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A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical
calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an ST-90∘ X
quartz substrate and two 28-𝜇m periodic interdigital transducers. Both the calculated and the measured results
show an increase in propagation velocity when ℎ/𝜆 > 0.05. The measured insertion loss of LWs is consistent with
the calculated propagation loss. The insertion loss of bulk waves is also measured and is compared with that of
LWs.
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Recently a growing number of acoustic wave
modes[1−3] have been applied in various fields. Among
the modes, Love wave (LW) sensors have been at-
tracting much attention since they were used for bio
(chemical) sensing applications.[4,5] The detector of an
LW based sensor consists of a semi-infinite piezoelec-
tric substrate which supports shear horizontal (SH)
waves, a guiding layer in which the transverse acoustic
wave is slower than that in the substrate, and inter-
digital transducers (IDTs) which are deposited on the
substrate surface for exciting and receiving SH waves.
The maximum sensitivity has been proved, occurring
at the maximum slope of the dispersion curve. To
achieve a higher sensitivity, LW devices have been
reported[6,7] incorporating guiding layers consisting
of polymeric materials which have slower transverse
waves and lower density than the commonly used sil-
icon dioxide. Due to the viscoelasticity of polymers,
most developed LW devices incorporate guiding lay-
ers that are much thinner than the optimum thick-
ness. Only McHale et al.[8] and Newton et al.[9] car-
ried out experimental study on the resonant conditions
and insertion loss changes of LW devices with thick
S1813 photoresist layers on ST-cut quartz substrates.
In their experiments, the first higher order mode LW
was found, occurring at the relative layer thickness of
ℎ/𝜆 = 0.06, which is much thinner than the theoreti-
cal thickness. To the best of our best knowledge, there
is still no reasonable theoretical explanation for this
abnormal phenomenon.

In this Letter, we present a detailed investiga-
tion on LW devices with thick viscoelastic guiding
layers. A theoretical calculation is carried out for
LW devices incorporating an SU-8 guiding layer, an
ST-90∘ X quartz substrate and two 28-µm periodic
IDTs. The experimental devices are fabricated and
measured. The calculated velocity agrees well with

the measured result and it shows that the guiding layer
viscoelasticity causes an increase in the LWs propaga-
tion velocity. The insertion loss of LWs is measured,
which is consistent with the calculated propagation
loss. The insertion loss of bulk waves (BWs) is also
measured and is compared with that of LWs. The re-
sults and discussions presented in this work will be
helpful in analyzing and optimizing the performances
of LW based sensors incorporating polymeric layers.

The substrate of an LW device must be a ma-
terial which supports pure piezoelectric SH acoustic
waves.[10,11] The most commonly used substrate is ST-
cut quartz, which has a tiny piezoelectricity and an
obvious anisotropy, thus it can be considered as an
anisotropic medium. The guiding layer is an isotropic
material which is coated on the substrate surface with
a thickness of ℎ. The dispersion equation[12] of LWs
in such a structure is

𝜇L𝛽L tan(𝛽L𝑘ℎ) = 𝑐44𝛽S, (1)

where 𝑘 = 𝜔/𝑣 is the propagation factor of LWs, 𝜔 is
the angular frequency, 𝑣 is the propagation velocity,
𝛽L =

√︀
𝑣2/(𝑉L)2 − 1 is the particle displacement dis-

tribution factor in the guiding layer, 𝑉L =
√︀
𝜇L/𝜌L is

the phase velocity of transverse acoustic waves in the
layer, 𝜇L and 𝜌L are the shear modulus and density of
the guiding layer, respectively, 𝛽S =

√︀
(𝑉 2

S1 − 𝑣2)/𝑉 2
S2

is the real part of the distribution factor in the sub-
strate, 𝑉S1 =

√︀
(𝑐66 − 𝑐246/𝑐44)/𝜌S is the velocity of

quasi-SH waves propagating in the same direction to
LWs, 𝑉S2 =

√︀
𝑐44/𝜌S is the velocity of SH-polarization

and propagating in the vertical direction, 𝑐44, 𝑐46 and
𝑐66 are elastic constants of the substrate, and 𝜌S is the
density of the substrate.

