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Abstract—In this paper, we address the problem of detecting
relatively small targets in the presence of Gaussian disturbance
with unknown covariance matrix. To this end, we jointly exploit
the spillover of target energy to consecutive range samples
and the particular persymmetric structure of the disturbance
covariance matrix to improve the performances of detection
and range localization. In this context, we derive two adaptive
detectors relying on the generalized likelihood ratio test and on ad
hoc design procedure. Remarkably, the new receivers ensure the
constant false alarm rate property with respect to the disturbance
covariance matrix. The performance assessments, conducted on
both simulated data and real recorded datasets demonstrate
the effectiveness of the proposed detectors compared with both
the traditional unstructured counterparts and the state-of-the-art
persymmetric detectors which ignore the spillover.

Index Terms—Adaptive Detection, Range Estimation, Gener-
alized Likelihood Ratio Test (GLRT), Persymmetry.

I. INTRODUCTION

In recent years the design of space-time adaptive detection
algorithms, that process data from antenna arrays, has received
a vibrant attention from the radar community. Traditional
space-time adaptive detectors (such as Reed, Mallet, and
Brennan (RMB) detector [1], Kelly’s Generalized Likelihood
Ratio Test (GLRT) [2], the Adaptive Matched Filter (AM-
F) [3]–[5], the Rao test (RAO) [6], [7], and the Adaptive
Beamformer Orthogonal Rejection Test (ABORT) [8]) are
developed for homogeneous environments. Specifically, they
require the estimate of the disturbance covariance matrix,
performed through a sample covariance matrix, resorting to
a secondary data set collected from range gates spatially close
to the primary data and sharing the same spectral properties.
In order to obtain performance within 3 dB from the optimum
bound, it is well known that K ≥ 2NaNp Independent and
Identically Distributed (IID) secondary data are required [9],
[10], where Na denotes the number of spatial channels and
Np the number of pulses contained in the coherent processing
interval.
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In practical scenarios, the available number of the secondary
data is not always large enough. This is commonly caused
by many factors such as the presence of power variations
over range, clutter edges, dense target environments, and other
outliers [11]–[14]. One way to circumvent the lack of a
sufficient amount of homogeneous secondary data is to exploit
the persymmetric structure of the disturbance covariance ma-
trix, which means that the covariance matrix is persymmetric
about its cross diagonal. There are several radar applications
in which the covariance matrix of the disturbance has this
particular structure, e.g., in a system utilizing symmetrically
spaced pulse trains or a symmetrically spaced linear array
[15]. The utilization of persymmetric property can be traced
back to [16] and is proven to be an effective way to mitigate
the demanding requirement of homogeneous secondary data,
because this structure involves less unknown parameters to
characterize the unknown covariance matrix and hence allows
to obtain an enhanced estimate of unknown parameters. Fol-
lowing [16], some adaptive detection schemes explicitly taking
into account the persymmetric property have been proposed in
[17]–[25]. More precisely, in [17], the persymmetric property
is exploited to devise an adaptive detector for multiband
signals. The extension of this idea to the case of partially
homogeneous scenarios has been dealt with in [18]–[20],
where the disturbance covariance matrices of the primary and
secondary data have the same structure, but possibly different
power levels. More recently, [21]–[23] address persymmetric
adaptive detection in the presence of compound-Gaussian
disturbance, while [24] considers the case that the disturbance
is modeled as a multichannel Autoregressive (AR) process.
Finally, two persymmetric adaptive detectors with enhanced
rejection capabilities have been introduced in [25], whereas in
[26] a systematic and unifying framework for persymmetric
adaptive detection against homogenous scenarios has been
proposed.

All the above mentioned detectors in [1]– [25] are based
on the assumption that the target is exactly located at the
corresponding sample time and, hence, they do not consider
any spillover of target energy into the adjacent matched filter
returns. In fact, such assumption is not always reasonable,
because there is no guarantee that the samples at the matched
filter output is exactly taken at the peak of the target return.
The spillover is a physical phenomenon in a radar system
and arises as the centroid of the received target pulse is
somewhere between two consecutive range cells [27], [28].
Figure Ia illustrates the frequently encountered scenario in
practice where a target straddles between the range cells n and
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Fig. 1. a) The illustration of a target straddling between two consecutive
range cells n and n + 1; b) the cross-correlation function for a rectangular
pulse versus the range locations and stampeded cells.

n+1 and the target location is not exactly an integer multiple
of the range cell size of the radar. Accordingly, Figure Ib
shows the crosscorrelation function for a rectangular pulse
waveform for targets located exactly at the center of different
range cells by blue dashed lines and by red color solid lines for
a target straddling at an arbitrary location between the centers
of two successive range cells n and n + 1. The problem is
similar in the Doppler dimension; that is, a target in general
appears between two consecutive Doppler filters.

The spillover causes a significant loss in signal energy in
the above traditional radar signal processing methods. Several
methods have been proposed to mitigate or to take advantage
of the energy split among adjacent samples. Actually, this
spillover is shown to be a boon rather than a nuisance if it
is properly processed. For example in [29] using two adjacent
matched filter samples, it is shown that a monopulse radar
may discern up to five targets instead of two by exploiting the
spillover. This framework is further generalized in [30] to the
case of space-time adaptive processing (STAP) [31], wherein
a space-time spillover model for small targets is established
and two detectors are introduced, namely the Modified GLRT
(M-GLRT) and the Modified AMF (M-AMF). These methods
exploit the spillover of target energy to provide accurate
estimates of the target position within the cell under test.

In this paper, we extend the framework proposed in [30]
to the design of receivers which simultaneously exploit the
spillover of target energy and the persymmetric structure of
the disturbance covariance matrix to enhance the performances
of detection and range estimation. More precisely, we use
the discrete-time model of the received signal in [30] and
resort to both the GLRT and the so-called two-step GLRT-
based design procedure [3], [32] assuming that a set of noise-
only data is available. In other words, our incorporation of

the persymmetric property in the M-GLRT and M-AMF leads
to two new detectors, which greatly improves the robustness
in training-limited scenarios by exploiting the persymmetric
property which involves the estimation of less number of un-
known parameters. Moreover, the novelty of the present work
with respect to aforementioned persymmetric works is that the
new persymmetric receivers take advantage of the spillover
of target energy by exploiting the relationship between the
amplitude of returns from the target not only in the CUT but
also in two adjacent cells. This advantage comes from the
considered space-time spillover model of targets, namely, the
primary data include information not only at the CUT, but also
at two adjacent cells because of the spillover. As a result, the
new detectors guarantee superior detection performance with
respect to the state-of-the-art persymmetric detectors which
ignore the spillover. Moreover, they ensure superior range
estimation, while the state-of-the-art persymmetric detectors
do not have this ability. It is worth pointing out that we
also derive a more general closed-form expression for the
Maximum Likelihood (ML) estimation of the target radar cross
section. Our results confirm these improvements on simulated
data and real record data. The proposed methods have several
applications/advantages. For example:

1) The enhanced accuracy in range can be extended to
achieve enhanced accuracy in Doppler.

