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An off-grid (OG) pattern synthesis algorithm for sparse non-uniform
linear arrays is presented. It is based on Bayesian compressive
sampling (BCS), and the design of maximally sparse linear
arrays for the given reference patterns can be obtained. The proposed
algorithm novelly introduces the OG model into the pattern synthesis
problem, and it makes the synthesis more accurate than the convention-
al BCS algorithm. Moreover, the proposed algorithm has the advantage
of high computational efficiency, since the BCS-based algorithms
can be realised by the fast relevance vector machine. Numerical
experiments show that the proposed algorithm has improved accuracy
in terms of normalised mean square error.
Introduction: Pattern synthesis for antenna arrays with a minimum
number of elements is a problem of great importance in many appli-
cations (e.g. radar, remote sensing and wireless communication).
Among pattern synthesis techniques, non-uniformly spaced arrays
[1, 2] have potential advantages with respect to uniform arrangements
such as decreased mainlobe width and sidelobe suppression. Recently,
an effective pattern synthesis method based on Bayesian compressive
sampling (BCS) with sparse non-uniform linear arrays (SNLAs) has
been proposed [1, 3]. This method has the significant advantages of flexi-
bility and computational efficiency. Actually, the SNLA in [1] can be
considered as a uniform linear array (ULA) with ‘missing’ array
elements. However, the BCS-based method in [1, 3] has a limitation
that the positions of sparse array elements must be selected from a
given virtual ULA. Uniformly spaced elements of the ULA separate
the array aperture on a fixed uniform grid. Thus, this approach may
induce an unideal approximation to the optimal element position. The
maximum deviation can reach Δd/2, where Δd is the element spacing
of the virtual ULA. As a matter of fact, the deviation caused by the
fixed grid has been noticed in many problems such as direction-of-arrival
estimation, spectral estimation and signal reconstruction.

This Letter introduces a new off-grid (OG) synthesis method which
can estimate the sparse array element positions more accurately and syn-
thesise the pattern with less error than the existing BCS-based method.
Precisely, the new pattern synthesis method can guarantee the sparsity of
the SNLA due to the property of BCS and provide a more accurate fit of
the given pattern (e.g. Chebyshev, Taylor-Kaiser) than the conventional
BCS synthesis.

OG model for pattern synthesis: Given a reference pattern PREF(θ), θ ∈
[0°, 180°], the target of pattern synthesis is to find a set of array element
positions {dm}

M
m=1 and their corresponding weights in order to satisfy

PREF(u) =
∑M
m=1

wm exp (jkdmu), u [ [−1, 1] (1)

where u = cos θ, k = 2π/λ is the wavenumber, dm denotes the position of
the mth element and its corresponding weight is wm. We can evaluate dm
and wm from a set of L samples of the reference pattern; precisely, yl =
PREF(ul), l∈ {1, …, L}. In [1], the reconstruction of {dm, wm}

M
m=1

from the pattern sample set {yl}
L
l=1 is considered as the linear regression

from an overcomplete set of {̃dn, wn}
N
n=1, where N≫M . Precisely

y = Aw+ 1 (2)

where y = [y1, …, yL]
T, A = a(̃d1), . . . , a(̃dN )

[ ]
, w = [w1, …, wN]

T

and ɛ = [ɛ1, …, ɛL]
T. The (l, n)th entry of A is al (̃dn) = exp (jkd̃nul)

and d̃n is the nth element position of the user-chosen overcomplete

array element set. Without loss of generality, d̃n can be selected from a

uniform grid and the spacing is denoted as Dd = d̃n − d̃n−1. Though
the existing BCS-based approach has shown improvement in pattern syn-
thesis, e.g. success in reducing the number of array elements, there are
still more or less deviations when the optimal array element positions
are not on the sampling position grid.

Suppose dm = {̃d1, . . . , d̃N} for some m∈ {1, …, M}, there is the
deviation of a(dm)− a(̃dnm ) even if d̃nm is the nearest grid point to dm.
Inspired by the OG technique in [4], we approximate a(dm) using
linearisation

a(dm) ≈ a(̃dnm )+ b(̃dnm )(dm − d̃nm ) (3)

where b(̃dnm ) = a′ (̃dnm ), namely bl (̃dnm ) = jkul exp (jkd̃nmul). Actually
the OG approximation in (3) is the Taylor first-order approximation
which is more accurate than the zero-order one. By denoting

B = b(̃d1), . . . , b(̃dN )
[ ]

and F = A+ B diag(b), we can write the

observation model of (2) into y = Fw+ 1F, which is the OG model
used in this Letter.

Pattern synthesis via OG-BCS: To design a SNLA which is maximally
sparse, we convert the pattern synthesis problem of (2) into the compres-
sive sensing (CS) problem as

min ||w||1 s.t.||y− Aw||22 ≤ e (4)

According to the BCS theory [5, 6], the sparse Bayesian learning
algorithm can provide a tighter approximation to the ℓ0-norm sparsity
than the ℓ1-norm in (4). The objective is to find ŵ in order to maximise
the hierarchical posterior

ŵ = argmax
w

pBCS(w, a, a0|y) (5)

where α is the hyperparameter of the hierarchical prior model, a−1
0

denotes the variance of ɛ and pBCS( · ) represents the posteriori prob-
ability of the hierarchical Bayesian model. The detail of the BCS
approach is shown in Fig. 1.

