terms of 

equation (7)), we obtain 
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We construct a 6 × 4 matrix 0( , )jz zG D P , where 
 

                  

11 13 14 16

21 23 24 26

31 33 34 36

41 43 44 46

51 53 54 56

61 63 64 66

,

m m m m
m m m m
m m m m
m m m m
m m m m
m m m m

D 
 

and 1[ ]ij d ijm M . The defi nition of matrix G is varied  in 
different case of this paper.

We substitute equation (11) and the fifth term of 
equation (7) into equation (10) and obtain 
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  (12)

where g ( 1,...,6,  1,..., 4)ij i j  are elements of matrix G.
Based on boundary conditions on the free surface 

where the stress is zero and radial conditions in the depth 
direction with no ascending waves, 
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and the dispersion function of Rayleigh waves, in this 
case, is

                      
21 22 23

41 42 43

61 62 63

0.
g m g
g m g
g m g

 (14)

Porous layer at the top
Based on 1M S  and the transfer relation of 

matrices, we combined the first four equations of 
equation (7) and obtained
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where G is a 4 × 6 matrix.
When there are only descending waves in the bottom 

layer, based on the boundary conditions of the free 
surface and the fi fth term in equation (7), the dispersion 
function is 

          
21 24 25

41 44 45

51 54 55

/
/ 0,
/

B

P

P

g g g u k
g g g u k
h h h w k

    (16)
 

the dispersion function is
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Porous layer at any depth
Wu et al. (1993) discussed this condition and assumed 

that the jth layer is porous, upper and lower layers are 
elastic, and the relation at both interfaces of a porous 
layer is given by the second term in equation (5). Then, 

combining with equation (7), we obtain
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Because wz equals zero at upper and lower interfaces,
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By substituting equation (19) into equation (18), we 
obtain
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where 
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Pd is the equivalent transfer matrix of porous media; it is 
a fourth-order square matrix. 

Based on the transfer matrix, we can obtain
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1

1 1 1 1 0 0 0( ) ( , ) ( , ) ( ) ( ),j j d j jz z z z z z zM P P S G S
 (21)

and the dispersion function of Rayleigh waves is

                     21 23
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0.
g g
g g

  (22)

Porous layers at the top and bottom 
In this case, the j + 1th layer is porous, jth layer is 

elastic, and remaining layers are assumed to be porous. 
Therefore, in the bottom layer, i.e., j + 1, the relation is 
that of equation (10). From equation (7), we express uB, 
uP, τB, and τP as
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Although ( ) 0, ( )P j f jw z P z  is unknown, we construct 
the D matrix as follows:
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where the sixth-order square matrix 0( , )jz zG D P  
and 1[ ]ij d ijm M . Then, the dispersion function is
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Based on wave propagation conditions and boundary 
conditions of the free surface, we obtain

    
21 22 24 0

2
41 42 44

61 62 64 0

( ) /
( ) / 0.
( ) /

B

f j

P

g m g u z k
g m g P z
g m g u z k

 (25)

Because 1( ) 0Pw z  at the bottom of the first porous 
layer, we obtain 

1 0 1 0 1 0(5,1) ( ) (5,4) ( ) (5,5) ( ) 0.B P Pu z u z w zH H H
  (26)

where 0( )pw z  of the surface is not an independent 
variable, and the dispersion function of Rayleigh waves is

                  
21 22 24

41 42 44

61 62 64

0.
g m g
g m g
g m g

 (27)

We derive the dispersion functions of Rayleigh waves 
in a layered half-space system with porous layers at 
different depths. Many types of half-spaces with porous 
layers can be derived, as described above, and matrix H 
in equation (5) is used to process the interface between 
porous layers.