2) The enhanced range estimate not only can be fed to
the conventional tracking stage (assuming the usual
distinction between detection and tracking stages) [33],
[34], but also can be used in the context of track-before-
detect [35], [36] to further improve the radar tracking
performance.

3) The proposed methods can be extended to detect and
localize multiple point-like targets within adjacent sam-
ples [37], [38].

The remainder of this paper is organized as follows. Prob-
lem formulation is contained in Section II while Section III
is devoted to detector designs. Section IV contains some
illustrative examples. Finally, concluding remarks are given
in Section V.

II. PROBLEM FORMULATION

In this section, we briefly describe the multichannel discrete-
time signal model (see [30], [39] for further details). Without
loss of generality, let us consider a radar system equipped
with a uniform linear array of Na identical sensors with inter-
element spacing d [40]. The radar illuminates the surveil-
lance area by transmitting Np coherent pulse, before deciding
whether or not a target is present over consecutive samples.
For simplicity, we suppose that the array is looking broadside,
hence, that each sensor transmits the following coherent burst
of pulses

Re

A
Np∑
n=1

p(t− (n− 1)T )ej2πfct

 , t ∈ [0, NpT ) (1)

where Re {z} is the real part of the complex number z, A is
the complex amplitude of the transmitted signal, p(t) is a unit-
energy arbitrary waveform (e.g., rectangular pulse waveform)
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of duration Tp with a one-sided bandwidth of Wp ≈ 1/Tp, T
is the pulse repetition time, fc = c/λ is the carrier frequency
with c the propagation velocity, and λ the wavelength. The
range gates are formed by sampling the output of a filter
matched to p(t) every Tp seconds.

The signal backscattered from a target is first down convert-
ed to the baseband and then passed through a filter matched
to p(t). The output of this filter at ith sensor is given as

zi(t) = αej2π(i−1)νs

Np∑
n=1

χp(t− (n− 1)T − τ, f)ej2π(n−1)ν

+ni(t) i = 1, . . . , Na, (2)

where χp(·, ·) is the (complex) ambiguity function defined as
[41]

χp(τ, f) =

∫ +∞

−∞
p(t)p∗(t− τ)ej2πftdt (3)

with (·)∗ the complex conjugate operator, τ is the round-trip
delay of the received signal, ν = fT is the Doppler frequency
shift induced by the target motion with f = 2v

c fc, νs is the
target normalized spatial frequency, i.e., νs = (d/λ) cosψ,
with ψ the polar angle of the target, ni(t) is the disturbance
component (i.e., clutter and noise), and α is the complex
magnitude of the signal, which is proportional to A, the
transmitting antenna gain, the receiving antenna gain, the two-
way path loss, and the radar cross section of the target.

The received signal at the ith sensor zi(t) is sampled at the
following time instants

tl,n = tmin + (l − 1)Tp + (n− 1)T,

n = 1, . . . , Np, l = 1, . . . , L, (4)

where tmin denotes the beginning of the sampling process, l
is the range gate index, n is nth pulse from the same range
cell, L ∈ N is the number of range gates representative of
the surveillance area. Thus, by grouping the time samples, we
can obtain the vector of the noisy returns representing the lth
range “sub-cell” as follows

zl =
[
z1(tl,1) · · · zNa(tl,1) · · · z1(tl,Np) · · · zNa(tl,Np)

]T
= sl + nl ∈ CN×1, (5)

where N = NaNp, (·)T denotes transpose, nl is the distur-
bance component, and the signal component sl is given by

sl =

 αχp(−ε0, f)v(ν, νs), l = l0
αχp(Tp − ε0, f)v(ν, νs), l = l0 + 1
0, l 6= l0, l0 + 1,

(6)

with l0 the sample under test, v the overall space-time steering
vector (for the sake of brevity we omit the dependence of v on
ν and νs.), and ε0 a residual delay that leads to the spillover of
target energy. The sampling process of the signal component
is illustrated in Figure 2, where the radar waveform is assumed
to be a unit-energy rectangular pulse waveform of duration Tp
second.

Alternatively, we can define the residual delay ε evaluated
with respect to the lth range sub-bin accounting for the target
position surrounding the lth sub-bin center as follows

ε =

{
ε0, if l = l0 and 0 ≤ ε0 ≤ Tp/2,
ε0 − Tp, if l = l0 + 1 and Tp/2 ≤ ε0 ≤ Tp.

(7)

−Tp 0−ε0 Tp

t

χp(t, 0)

Sampling points

# l0

# l0 + 1

Fig. 2. Sampling process of the signal component assuming a unit-energy
rectangular pulse waveform of duration Tp seconds.

We are interested in deciding whether or not a target is
present across three adjacent range cells denoted by zi,
i = l − 1, l, l + 1, in order to exploit the spillover of target
energy. Meanwhile, we assume that a secondary data set zk,
k = 1, . . . ,K, free of signal components, is available. It
follows that the decision problem can be formulated as a
binary hypothesis testing problem

H0 :

{
zi = ni, i = l − 1, l, l + 1,
zk = nk, k = 1, . . . ,K,

H1 :



zl−1 = nl−1, 0 < ε ≤ Tp/2,
zl−1 = αχp (−Tp − ε, f)v + nl−1, −Tp/2 ≤ ε ≤ 0,
zl = αχp (−ε, f)v + nl,
zl+1 = αχp (Tp − ε, f)v + nl+1, 0 < ε ≤ Tp/2,
zl+1 = nl+1, −Tp/2 ≤ ε ≤ 0,
zk = nk, k = 1, . . . ,K,

(8)

where H0 and H1 denote the noise-only hypothesis and the
signal-plus-noise hypothesis, respectively, ni, i = l− 1, l, l+
1, and nk, k = 1, . . . ,K, are independent, complex normal
random vectors with zero mean and covariance matrix M .