initialise a0, a a0 = 1/( |mn|2 + Snn ), n Œ{1, ..., N }

S = [a0AHA + diag(a)]–1

w^  ¨ m

a0 = L/( ||y – Am||22 + tr (SAHA)] N

not converged

converged

m = a0SAHy

^dm =
dnm

+ bnm 
,   – Dd/2 £ bnm

£ Dd/2

dnm
, otherwise

b = P –1v, v = {[B diag(w^ )H e }

P = {[B diag(w
^ )H  B diag(w

^ )}

Fig. 1 Off-grid pattern synthesis method based on BCS

After obtaining ŵ, the adjustment parameters β of the OG model need
to be estimated. Actually an appropriate β should minimise the pattern
synthesis error ɛΦ, namely

min
b

||y− (A+ B diag(b))ŵ||22 (6)

Because Bdiag(b)ŵ = Bdiag(ŵ)b = Bw, we rewrite (6) as follows:

argmin
b

{bTBH
wBwb− 1HBwb− bTBH

w1+ 1H1} (7)

Because β∈ℝN, ∂||1− Bwb||22/∂b = 0 results in β = P−1v, where
P = <{BH

wBw}, v = <{BH
w1}. To guarantee d̃nm the nearest grid point

to dm, we constraint bnm [ [−Dd/2, Dd/2]. The OG-BCS algorithm
for pattern synthesis is detailed in Fig. 1.

Simulation results: In this Section, two kinds of patterns, i.e. Dolph-
Chebyshev and Taylor-Kaiser, are considered as the reference patterns.
In Figs. 2a,b and c,d the apertures and sidelobe levels (SLLs) of the
Dolph-Chebyshev and the (Taylor-Kaiser) patterns are {9.5 λ, −30 dB}
and {19.5 λ, −30 dB}, respectively. As we know, the Dolph-Chebyshev
reference patterns in Figs. 2a and b can be synthesised through the
uniform arrays with 20 and 40 λ/2-spaced elements, respectively, and the
parameters of the Taylor-Kaiser reference patterns in Figs. 2c and d
are the same. In all of our simulations, the OG-BCS algorithm for
pattern synthesis is compared with the conventional BCS algorithm and
the reference patterns. The BCS and OG-BCS synthesis are carried out
by sampling PREF(u) at L points, i.e. ul = (2l− L− 1)/L, l∈ {1, …, L},
and the overcomplete array element positions dn = (2n−N− 2)aperture/
2N, n∈ {1, …, N}. From Figs. 2a–d, it can be observed that the fitting
degree of OG-BCS to the reference pattern (Dolph-Chebyshev or
Taylor-Kaiser) has been improved compared with the BCS algorithm.
Moreover, the OG-BCS algorithm has the same excellent sparsity as



the conventional BCS. The numbers of active elements of the OG-BCS
solution with respect to two array apertures 9.5 and 19.5λ are 14 and
26, respectively. In contrast, the regular Dolph-Chebyshev or Taylor-
Kaiser patterns for 9.5 and 19.5λ array apertures need to be synthesised
by 20 and 40 uniformly spaced array elements, respectively. As shown
in Figs. 2a and c, the proposed synthesis algorithm can save 30% array
elements, and in Figs. 2b and d it is 35%.
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Fig. 2 Reference patterns

a, b Dolph-Chebyshev
c, d Taylor-Kaiser
Array element numbers of SNLAs designed by OG-BCS and BCS are 14 [Figs.
2a,c] and 26 [Figs. 2b,d]. SLL is set as −30 dB

To quantitatively evaluate the accuracies of the different methods, the
following normalised mean square error (NMSE) is used as the metric

NMSE =
�1
−1 |̂P(u)− PREF(u)|2 du�1

−1 |PREF(u)|2 du
(8)

where P̂(·) can be PBCS( · ) or POG−BCS( · ). Figs. 3a–d indicate the
NMSEs of OG-BCS and BCS with respect to the reference patterns
(i.e. Dolph-Chebyshev and Taylor-Kaiser) under different SLLs.
Figs. 3a and b (Figs. 3c and d ) demonstrate the NMSEs for the synthesis
of Dolph-Chebyshev (Taylor-Kaiser) patterns with 20 and 40
λ/2-spaced array elements. It can be observed that the OG-BCS algor-
ithm method usually has a lower RMSE than the BCS algorithm
under different SLLs (i.e. −20 to −40 dB) and array apertures (i.e. 9.5
and 19.5λ).
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Fig. 3 OG-BCS and BCS assessments (NMSE) against variant SLLs (−20 to
−40 dB)
Reference patterns are:
a, b Dolph-Chebyshev
c, d Taylor-Kaiser
Numbers of SNLA elements are 14 [Figs. 3a,c] and 26 [Figs. 3b,d]
The reason why the OG-BCS algorithm outperforms the conventional
BCS is that the adjustment parameters β of the OG model for pattern
synthesis can provide a closer approximation to the optimal array
element positions than the non-OG model. Moreover, the OG-BCS
algorithm has the advantage of high-efficiency computation, because
the BCS-based algorithms can be realised by a fast relevance vector
machine (RVM) [6, 7].

Conclusion: In this Letter, a high-accuracy and maximally sparse
pattern synthesis method is proposed. Given a set of L samples of the
reference pattern, the proposed method converts the pattern synthesis
problem into the sparse signal restoration from an overcomplete set of
{dn, wn}

N
n=1 (N ≫ L . M ). Owing to the sparsity of the BCS-based

algorithms, the reference pattern can be synthesised by a much
smaller set of sparse non-uniform array elements than the uniformly
spaced linear array. Reduction of the array element number will
usually make the array system more efficient. Furthermore, the proposed
method utilises the OG model to estimate array element positions dm,
m = 1, …, M more accurately than the conventional model which
uses a fixed uniform position grid. Another advantage of the proposed
algorithm is that the BCS-based algorithms can be more efficiently
achieved by a fast RVM than conventional CS algorithms. To summar-
ise, the proposed OG BCS method for pattern synthesis has the advan-
tages of sparsity, accuracy and high efficiency compared with existing
state-of-the-art pattern synthesis methods.
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