Optimizing transfer functions

There is a loss of signifi cant digits in the calculations 
of the transfer matrix algorithm. For an elastic layered 
half-space system, Abo-Zena (1979) and Menke (1979) 
improved the format of the transfer functions, and 
constructed a new matrix Y

               (1) 1
0 0( , ) ( , ).T N

N Nz z z zY P Y P  (28)

Y is an antisymmetric fourth-order square matrix and 
consequently the dispersion function is

                           (1)
12 0.Y  (29)
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Zhang et al. (1996) further improved the Y matrix and 
constructed the following transfer matrix

                            1 ,j j jE F E  (30)

where *F U V, and U, V, and λ* are given in Zhang 
et al. (1996). Thus, the square terms in E are eliminated 
and the computational frequency range is expanded. The 
dispersion function is

                        (1)
6 0.E  (31)

However, when porous layers exist in a half-space 
system, this algorithm is not suitable because of the 
variable size of the transfer matrix. If we use the original 
transfer matrix, this will limit the frequency range in the 
computations. Furthermore, the multiplication of the 
transfer matrix of porous media creates cubic terms in 
E and the frequency range is clearly smaller than that of 
the elastic medium. .

To solve this problem, we optimize the transfer matrix 
based on the Zhang et al. (1996) method. Based on the 
transfer relation and dispersion function of a porous 
layered half-space system, in the N + 1st layer,

       1
1 1 0 0( ) ( ) ( , ) ( ).d N d N d N dz z z z zM H S  (32)

We assume that α, β, and γ represent the 2nd, 4th, and 6th 
row of 1

1( )d NM , 1 [1,0,0,0,0,0]TI , 4 [0,0,0,1,0,0]TI , 
and 5 [0,0,0,0,1,0]TI , respectively. Thus, the dispersion 
function of the porous layered half-space system is

             
1 4 5

1 4 5

1 4 5

0.
d d d

d d d

d d d
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H I H I H I
H I H I H I

  (33)

From equation (33), we obtain
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Then, we defi ne the following set of matrices
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1
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1
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N T N
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T
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Consequently, the dispersion function of the porous 
layered half-space system is

1 1 1 1 1 1(1) (4,5) (4) (1,5) (5) (1,4) 0,a b a b a bY Y Y Y Y Y   (35)

where Yb
j is a set of antisymmetric matrices and the 

expression for the bottom layer (N + 1st layer) is 

         

1 2 3 4 5

1 6 7 8 9

2 6 10 11 121

3 7 10 13 14

4 8 11 13 15

5 9 12 14 15

0
0

0
.

0
0

0

N
b

y y y y y
y y y y y
y y y y y
y y y y y
y y y y y
y y y y y

Y

Hence, we obtain a column matrix that consists of the 
upper triangular elements of Yb

N+1, which is the Y matrix 
of the bottom layer. Next, we build the E matrix as

1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15, , , , , , , , , , , , , , .TN y y y y y y y y y y y y y y yE

This is a column matrix of 15 rows. In each layer of 
the layered half-space system, E j satisfi es the following 
relation

                     1 .j j jE F E    (36)

Then, the fifteenth-order square matrix F is derived 
and expressed as 

                            ,*
d d d dF U V  (37)

where Ud, λd*, and Vd are fi fteenth-order square matrices.
In this manner, the cubic terms of E are eliminated. 

This consequently increases the frequency range in the 
computations. However, the method is applicable to 
media with porous layers only; for, it is hard to derive a 
uniform transfer matrix for a layered half-space system 
with coexisting elastic and porous layers because the 
number of waves differs in elastic and porous media. 
In the case the porous layer is inside the half-space, 
matrices 1j j jE F E  and 1 ( )j j T j j