Finally, observe that for an active system utilizing sym-
metrically spaced linear array and/or pulsed train, both the
disturbance covariance matrix M and the nominal steering
vector v have the persymmetric property. More precisely, M
belongs to the set P defined as

M ∈ P iff M = JNM
∗JN , (9)

and v = JNv
∗, where JN ∈ RN×N is the permutation

matrix, i.e.,

JN =


0 0 · · · 0 1
0 0 · · · 1 0
... . .

.
. .
.
. .
. ...

1 0 · · · 0 0

 . (10)

Using above framework, we solve the problem in (8) by
using the GLRT and an ad hoc procedure, leading to adaptive
decision schemes which exploit the spillover of target energy
and the structure of disturbance covariance matrix (as shown
in the next sections).

III. DETECTOR DESIGNS

As a preliminary step towards the derivation of the detectors,
let us denote by Z = [ZL ZK ] ∈ CN×(K+3) the overall data
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matrix, with ZL = [zl−1, zl, zl+1] ∈ CN×3 the primary data
matrix and ZK = [z1, . . . ,zK ] ∈ CN×K the secondary data
matrix, and

χ(ε) =

{
[χp(−Tp − ε, f), χp(−ε, f), 0]

T
, −Tp/2 ≤ ε ≤ 0,

[0, χp(−ε, f), χp(Tp − ε, f)]
T
, 0 < ε ≤ Tp/2.

(11)

A. One-Step GLRT-Based Detector

The GLRT based on primary and secondary data is given
by [42]

max
ε,α,M

f1(Z;M , α, ε)

max
M

f0(Z;M)

H1

≷
H0

η, (12)

where η is the threshold value to be set according to the desired
probability of false alarm (Pfa), and fj(Z; ·) is the Probability
Density Function (PDF) of Z under Hj , j = 0, 1, namely [43]

f1(Z;M , α, ε) =

[
1

πN det(M)

]K+3

exp
{
−tr
[
M−1T 1

]}
,

f0(Z;M) =

[
1

πN det(M)

]K+3

exp
{
−tr
[
M−1T 0

]}
. (13)

In (13), (·)H denotes conjugate transpose, det(·) and tr(·)
denote the determinant and the trace of a square matrix,
respectively, and

T 1 =
[
ZL − αvχT (ε)

] [
ZL − αvχT (ε)

]H
+ S,

T 0 = ZLZ
H
L + S (14)

with S = ZKZ
H
K the K times sample covariance matrix of

the secondary data.
Exploiting the persymmetric properties of M and v, we

have the following trace equality (see [16] for more details)

tr
[
M−1T j

]
= tr

[
M−1T j + JNT

∗
jJN

2

]
, j = 0, 1. (15)

It follows that the PDF of Z under both hypothesis can be
rewritten as follows

f1(Z;M ,αp, ε) =

[
1

πN det(M)

]K+3

× exp
{
−tr
[
M−1

(
FFH + Sp

)]}
,

f0(Z;M) =

[
1

πN det(M)

]K+3

× exp
{
−tr
[
M−1

(
XpX

H
p + Sp

)]}
, (16)

where

F = Xp − vαpDT (ε), (17)

D(ε) =

[
χp(t1, f), χp(t1, f), χp(t2, f), χp(t2, f), 0, 0
χ∗
p(t1, f), −χ∗

p(t1, f), χ
∗
p(t2, f), −χ∗

p(t2, f), 0, 0

]T
,

if − Tp/2 ≤ ε ≤ 0[
0, 0, χp(t2, f), χp(t2, f), χp(t3, f), χp(t3, f)
0, 0, χ∗

p(t2, f), −χ∗
p(t2, f), χ

∗
p(t3, f), −χ∗

p(t3, f)

]T
,

if 0 < ε ≤ Tp/2,

with t1 = −Tp − ε, t2 = −ε, t3 = Tp − ε, and

Sp = (S + JNS
∗JN )/2, αp = [α, α∗],

Xp = [zel−1
, zol−1

, zel , zol , zel+1
, zol+1

] (18)

with zek = (zk + JNz
∗
k)/2, and zok = (zk − JNz∗k)/2,

k = l− 1, l, l+ 1. Note that we must have K ≥ N/2 in order
to maintain a nonsingular sample covariance matrix whereas
we must have K ≥ N if the structure of the covariance matrix
is not exploited.

Let us first solve the optimization problem under H1. To
this end, observe that the maximum likelihood estimate of M
is given by the sample covariance matrix [2], namely

M̂ =
1

K + 3

(
FFH + Sp

)
. (19)

From (14) and (19), we obtain T 1 = (K + 3)M̂ , which, by
substituting into (15), yields

tr
[
M−1M̂

]
= tr

[
M−1M̂ + JNM̂

∗
JN

2

]
. (20)

Note that (20) states that the traces of these matrices are equal,

while the matrices M−1M̂ and M−1M̂+JNM̂
∗
JN

2 may be
equal or not. In other words, the matrix M̂ is not necessarily
a persymmetric, irrespective of αp.

Substitution of M̂ into (16) yields that f1(Z;M̂ ,αp, ε) is
proportional to

det
[
FFH + Sp

]−(K+3)

. (21)

Maximizing (21) over αp is tantamount to the following
minimization

min
αp

det
[
FFH + Sp

]
, (22)

where the argument can be recast as follows

det
[
FFH + Sp

]
= det[Sp] det

[
I6 + FHS−1

p F
]

= det[Sp] det
[
I6 + FHS−1/2

p

(
P⊥vs + Pvs

)
S−1/2
p F

]
= det[Sp] det

[
Q+ FHS−1/2

p PvsS
−1/2
p F

]
= det[Sp] det[Q]

[
1 +

vHS−1
p FQ

−1FHS−1
p v

vHS−1v

]
(23)

with IN the N -dimensional identity matrix, Pvs =

vs
(
vHs vs

)−1
vHs the projection matrix onto the subspace

spanned by vs = S−1/2
p v, P⊥vs = IN − Pvs the projection

matrix onto the orthogonal complement of the space spanned
by vs, and

Q = I6 +XH
p S
−1/2
p P⊥vsS

−1/2
p Xp. (24)

Thus, the optimization problem (22) is equivalent to

min
αp

vHS−1
p FQ

−1FHS−1
p v. (25)
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Based on the expression (25), a closed-form estimate of αp is
given by (see Appendix A for the proof)

α̂p =
vHS−1

p XpQ
−1D∗(ε)

[
DT (ε)Q−1D∗(ε)

]−1

vHS−1
p v

. (26)

It follows that the compressed likelihood function under H1

can be written as

f1(Z;M̂ , α̂p, ε) ∝ det
[
F aF

H
a + Sp

]−(K+3)

, (27)

where ∝ stands for proportionality, and F a is obtained by
substituting αp with α̂p in (17).

