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A propagation experiment was conducted in the South China Sea in 2014 with a flat bottom and seamounts
respectively by using explosive sources. The effects of seamounts on sound propagation are analyzed by using
the broadband signals. It is observed that the transmission loss (TL) decreases up to 7 dB for the signals in
the first shadow zone due to the seamount reflection. Moreover, the TL might increase more than 30 dB in the
converge zone due to the shadowing by seamounts. Abnormal TLs and pulse arrival structures at different ranges
are explained by using the ray and wave theory. The experimental TLs and arrival pulses are compared with the
numerical results and found to be in good agreement.
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Seamounts in deep water have significant effects
on sound propagation. Over the past several decades,
physical experiments and theoretical approaches have
been explored. However, the phenomena of acous-
tic propagation around seamounts are not well under-
stood due to the complexities and uncertainties from
oceanographic variability and the geo-acoustic prop-
erty of the sea bottom.[1−3]

A series of sound propagation experiments over the
seamounts have been conducted. One of the first ex-
periments was carried out in 1968,[4,5] in which ex-
plosive signals were dropped in the northeast Pacific
as the sources and hydrophones located near Mid-
way and Wake islands to record signals, respectively.
The experiment showed that the peak pressure levels
recorded at Wake were as much as 35 dB below those
at Midway and the spectral energy density ratio be-
tween Wake and Midway was frequently independent.
Another experiment was carried out over the Dickins
Seamount in the northeast Pacific ocean in 1975[6,7]

by using both explosive shots and CW sources. The
results showed that the increased TL was up to 15 dB
for the shallow source in which all deep refracted waves
could be blocked by the seamount and the shadowing
loss behind the seamount was an 𝑓1/2 dependence at
frequencies larger than 50Hz.

Kim investigated the physical characteristics of
sound propagation around seamounts.[1] The broad-
band pulses measured from the BASSEX experiment
carried in the northeast Pacific around the Kermit–
Roosevelt seamounts in 2004. It was found that the
shadow and convergence zones behind the seamounts
were matched well between the experimental data and

the 2D and 3D sound propagation models. How-
ever, reconciliation of the broadband pulses behind
the seamount was more challenging due to the compli-
cated environment. It is worth experimentally investi-
gating the effects of seamounts on sound propagation
in deep water further.

In this Letter, a sound propagation experiment
with the presence of seamounts conducted in the
South China Sea is introduced firstly. The TLs along
two propagation tracks with and without seamounts
are compared. The numerical TLs are simulated to
compare with the experimental data. Furthermore,
the arrival pluses and ray diagram are analyzed to
show the effects and mechanisms of seamounts on
sound propagation in deep water.

In 2014, an experiment of sound propagation was
conducted in the deep water area of the South China
Sea. The receiving array made by 24 distributed un-
derwater signal recorders (USR) from 130 m to 1800m
with different intervals was moored at the bottom.
The sample rate of hydrophones is 8000Hz. The
wide band signals (WBS) charged with 1 kg TNT were
dropped from Chinese 𝑅/𝑉 Shi Yan 1 from the Insti-
tute of Acoustics, Chinese Academy of Sciences along
two propagation tracks with and without seamounts.
The nominal detonation depth of WBS is 200 m.

The bathymetries along the propagation tracks
with and without seamounts are given in Fig. 1. The
top of the first seamount is 800 m below sea sur-
face and in a 30 km range from the receiving ar-
ray. The bottom along the propagation track with-
out seamounts is relatively flat, which is called flat
bottom, and the average depth is about 4305m. The
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sound speed profile shown in Fig. 2 was measured by
XBT in the experiment. The depth of the sound chan-
nel axis is about 1200m and the sound speed at the
bottom is 1532m/s, which is less than that at sea sur-
face, 1544 m/s.
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Fig. 1. Bathymetry along two propagation tracks.
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Fig. 2. Sound speed profile measured in the experiment.
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Fig. 3. TLs along two tracks with/without seamounts,
for a central frequency of 300Hz, a source depth of 200m,
and a receiver depth of 170m.

The measured spectra are averaged in the 1/3-
octave bandwidth. The narrow band energy of the
propagation signal is represented as

𝐸(𝑓0) =
2

𝐹 2
s

1

𝑛𝑓2 − 𝑛𝑓1 + 1

∑︁𝑛𝑓2

𝑖=𝑛𝑓1
|𝑋𝑖|2, (1)

where 𝑋𝑖 represents the FFT spectrum of the signal

𝑥(𝑡) at the 𝑖th frequency bin, 𝑓0 is the central fre-
quency, 𝐹s is the sample rate, and 𝑛𝑓1 and 𝑛𝑓2 are
the start and end frequency numbers for the frequency
band, respectively.
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Fig. 4. TLs for environments without seamounts (a) and
with the presence of seamounts (b), for a central frequency
of 300Hz, and the source depth of 200m.
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Fig. 5. Comparison of the numerical TLs and experimen-
tal TLs for environments without seamounts (a) and with
the presence of seamounts (b), for a central frequency of
300Hz, a source depth of 200m, and a receiver depth of
170m.