d dY P Y P  can be 
combined, and the F matrix in the elastic layers and the 
Y matrix in the porous layers can be used, avoiding the 
loss of precision.
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Generally, the bisection method is used in solving 
the dispersion function in an elastic half-space system. 
The method searches the roots of all modes of Rayleigh 
waves without a priori knowledge; however, it only 
uses real functions and the computations are slow. Biot 
porous media in which acoustic waves attenuate, the 
dispersion function of the porous media is complex and 
the roots too. The Newton–Raphson method is more 
suitable to solve complex dispersion functions if we 
input accurate initial values. The bisection method can 
be used to search for the initial values in a particular 
frequency but, because the traditional bisection method 
cannot use complex functions, we expand the bisection 
method to the complex wavenumber plane and combine 
it with the Newton–Raphson method to solve the 
dispersion function of Rayleigh waves in a layered half-
space system with porous layers. Parra and Xu (1994) 
discussed how to solve the dispersion function in the 
complex plane. First, the complex wavenumber plane 
is divided into grids and we then use the SIMPLEX 
method (Nelder and Mead, 1965) to solve the dispersion 
function. This is somewhat complex; thus, we use a 
simpler and more effective method to search for the 
solution. 

1. Find the rough range of the roots, and divide the 
complex wavenumber plane into a grid.

2. The real and imaginary terms of the dispersion 
function of knots a, b, c, and d are calculated. If the 
value signs change between the knots, the solution is in 
the grid; otherwise, there is none.

3. If both signs of the real and imaginary terms of 
the dispersion function change, this means that the 
dispersion function may have a solution. Hence, we 
divide the grid into four subgrids and if the sign in each 
subgrid changes, the solution is constrained within a 
subgrid (Figure 2).

function change.
5. Take the solutions as the initial values for the 

Newton–Raphson method and continue the search. 

Numerical simulation

Table 1 lists the medium parameters used in the 
computations. The parameters are for both the porous 
and equivalent elastic medium, with the porous-medium 
tortuosity taken as 3. The equivalent compressional- 
and shear-wave velocities ( ,P SV V ) basically reflect 
the real velocity of the acoustic wave propagation in 
porous media. The average density ( ) represents the 
integrated density of the porous media. Therefore, it is 
reasonable to use elastic media with these parameters 
instead of the original porous media in the computations. 
In the numerical simulation, the porous layer can be 
located at any position in the half-space. By comparing 
the Rayleigh waves in the elastic half-space system, 
we evaluate the effect of the porous layer to the surface 
Rayleigh waves.

Table 1 Model parameters
Porous medium

T1 T2 B
Parameters Units

Ks GPa 8.25 36 52.4
Kf GPa 2.25 2.25 2.25
ρs kg/m3 2250 2250 2800
ρf kg/m3 1000 1000 1000
Vbp m/s 1000 1700 2600
Vbs m/s 500 950 1500

- 0.2 0.2 0.2
k μm2 4.0 1.0 0.1
ηk Pa·s 0.001 0.001 0.001

Equivalent elastic medium
T1 T2 B

Parameters Units

PV m/s 1752 2540 3010

SV m/s 474 900 1437

kg/m3 2000 2000 2440

There are two models that are typically used in 
numerical simulations and in practice. The first is the 
velocity-increasing model and the other is the low-

fr (+)
fr (-)

fi (-)
fi (+)

kI

kR

Root

a b

c d

e

Fig.2 Bisection method in the complex plane.

4. Repeat step 3 until the size of the grid satisfi es the 
precision, and the center of the grid is the solution if the 
signs of the real and imagine terms of the dispersion 
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velocity interlayer model, both of them with three layers. 
In the velocity-increasing model, the parameters of each 
layer from top to bottom are corresponding to parameters 
T1, T2, and B in Table 1. The parameters of the low-
velocity interlayer model correspond from top to bottom 
to parameters T2, T1, and B, respectively. 

Figure 3 shows the case of a top porous layer with 

thickness of 0.4 m, a second layer with thickness of 3 
m, and an infi nite bottom layer. Figures 3a and 3b show 
the dispersion curves of the velocity-increasing and low-
velocity interlayer model, respectively. The solid line 
is for a fl uid-saturated top layer, and the dashed line is 
for the top layer using the equivalent elastic medium 
parameters instead of the porous medium parameters.
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      (a) Velocity-increasing model                                         (b) Low-velocity interlayer model
Fig.3 Dispersion curves of Rayleigh waves for different models with a porous layer at the surface.