On the other hand, the compressed likelihood function under
H0 is given by

f0(Z;M̂) ∝ det
[
XpX

H
p + Sp

]−(K+3)

. (28)

Finally, the GLRT (12) can be recast as

max
ε∈[−Tp/2,Tp/2]

det
[
XpX

H
p + Sp

]
det
[
F aF

H
a + Sp

] H1

≷
H0

η, (29)

where η is the suitable modification of the threshold in (12).
In Appendix B, it is shown that this test is equivalent to

max
ε∈[−Tp/2,Tp/2]

vHS−1
p XpW (ε)XH

p S
−1
p v

vHS−1
p v + vHS−1

p XpQ
−1XH

p S
−1
p v

,
H1

≷
H0

η.

(30)

where

W (ε) = Q−1D∗(ε)
[
DT (ε)Q−1D∗(ε)

]−1

DT (ε)Q−1. (31)

Since a closed-form estimate of ε is not available, we resort
to a grid search to maximize with respect to ε. More precisely,

ε takes on values in Ω ≡
{
n−Nε
2Nε

Tp

}2Nε

n=0
with Nε ∈ N.

This detector with an grid-search-based implementation will
be referred to in the sequel as the Persymmetric Modified
Kelly’s GLRT (P-M-GLRT).

B. Two-Step GLRT-Based Detector

This section is devoted to the derivation of an ad hoc de-
tector based upon the two-step GLRT-based design procedure
[3]. The rationale of the design procedure is the following: first
assume that the covariance matrixM ∈ P is known and derive
the GLRT based on primary data. Then, an adaptive detector
is obtained by substituting M by the structured covariance
matrix estimate Sp.

Under the assumption that M is known, the GLRT is given
by

max
ε,α

f1(ZL;M , α, ε)

f0(ZL;M)

H1

≷
H0

η, (32)

where fj(ZL; ·) is the PDF of ZL under Hj , j = 0, 1, namely

f1(ZL;M , α, ε) =

[
1

πN det(M)

]3

× exp
{
−tr
[
M−1 (T 1 − S)

]}
,

f0(ZL;M) =

[
1

πN det(M)

]3

× exp
{
−tr
[
M−1 (T 0 − S)

]}
. (33)

Similarly, the above PDF can be expressed in persymmetric
form, i.e.,

f1(ZL;M ,αp, ε) =

[
1

πN det(M)

]3

× exp
{
−tr
[
M−1

(
FFH

)]}
,

f0(ZL;M) =

[
1

πN det(M)

]3

× exp
{
−tr
[
M−1XpX

H
p

]}
, (34)

where Xp and αp are given by (18). Substituting (34) in (32),
after some algebraic manipulations, the natural logarithm of
left-hand side of (32) can be recast as

max
ε

{
tr
[
M−1XpX

H
p

]
−min
αp

tr
[
M−1

(
FFH

)]}
. (35)

In order to optimize (35) with respect to αp, it is shown in
Appendix C that

tr
[
M−1

(
FFH

)]
= tr

[
XH
p M

−1Xp

]
− (vHM−1v)tr

[
D∗(ε)bHbDT (ε)

]
+(vHM−1v)tr

[(
[αp − b]DT (ε)

)H (
[αp − b]DT (ε)

)]
,

(36)

where

b =
vHM−1XpD

∗(ε)
(
DT (ε)D∗(ε)

)−1

vHM−1v
. (37)

It is clear that the minimum of (36) is attained when the posi-
tive factor containing αp is made to vanish, i.e., α̂p = b. Thus,
the GLRT for known M can be recast as (see Appendix C
for the detailed derivation)

max
ε∈[−Tp/2,Tp/2]

vHM−1XpV (ε)XH
p M

−1v

vHM−1v

H1

≷
H0

η, (38)

where η is the suitable modification of the threshold in (32),
and

V (ε) = D∗(ε)
(
DT (ε)D∗(ε)

)−1

DT (ε). (39)

Plugging Sp in place of M into (38), a fully adaptive
detector can be given by

max
ε∈[−Tp/2,Tp/2]

vHS−1
p XpV (ε)XH

p S
−1
p v

vHS−1
p v

H1

≷
H0

η, (40)
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This detector with an grid-search-based implementation will
be referred to in the sequel as the Persymmetric Modified AMF
(P-M-AMF).

Remark 1: The P-M-GLRT and the P-M-AMF ensure the
constant false alarm rate (CFAR) property with respect to M .
Moreover, they are computationally more efficient than the
M-GLRT and the M-AMF. This is because the calculations
of their statistics can be transferred from the complex domain
to the real domain. Proofs of such statements, not reported
here for the sake of brevity, follow the lead of [2], [17] and
references therein.

Remark 2: Since W (ε) and V (ε) are functions of ε, they
need to be calculated for each ε value which involve an addi-
tional computation burden. Anyway, the P-M-GLRT involves
O(KN2) floating-point operations (flops) plus O(6N2 +
62N+63+(2Nε+1)62) fixed-point operations, whereas the P-
M-AMF requires O(KN2) flops plus O(6N2 + (2Nε + 1)62)
fixed-point operations. Note that the O(n) is usual Landau
notation and means that the implementation requires a number
of flops proportional to n [44]. As to the persymmetric GLRT
(P-GLRT) [17], the persymmetric adaptive matched filter (P-
AMF) [23], they require O(KN2) flops plus O(2N2+4N+8)
fixed-point operations, and O(KN2) flops plus O(2N2) fixed-
point operations, respectively.

Remark 3: From the similarity of the expressions in (30) and
(40), we expect that the performance gap between these tests
is reduced as the size of the secondary data increases, since Q
and vHS−1

p XpQ
−1XH

p S
−1
p v tend to I6 and 0, respectively.

Remark 4: Let ε̂ denote the value for which (30), (38) or
(40) are maximized. To perform the maximization the values
of these criterions are first calculated for Nε values of ε equally
spaced in the interval [−Tp2 ,−

Tp
2 ], then the maximum value is

compared with a threshold. In this case the range is estimated
by (tmin+lTp+ ε̂) c2 in meters where c is the wave propagation
velocity.