Different from elastic overlays, a polymer guiding
layer will produce a large propagation attenuation due
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to its non-ignorable viscosity. When the viscoelastic-
ity is included, the shear modulus 𝜇L of the guiding
layer becomes a complex variant. The mechanical
behavior of a viscoelastic material can be described
by using the Maxwell–Weichert model[13] consisting
of springs and dashpots. In this work, a simplified
model incorporating an elastic branch and a Maxwell
branch is adopted. Thus the complex shear modulus
can be expressed as

𝜇L = 𝜇0 + 𝜇1
𝑖𝜔𝜏1

1 + 𝑖𝜔𝜏1
, (2)

where 𝜏1 = 𝜂1/𝜇1 is the relaxation time of the Maxwell
branch, 𝜇0 and 𝜇1 are elastic constants of the elastic
branch and the Maxwell branch respectively, and 𝜂1
is the viscosity of the Maxwell branch. Substituting
the complex 𝜇L into the dispersion equations, we can
obtain a complex velocity 𝑣 = 𝑣r + 𝑖𝑣i. Here 𝑣r rep-
resents the propagation velocity in the 𝑥1 direction,
while 𝑣i is related to the propagation loss in the 𝑥1

direction. The insertion loss (IL) reads

IL = 20 log10 𝑒
Im(𝜔/𝑣) ≈ −54.6

𝑣i
𝑣r
. (3)

The LW devices used in our experiments consist of
an ST-cut and 90∘ X-propagation quartz substrate
with two lithographically defined Al (200 nm) IDTs.
The IDTs are of aperture 2mm and separated by a
path length (center to center distance) of 4 mm. Each
IDT consists of 72 periods of split-electrodes, with a
wavelength of 𝜆 = 28µm (3.5µm electrode widths and
spacings).

A guiding layer was deposited on the device sur-
face by spin coating a solution of SU-8 2050 (with a
volume ratio of 1:3 to the diluent agent), where a neg-
ative epoxy-based photoresist was obtained with Mi-
croChem equipment. To achieve different layer thick-
nesses, we took the rotating speed ranging from 1000
to 5000 rpm and different spinning times, and the layer
was post-cured by heating the device for 30 min at
150∘C. The film on the wire pad was removed by us-
ing a sharp scalped blade. The thickness of the pre-
pared SU-8 layer was measured by using an Alpha-
step IQ surface profiler (KLA-Tencor, San Jose, CA).
The coated wafer was divided into several LW devices.
Then each device was mounted on a rectangular DIP
header with electrical connections made by Al wires
bonding. The input and output impedances of the
Love device were matched to around 50 Ω by using LC
circuits. Two SMA connectors were applied to connect
the device and an HP8753D network analyzer.

Figure 1 shows the frequency response 𝑆21 of the
LW device covered a 0.74-µm-thick SU-8 guiding layer.
There are two obvious signals. One is located at the
frequency of 177.0MHz (the corresponding propaga-
tion velocity of 4956.6 m/s), which is caused by the

fundamental mode of LWs. The insertion loss of LWs
is of about 10 dB. Another signal is distributed be-
tween 182–191MHz (the corresponding propagation
velocity of 5096–5348m/s), which is probably caused
by bulk waves. The insertion loss of bulk waves is
about 30 dB.
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Fig. 1. Frequency response of the LW device coated with
a 0.74-µm-thick SU-8 layer.

0 0.02 0.04 0.06 0.08
4500

4600

4700

4800

4900

5000

5100

Normalized layer thickness (h/λ)

V
e
lc

it
y
 o

f 
L
o
v
e
 w

a
v
e
s 

(m
/
s)

Fig. 2. Theoretical and experimental velocities of the fun-
damental Love mode.