In Figure 3, for a porous layer is on top, there are 
significant differences between the solid and dashed 
lines. In Figure 3a, the surface porous layer causes 
the velocity of the first mode of Rayleigh waves to 
decrease signifi cantly. Moreover, the velocity and cutoff 
frequency of higher order modes both increase. In the 

case of fluid-saturated porous layer, few modes are 
excited. In Figure 3b, when the top layer is porous, the 
dispersion of the first mode is abnormal, presumably, 
because the fi rst- and second-order modes are combined. 
In higher order modes, all cutoff frequencies increase 
and the high-frequency velocity limit decreases.
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          (a) Velocity-increasing model                                         (b) Low-velocity interlayer model
Fig.4 Dispersion curves of Rayleigh waves for different models with a porous interlayer.

Figure 4 shows the case of a porous layer in the middle 
of the three-layer half-space system with a 3 m thick 
top layer and 1 m thick porous middle layer. Figures 4a 
and 4b show the velocity-increasing and low-velocity 
interlayer model. In Figure 4a, the solid lines and dashed 
lines nearly coincide, and represent the middle porous 
and the equivalent elastic layer, respectively. In Figure 

4b, there are small but not clear differences between the 
solid and dashed lines.

Figure 5 shows the dispersion curves for the model 
with a porous bottom layer, and 3 m thick top and 1 
m thick middle layer. The dispersion curves are little 
affected by the porous layer.

Based on the comparisons, we can infer the following. 
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First, the dispersion curves of the model with the 
porous layer and with the equivalent elastic layer nearly 
coincide when the featured layer is at the bottom. There 
is little difference between the two kinds of models when 
the featured layer is in the middle. The difference is 
huge when the featured layer is at top. These differences 
may be caused by the energy distribution of the Rayleigh 
waves because we know that the energy of the Rayleigh 
waves always focuses on the surface; thus, the featured 
layer may strongly affect the dispersion when on top. 
In the case of the low-velocity interlayer, there may be 
a trap that affects the Rayleigh waves. Finally, when 

the featured layer is at the bottom, it hardly affects the 
Rayleigh waves.

In practice, the ground surface may resemble a porous 
medium. Thus, the effect of porous media needs to be 
considered when using Rayleigh waves in exploration. 
If only the velocity distribution is considered, it may be 
possible to describe a multilayered half-space system by 
using the elastic medium model. However, parameters 
such as porosity and permeability cannot be inverted. 
Therefore, it is important to study the propagation of 
Rayleigh waves in porous media and the interaction 
between the porous media and Rayleigh waves.

       (a) velocity-increasing model                                         (b) low-velocity interlayer model
Fig.5 Dispersion curves of Rayleigh waves for different models with a porous layer at the bottom.
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Conclusions

First, the dispersion function of Rayleigh waves is 
derived in a layered half-space system with a porous 
layer at different depths by the transfer-matrix method. 
The problem of nondirectly transferred variables owing 
to the different orders of the matrices is solved, and the 
computational model of Rayleigh waves in porous media 
is optimized.

Second, to solve the signifi cant digit overfl ow in high 
frequencies, we derive a new fifteenth-order square 
matrix to eliminate the cubic terms. Moreover, we 
proposed a bisection algorithm in the complex plane to 
improve the computational effi ciency.

Third, the comparison of the dispersion curves 
of Rayleigh waves for models with a porous and an 
equivalent elastic layer suggest that the dispersion is 
strongly affected when the porous layer is at the top and 
less when it is in the middle. When the porous layer is 
at the bottom, there is hardly any effect. The results also 
suggest that our method will improve exploration results 
that use Rayleigh waves. 
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