IV. PERFORMANCE ASSESSMENT

In this section, we present some numerical examples to
show the performances of the proposed receivers in terms
of probability of detection and root root mean square (RMS)
error in range. To this end, we first compare our detectors
to their unstructured counterparts, namely the M-GLRT and
M-AMF introduced in [30]. Second, the new receivers are
compared to the state-of-the-art persymmetric detectors which
ignore the spillover of target energy and are devised for
Gaussian disturbance, including the P-GLRT, the P-AMF, and
the persymmetric adaptive coherence estimator (P-ACE) [20].
The analysis is conducted both on simulated and real recorded
data.

A. Simulated data

For simulation purposes, we exploit standard Monte Carlo
counting techniques and evaluate the thresholds necessary

to ensure a preassigned value of Pfa resorting to 100/Pfa

independent trials. More precisely, the Pd values and the RMS
range errors are estimated over 104 and 103 independent trials,
respectively. All the illustrative examples assume Pfa = 10−4,
Tp = 0.2µs, c = 3 × 108m/s, f = 0, and Nε = 5. The
steering vector v is given by

v = [1, . . . , 1]
T
/
√
N, (41)

and the signal-to-noise ratio (SNR) is defined as

SNR = |α|2vHM−1v. (42)

Our simulator requires α, N , K, Tp, f , and v as input
and generate ZL and ZK as follows. We generate the actual
position of the target εtrue randomly and uniformly distributed
over (independent from trial to trial and independent of all
other generated parameters) over

(tmin + (l − 1)Tp − Tp/2, tmin + (l − 1)Tp + Tp/2) . (43)

To facilitate the simulation, we set tmin = 0 and l = 1, namely,
the actual position of the target is uniformly distributed in
(−Tp/2, Tp/2). We then calculate χ(εtrue) using (11). The
noise samples ni, i = l− 1, l, l+ 1 and nk, k = 1, . . . ,K are
generated as independent, zero-mean complex normal random
vectors with one-lag correlation coefficient ρ, namely the
(i, j)-th element of the covariance matrix M is given by
ρ|i−j|, with ρ = 0.9. The primary data matrix ZL is obtained
from

ZL = αvχT (εtrue) +NL, (44)

where NL = [nl−1,nl,nl+1], and the secondary data matrix
from

ZK = [n1, . . . ,nK ] . (45)

Once ZL and ZK are obtained, we calculate the decision
statistic of the P-M-GLRT/P-M-AMF for all ε ∈ Ω, and use
the procedure in Remark 4 to find the optimal estimate of εtrue,
ε̂k say, where k is the index of trials. Finally, the average RMS
range error (in meters) of the P-M-GLRT/P-M-AMF versus
SNR is calculated using by

δrms =

√∑ne
k=1(ε̂k − εtrue) ∗ 10−6 ∗ c/2)2

ne
, (46)

where ne is the number of trials.
1) Comparison with localization detectors: In Figures 3

and 4, we compare the P-M-GLRT and P-M-AMF to the M-
GLRT and M-AMF assuming N = 17, K = N+1 in order to
reflect the training-limited scenarios. In particular, in Figure 3
we plot Pd versus SNR, while in Figure 4 the comparison is in
terms of RMS error in range. Moreover, the Pd curves of the
optimum but nonadaptive versions of the proposed detectors,
i.e., the P-M-GLRT and P-M-AMF with the known covariance
matrix (refereed as the P-M-GLRT-OPT and P-M-AMF-OPT,
respectively), are included in Figure 3 as benchmark.

Inspection of Figures 3 and 4 highlights that with such a
limited amount of secondary data, the M-GLRT and M-AMF
exhibit unsatisfactory performances, and the proposed detec-
tors are a viable mean to compensate for the loss experienced
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by the detectors which consider the spilover, although they still
have some distance from the optimum. More precisely, Figure
3 shows that P-M-GLRT has the best performance of Pd, while
the P-M-AMF only experiences a loss of about 1.1 dB at
Pd = 0.9. However, such a loss increases to about 10.6 dB and
20.6 dB for the M-GLRT and the M-AMF, respectively. On the
other hand, Figure 4 shows that the range RMS errors of the
P-M-GLRT and P-M-AMF are about 1.7 m when SNR = 25
dB, and such RMS error increases to about 3.2 m and 3.7
m for the M-GLRT and M-AMF, respectively 1. As to high
SNR values, the range RMS errors of the four receivers are
identical, due to the fact that in this case the RMS errors
are determined by the grid resolution ∆ε = Tp/(2Nε). As
a matter of fact, a uniformly distributed random variable in
(−∆

2 , ∆
2 ) with ∆ = ∆εc/2, has a standard deviation equal to

∆√
12

, which means a lower-bound on the RMS error of 0.866
m for Nε = 5 [30].
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Fig. 3. Pd versus SNR for the P-M-GLRT, P-M-AMF, M-GLRT, and M-
AMF with simulated data; N = 17, K = N +1, Nε = 5, and Pfa = 10−4.
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Fig. 4. RMS range error versus SNR for the P-M-GLRT, P-M-AMF, M-
GLRT, and M-AMF with simulated data; N = 17, K = N + 1, Nε = 5,
and Pfa = 10−4.

In Figures 5 and 6, Pd and range RMS error curves are
shown assuming the same scenario as in Figures 3 and 4
but K = 2N . As it can be seen from these two figures,
the receivers can take advantage of the higher number of

1Note that the curves of the M-GLRT and the M-AMF start from SNR=20
dB instead of SNR=15 dB, due to their very low Pd values for SNR<20 dB.

secondary data. Specifically, the performances of the M-GLRT
and M-AMF significantly improve with respect to the case
K = N + 1, but they are still outperformed by the proposed
detectors. This is not surprising, since the higher number
of secondary data allows to better estimate the unknown
parameters. It is also seen from Figure 5 that the P-M-GLRT
performs very close to the P-M-AMF and experiences a loss
of about 0.3 dB at Pd = 0.9. This result is aligned with what
we expect in remark 2.
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Fig. 5. Pd versus SNR for the P-M-GLRT, P-M-AMF, M-GLRT, and M-
AMF with simulated data; N = 17, K = 2N , Nε = 5, and Pfa = 10−4.
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Fig. 6. RMS range error versus SNR for the P-M-GLRT, P-M-AMF, M-
GLRT, and M-AMF with simulated data; N = 17, K = 2N , Nε = 5, and
Pfa = 10−4.