Figure 2 shows the calculated (solid line) and mea-
sured (stars) propagation velocities as a function of
the normalized layer thickness (ℎ/𝜆). In the numer-
ical calculations, the material parameters of the sub-
strate (ST-90∘ X quartz)[12] are assumed: the elas-
tic constants of 𝑐66 = 67.47 GPa, 𝑐44 = 30.34 GPa,
𝑐46 = −7.60 GPa, and the density of 𝜌 = 2651 kg/m3;
the parameters of the guiding layer (SU-8) are as-
sumed: 𝜇0 = 0.94 GPa, 𝜇1 = 0.71 GPa, 𝜏1 = 0.9 ns,
and 𝜌L = 1215 kg/m3. As shown in Fig. 2, initially
the propagation velocity is slowly reduced by increas-
ing the guiding layer thickness. During the calcula-
tions, the substrate piezoelectricity is ignored, which
will cause a reduction of ∼20 m/s in propagation ve-
locity of the fundamental Love mode;[12] therefore the
theoretical velocity is lower than the experimental val-
ues.

When ℎ/𝜆 exceeds 0.03, the velocity reducing is
sped up, which is proved in an optimum region to
achieve a large mass loading sensitivity. When ℎ/𝜆
exceeds 0.05, the reducing is decreased rapidly and
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even a raising velocity is obtained as the layer is fur-
ther thickened. The theoretical velocity can reach up
to 5050m/s at ℎ/𝜆 = 0.07, which is equivalent to the
velocity of SSBW in the substrate. This result co-
incides with some previously reported experimental
results.[8,14]
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Fig. 3. Theoretical propagation loss (solid line) of the
fundamental Love mode and measured insertion loss of
LWs (asterisks) and BWs (circles).

For a Love device, the insertion loss is decided by
IDT structures, the electromechanical coupling factor
and the propagation loss, which is caused by the vis-
cosities of the guiding layer and the substrate. In this
work, the substrate is considered as an elastic mate-
rial, thus the propagation loss is mainly caused by the
polymeric guiding layer. Figure 3 shows the calculated
propagation loss (solid line) of the fundamental Love
mode, the measured insertion loss of LWs (asterisks)
and bulk waves (circles). As the guiding layer is thick-
ened, the calculated propagation loss is always being
increased. When ℎ/𝜆 < 0.03, the propagation loss is
relatively small and increased very slowly; thus the de-
vice insertion loss is mainly decided by the electrome-
chanical coupling factor rather than the propagation
loss. As mentioned in previous reports, the electrome-
chanical coupling factor is initially increased with
thickening the guiding layer and is seldom affected by
the viscosities of guiding layers. Therefore, the mea-
sured device insertion loss is decreased with thickening
the guiding layer. When ℎ/𝜆 > 0.03, the propagation
loss is increased at an increasing speed with thicken-
ing the guiding layer; the attenuated acoustical energy
caused by increasing propagation loss exceeds the in-
creased energy produced by enlarging the electrome-
chanical coupling factor. Therefore, the insertion loss
of LWs is increased when the guiding layer is further
thickened. As ℎ/𝜆 > 0.05, the propagation loss is
increased at an accelerating rate while the electrome-
chanical coupling factor starts to be decreased, thus

the device insertion loss is increased very rapidly and
soon the signal of LWs is too weak to be detected.

The insertion loss of bulk waves is shown by cir-
cles in Fig. 3. When ℎ/𝜆 < 0.05, the insertion loss of
bulk waves is also first decreased and then increased,
which is similar to that of LWs. When ℎ/𝜆 > 0.05,
the insertion loss is quickly increased with thicken-
ing the guiding layer. It should be noted that when
ℎ/𝜆 > 0.043, the insertion loss of bulk waves is
less than that of LWs. This phenomenon is easily
misunderstood as the start of the first higher order
Love mode. In fact, the theoretical starting layer
thickness[15] is ℎ = 𝜆

2
√

𝑉 2
S /𝑉 2

L−1
≈ 𝜆

9 .

In conclusion, we have shown a detailed investiga-
tion on LW devices incorporating a thick viscoelastic
guiding layer. When the relative guiding layer exceeds
0.05, the theoretical result shows that the viscoelastic-
ity causes an increase in the propagation velocity of
LWs, and the result is confirmed with the experimental
devices. The insertion losses of LWs and bulk waves
are also measured and analyzed. The calculated prop-
agation loss is consistent with the measured insertion
loss of LWs. The results and discussions presented in
this work will be helpful in analyzing and optimizing
the performances of LW based sensors incorporating
polymeric layers.
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