2) Comparison with persymmetric detectors: To demon-
strate the efficiency of the proposed detectors further, in
Figures 7 and 8, we compare new receivers with the state-
of-the-art persymmetric detectors. Therein we plot Pd versus
SNR for the P-M-GLRT, P-M-AMF, P-GLRT, P-AMF, and P-
ACE assuming N = 8, and two values of K. The figures show
that the P-M-GLRT and P-M-AMF ensure better detection
performance than the other persymmetric detectors. Obviously,
the obtained Pd gains result from the use of the spillover of
target energy. We do not evaluate the range RMS errors for
these detectors, because the P-GLRT, P-AMF, and P-ACE do
not have the ability of sub-bin range localization.

Our performed evaluations highlights that the proposed
receivers allow simultaneous use of a-priori structure of the
disturbance covariance matrix and the spillover of target
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energy leading to enhanced performances compared to the
receivers which make use only one of these properties.
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Fig. 7. Pd versus SNR for the P-M-GLRT, P-M-AMF, P-GLRT, P-AMF,
and P-ACE with simulated data; N = 17, K = N + 1, Nε = 5, and
Pfa = 10−4.
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Fig. 8. RMS range error versus SNR for the P-M-GLRT, P-M-AMF, P-GLRT,
P-AMF, and P-ACE with simulated data; N = 17, K = 2N , Nε = 5, and
Pfa = 10−4.

B. Real dataset

In order to show the performances of detection and range
estimation in a realistic environment, we exploit the experi-
mental L-band ground clutter data collected using the MIT
Lincoln Laboratory Phase One radar [49], which have been
shown to exhibit a good persymmetric covariance matrix [19].

1) The Phase One radar: An overall block diagram of
this radar is shown in [49] which can operate in any one
of five different radar bands (VHF, UHF, L-, S-, and X-
bands). The system exciter supplied all transmit and receive
local oscillator (LO) frequencies and provided the basic timing
reference for the system. The basic frequency reference for
the exciter was a HP8662A synthesizer signal generator, with
sufficient stability to support an overall clutter improvement
factor of 60dB. The system had five transmitters. The signals
from each of the five high-power transmitters were fed through
their respective circulators to transmission lines. Several years
after the Phase One measurement program was completed,
the L-band component of the Phase One radar was upgraded

TABLE I
SPECIFICATIONS OF THE ANALYZED REAL CLUTTER DATASET

DatasetH0670372.iq
Number of Pulses Nt 30720
Number of Cells Nc 76

Polarizations HH, VV
RF Frequency 1.23 GHz
Pulse Length 100 ns

Pulse Repetition Frequency 100 Hz
Sampling Frequency 10 MHz

Radar Scan Mode Fixed Azimuth
Radar Azimuth Angle 235 Deg

Grazing angle 0.65 Deg
Range 2001-3125 m

Radar Beam Width 3.4 Deg
Range Resolution 15 m

Quantization Bit 13 bit
Mean/Max Wind Speed 20/20 mph

to provide an improved LCE (L-band Clutter Experiment)
instrument for the measurement of low-Doppler windblown
clutter spectra to low levels of clutter spectral power [50].

The measurements of L-band clutter were recorded in May
1985 at the Katahdin Hill site, MIT-LL. This data contained
30,720 pulses, with a pulse repetition frequency (PRF) of
500Hz. Data were recorded from 76 contiguous range gates
using the L-band stationary antenna in a fixed azimuth position
(235o). These 76 range cells were located from 2.0 km to 3.1
km, covering windblown trees at depression angle of 0.65o.
The considered area did not contain any ground traffic targets
but windblown vegetation primarily composed of mixed de-
ciduous trees and occasional pine and cedar. Moreover, at the
time of the experiment the deciduous trees did not yet had
their leaves (see [49], [50] for more detailed features of this
system and the experiment). Table I gives the specifications of
the L-Band clutter dataset, which is used in this paper.

2) Performance on real L-band dataset: For the perfor-
mance analysis, the nominal steering vector is temporal (name-
ly N = Np). We use the range cells 26-28 of VV channel
as the primary data, and the range cells adjacent to the
primary data as the secondary data; specifically, there are
two guard cells between the primary data and secondary data.
For example, we choose the range cells 15-23 and 31-39 for
K = 18, and the range cells 7-23 and 31-47 for K = 34.
The resulting N(K + 3) data window, centered on the CUT,
is slid in index N along the 30720 time pulses until the end
of the dataset. The total number of different data windows
is
⌊

30720
N

⌋
, where b·c denotes the nearest integer less than or

equal to the argument. This number coincides with the total
number of trials used to estimate both the number of False
Alarms (FA) and the Pd of each receiver.

The performances of detection and localization are eval-
uated under the same number of FAs. Since the number of
trials does not allow accurate estimation of the Pfa, we set
the threshold of the different receivers in order to obtain a
pre-assigned number of FA, i.e., FA = 18 out of 1807 for
N = 17, which corresponds to an obtained Pfa of about 10−2.
We set the Doppler frequency f at 0Hz, which is tantamount to
considering the worst case of target embedded in deep clutter
coinciding with the peak of the clutter power spectral density
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(PSD) [51]. Note that the L-band ground clutter did not contain
any returns of ground traffic targets [49]. In order to evaluate
the Pd, we simulate a synthetic target using the same model
as Section IV-A and inject it into the 26-28th cells of VV
channel. Moreover, the average SNR is defined as

SNRav = |α|2vHM̃
−1
v, (47)

where M̃ is the estimated sample covariance matrix using all
the returns of the range cells 26-28 of VV channel, and the
steering vector v is defined in (41).

In summary, our simulator requires α, N , K, Tp, f , v, Nε,
the threshold η for given FA rate as input and compute the Pd

of the P-M-GLRT/P-M-AMF versus SNRav as follows. We
first generate ZL and ZK using (44) and (45). The difference
with respect to Section IV-A is that the noise samples ni,
i = l − 1, l, l + 1 and nk, k = 1, . . . ,K are from the real
L-band data of VV channel instead of simulated data. We
then calculate the decision statistic of the P-M-GLRT/P-M-
AMF for all ε ∈ Ω, and use the procedure in Remark 4 and
count d as the number of times that the maximum these value
ε ∈ Ω is larger than η. Finally, the Pd is calculated using
by P

d
=
∑ne
k=1 d/ne, where ne =

⌊
30720
N

⌋
is the number of

trials. Otherwise stated the procedure of computing the RMS
range errors is not reported here for the sake of brevity.

Figures 9–12 show the Pd and the range RMS errors of
different detectors versus SNRav for N = 17, Nε = 5, and
FA = 18 and two values of K. More precisely, Figures 9 and
10 assume K = N + 1, and Figures 11 and 12 refer to K =
2N . The curves in Figures 9–12 show that the P-M-GLRT and
P-M-AMF outperform the M-GLRT and M-AMF in detection
and localization. This result reaffirms what we observed in
the previous subsection on simulated data. Moreover, the P-M-
GLRT has slightly lower range RMS error than the P-M-AMF
for low to medium SNR values.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

SNR
av

 (dB)

P
d

P−M−GLRT−OPT
P−M−AMF−OPT
P−M−GLRT
P−M−AMF
M−GLRT
M−AMF

Fig. 9. Pd versus SNRav for the P-M-GLRT, P-M-AMF, M-GLRT, and
M-AMF with real data; N = 17, K = N + 1, Nε = 5, and FA = 18.

In Figures 13 and 14 we compare the detection performance
of different persymmetric detectors with the same system
parameters as in Figures 9–12. The reported curves clear-
ly show that the proposed detectors enhance the detection
performance compared with the state-of-the-art persymmetric
detectors [17], [20], [23] by exploiting the spillover of target
energy.
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Fig. 10. RMS range error versus SNRav for the P-M-GLRT, P-M-AMF,
M-GLRT, and M-AMF with real data; N = 17, K = N + 1, Nε = 5, and
FA = 18.
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Fig. 11. Pd versus SNRav for the P-M-GLRT, P-M-AMF, M-GLRT, and
M-AMF with real data; N = 17, K = 2N , Nε = 5, and FA = 18.
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Fig. 12. RMS range error versus SNRav for the P-M-GLRT, P-M-AMF,
M-GLRT, and M-AMF with real data; N = 17, K = 2N , Nε = 5, and
FA = 18.

In most practical case the number of the secondary data
snapshots is more than the size of the covariance matrix and
thereby the rank of (19) is full with probability one. However,
exact performance analysis seems to be very complicated
if possible at all. Even using random matrix theory, the
asymptotic impact of the distribution of the eigenvalues of (19)
on the detection performance is not easy to track. Moreover,
our simulations and experiments for two cases (K = N + 1
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Fig. 13. Pd versus SNRav for the P-M-GLRT, P-M-AMF, P-GLRT, P-AMF,
and P-ACE with real data; N = 17, K = N + 1, Nε = 5, and FA = 18.
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Fig. 14. Pd versus SNRav for the P-M-GLRT, P-M-AMF, P-GLRT, P-AMF,
and P-ACE with real data; N = 17, K = 2N , Nε = 5, and FA = 18.

and K = 2N ) have always resulted in a full-rank covariance
estimate of the disturbance. Note that, the persymmetric de-
tectors can work in some cases of K < N . Even for some
cases where the sample covariance matrix is not full rank,
the additional information about the persymmetric structure
of the covariance matrix allows to obtain a full rank estimate
of the unknown covariance matrix. To best of our knowledge,
the reduced dimension/rank methods are mainly applied in the
field of STAP filtering. We further investigated and found some
papers that apply some reduced dimension/rank techniques in
adaptive detection [45]–[48]. There are similarities between
these methods and the persymmetric methods, namely, they
both can reduce computational complexity and can improve
the robustness in training-limited scenarios.

Since we use a grid search, the localization error includes
a quantization error component which may be viewed as
uniformly distributed. This is why we observe that the RMS
error is larger than Tpc

8
√

3Nε
. Thus, at high SNRs we propose to

increase Nε in order to improve the localization error at the
expense of some increase in the computational cost. Moreover,
we observe that the required SNR for a reasonable detection
probability in Figures 3, 5, 9 and 11 increases as the number
of available secondary samples reduces or as the size of the
unknown covariance matrix increases. It turns out that the
proposed methods require significantly less SNR compared

with their counterparts.

V. CONCLUSIONS

In this paper, we have proposed new methods for adaptive
detection and range estimation of a small target buried in
Gaussian disturbance with unknown covariance matrix using
a small training data set. In order to derive these new GLRT
detectors, we jointly exploit the spillover of target energy
to consecutive range samples as well as the persymmetric
property of the unknown covariance matrix. Notably, these
detectors possess the CFAR property with respect to the
unknown parameters of the disturbance. Moreover, they de-
mand less computational complexity than the state-of-the-art
counterparts which do not exploit the persymmetric property
because the operations in the proposed methods are with
real values instead of complex numbers. The performance
assessment, carried out using simulated data (using a complex
Gaussian models), and the measured MIT dataset (a dataset
with challenging heterogeneous effects found in real-world
environments) shows that the proposed persymmetric detectors
result in significant performance enhancements in terms of
both probability of detection and localization accuracy with
respect to their unstructured counterparts in open literature.
Moreover, they outperform the state-of-the-art persymmetric
detectors which ignore the spillover. As a final remark, possi-
ble future research tracks might include the design of joint
algorithms for detection and localization for non-Gaussian
scenarios [52], as well as polarization processing [53]. Besides,
the possibility of employing reduced dimension/rank tech-
niques in combination with the energy spilover and presymetry
is a good idea for future further investigations. It is also
of interest to compare the proposed methods to reduced
dimension/rank STAP methods in [45]–[48].
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APPENDIX

APPENDIX A: DERIVATION OF THE CLOSED-FORM
ESTIMATE OF αp

The aim of this Appendix is the derivation of α̂p given
by (26). To this end, observe that the derivative of (25) with
respect to αTp is given by

∂

∂αTp
vHS−1

p FQ
−1FHS−1

p v

= (vHS−1
p v)DT (ε)Q−1FHS−1

p v

= (vHS−1
p v)

(
DT (ε)Q−1XH

P S
−1
p v

−DT (ε)Q−1D∗(ε)αHp v
HS−1

p v
)
. (48)



11

Since the matrix Q is positive definite, and D(ε) has full
column rank, it follows that DT (ε)Q−1D∗(ε) is positive
definite and invertible. Setting to zero the derivative of (48),
yields

α̂Hp =

[
DT (ε)Q−1D∗(ε)

]−1

DT (ε)Q−1XH
p S
−1
p v

vHS−1
p v

, (49)

which is the conjugate transpose form of (26).

APPENDIX B: DERIVATION OF (30)
By using (26) and Appendix A, we have

f1(Z;M̂ , α̂p, ε) ∝ {det[Sp] det[Q]}−(K+3)

×

[
1 +

vHS−1
p Xp

(
Q−1 − P

)
XH
p S
−1
p v

vHS−1
p v

]−(K+3)

(50)

where

P = Q−1D∗(ε)
[
DT (ε)Q−1D∗(ε)

]−1

DT (ε)Q−1. (51)

Moreover, f0(Z;M̂) can be recast as

f0(Z;M̂) ∝ {det[Sp] det[Q]}−(K+3)

×

[
1 +

vHS−1
p XpQ

−1XH
p S
−1
p v

vHS−1
p v

]−(K+3)

.(52)

It follows that (29) can be recast as

max
ε∈[−Tp/2,Tp/2]

vHS−1
p v + vHS−1

p XpQ
−1XH

p S
−1
p v

vHS−1
p v + vHS−1

p Xp

(
Q−1 − P

)
XH
p S
−1
p v

,

(53)

which is equivalent to (30).

APPENDIX C: DERIVATIONS OF (36) AND (38)
In this appendix, we first give the proof of (36). To this end,

multiplying out the left-hand side (LHS) of (36), we have

tr
[
M−1

(
FFH

)]
= tr

[
XH
p M

−1Xp

]
+ (vHM−1v)tr

[
D∗(ε)αHp αpD

T (ε)
]

−tr
[
D∗(ε)αHp v

HM−1Xp

]
− tr

[
XH
p M

−1vαpD
T (ε)

]
.

(54)

On the other hand, using tr [AB] = tr [BA], we obtain

(vHM−1v)tr
[(

[αp − b]DT (ε)
)H (

[αp − b]DT (ε)
)]

= (vHM−1v)
(

tr
[
D∗(ε)αHp αpD

T (ε)
]

+tr
[
D∗(ε)bHbDT (ε)

] )
− tr [AB]− tr [BC]

= (vHM−1v)tr
[
D∗(ε)αHp αpD

T (ε)
]

+(vHM−1v)tr
[
D∗(ε)bHbDT (ε)

]
−tr
[
D∗(ε)αHp v

HM−1Xp

]
−tr
[
XH
p M

−1vαpD
T (ε)

]
, (55)

where

A = D∗(ε)αHp v
HM−1Xp,

B = D∗(ε)
[
DT (ε)D∗(ε)

]−1

DT (ε),

C = XH
p M

−1vαpD
T (ε). (56)

By combining (54) and (55) we obtain (36).
In the following, we show that the GLRT for known M is

given by (38). When α̂p = b, it is seen that

min
αp

tr
[
M−1

(
FFH

)]
= tr

[
XH
p M

−1Xp

]
− (vHM−1v)tr

[
D∗(ε)bHbDT (ε)

]
,

(57)

which substituted into (35), yields

max
ε

(vHM−1v)tr
[
D∗(ε)bHbDT (ε)

]
= max

ε

tr
[
BXH

p M
−1vvHM−1XpB

]
vHM−1v

= max
ε

vHM−1XpBBX
H
p M

−1v

vHM−1v
. (58)

It is easy to show that (58) leads to (38).
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The caption of the figures

1) Figure 1: a) The illustration of a target straddling be-
tween two consecutive range cells n and n + 1; b) the
cross-correlation function for a rectangular pulse versus
the range locations and stampeded cells.

2) Figure 2: Sampling process of the signal component
assuming a unit-energy rectangular pulse waveform of
duration Tp seconds.

3) Figure 3: Pd versus SNR for the P-M-GLRT, P-M-AMF,
M-GLRT, and M-AMF with simulated data; N = 17,
K = N + 1, Nε = 5, and Pfa = 10−4.

4) Figure 4: RMS range error versus SNR for the P-M-
GLRT, P-M-AMF, M-GLRT, and M-AMF with simulat-
ed data; N = 17, K = N+1, Nε = 5, and Pfa = 10−4.

5) Figure 5: Pd versus SNR for the P-M-GLRT, P-M-AMF,
M-GLRT, and M-AMF with simulated data; N = 17,
K = 2N , Nε = 5, and Pfa = 10−4.

6) Figure 6: RMS range error versus SNR for the P-M-
GLRT, P-M-AMF, M-GLRT, and M-AMF with simulat-
ed data; N = 17, K = 2N , Nε = 5, and Pfa = 10−4.

7) Figure 7: Pd versus SNR for the P-M-GLRT, P-M-AMF,
P-GLRT, P-AMF, and P-ACE with simulated data; N =
17, K = N + 1, Nε = 5, and Pfa = 10−4.

8) Figure 8: RMS range error versus SNR for the P-M-
GLRT, P-M-AMF, P-GLRT, P-AMF, and P-ACE with
simulated data; N = 17, K = 2N , Nε = 5, and Pfa =
10−4.

9) Figure 9: Pd versus SNRav for the P-M-GLRT, P-M-
AMF, M-GLRT, and M-AMF with real data; N = 17,
K = N + 1, Nε = 5, and FA = 18.

10) Figure 10: RMS range error versus SNRav for the P-
M-GLRT, P-M-AMF, M-GLRT, and M-AMF with real
data; N = 17, K = N + 1, Nε = 5, and FA = 18.

11) Figure 11: Pd versus SNRav for the P-M-GLRT, P-M-
AMF, M-GLRT, and M-AMF with real data; N = 17,
K = 2N , Nε = 5, and FA = 18.

12) Figure 12: RMS range error versus SNRav for the P-
M-GLRT, P-M-AMF, M-GLRT, and M-AMF with real
data; N = 17, K = 2N , Nε = 5, and FA = 18.

13) Figure 13: Pd versus SNRav for the P-M-GLRT, P-M-
AMF, P-GLRT, P-AMF, and P-ACE with real data; N =
17, K = N + 1, Nε = 5, and FA = 18.

14) Figure 14: Pd versus SNRav for the P-M-GLRT, P-M-
AMF, P-GLRT, P-AMF, and P-ACE with real data; N =
17, K = 2N , Nε = 5, and FA = 18.
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