The TL can be denoted as

𝑇𝐿(𝑓0) = 𝑆(𝑓0)− (10 log(𝐸(𝑓0))− 𝑏), (2)

where 𝑆 is the source level, and 𝑏 is the sensitivity of
the hydrophones.

TLs are shown in Fig. 3 for the conditions with
and without seamounts, where the central frequency
is 300 Hz, and the receiver depth is 170 m. It can be
seen from Fig. 3 that the TLs for the environment with
the seamounts decrease down to 7 dB in the range of
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28 km and increase more than 30 dB in the range of
56–62 km compared with those for the environment
without the seamounts.
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Fig. 6. The 2D color map of range-stacked arrival pulses,
(a) experimental results and (b) numerical results, for a
source depth of 200m, a receiver depth of 170m, a central
frequency of 300Hz and a bandwidth of 10Hz.
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Fig. 7. Comparison of numerical arrival pulses with the
experimental results in the range of 28 km indicated by
horizontal dashed lines in Fig. 6.

To explain the results shown in Fig. 3, the BELL-
HOP ray model[8] is used to calculate the propaga-
tion sound field for the environments with/without
seamount. According to the principle of reciprocity,[7]

the positions of source and receiver are exchanged in
the calculation. The bottom parameters were mea-
sured through core sampling in the experiment. Sam-
ple analysis results show that the bottom type is silty
clay. For the sake of great dispersion of sound speed
in the sediment, preliminary inversion[9] was imple-
mented. Then, a two-layer fluid bottom model is
established with a sediment thickness of 5 m, a sed-
iment sound speed of 1565m/s, a sediment density
of 1.6 g/cm3, a sediment attenuation coefficient of
0.09 dB/m, a basement sound speed of 1650 m/s, a
basement density of 1.8 g/cm3 and a basement atten-

uation coefficient of 0.4 × (𝑓/1000)0.9 dB/𝜆,[9] where
𝑓 is in units of kHz.

Figure 4 shows the two-dimensional TL for the en-
vironments with and without seamounts, in which the
source depth is 200 m, and the central frequency is
300 Hz. It can be seen from Fig. 4 that ranges of 28 km
and 56–62 km in Fig. 3 represent the first shadow zone
and the first convergence zone for the flat bottom envi-
ronment, respectively. Comparing Figs. 4(a) and 4(b),
we find that sound signals can be reflected to the re-
ceivers in the shadow zone from the up sloping bot-
tom of the first seamount. It causes the intensities
near the range of 28 km for the seamount environ-
ment to be higher than that of the flat bottom en-
vironment. For the range greater than the site of the
first seamount, the sound energy is shadowed by the
seamounts. Therefore, the convergence structures of
the sound field in deep water are destroyed, and TLs
increase more than 30 dB. A comparison of the nu-
merical TLs and experimental TLs along two differ-
ent tracks is shown in Fig. 5 for the receiver depth at
170 m. It can be seen that the numerical TLs are in
good agreement with the experimental TLs. Although
the problems with seamounts are complex, the TLs
can still predicted very well, and the effects of the
seamounts on sound propagation are obvious. The
small differences between numerical TLs and exper-
imental TL for the range larger than 50 km may be
caused by the errors of geo-acoustic properties and
the slope bathymetry.

Next, arrival structure of pulse signals are ana-
lyzed for the seamount environment. The numerical
and experimental range-stacked arrival pulses[6] are
given in Figs. 6 and 7, where the central frequency is
300 Hz with a bandwidth of 10Hz. Figure 7 gives the
results in the range of 28 km. The reduced time of
the horizontal coordinate in Figs. 6 and 7 is computed
by subtracting the propagation time from the arrival
time. The color values in Figs. 6 and 7 are denoted as

𝐸 = 20 log10(𝑝(𝑟, 𝑡)/𝑝max(𝑟, 𝑡)), (3)

where 𝑝 is the sound pressure, and 𝑝max is the max-
imum of 𝑝. The value of the vertical coordinate in
Fig. 7 is the normalized amplitude. The white solid
lines in Fig. 6 are at the positions of the top of the
first seamount. There is a maximal intensity at 28 km
for both simulation and experiment results because
more rays can arrive in this range. The ray diagram
is displayed in Fig. 8. There are three main kinds of
rays denoted by three kinds of colored lines. Combin-
ing Figs. 7 and 8, the first arrival pulse marked by the
solid red line undergoes one bottom reflection (1BR),
the second arrival pulse marked by the dashed dark
line undergoes 1BR and one surface reflection (1SR) or
2SR, and the third pulse marked by the dotted green
line undergoes 2BR and 1SR. The amount of rays that

064302-3

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

http://cpl.iphy.ac.cn


CHIN.PHYS. LETT. Vol. 32, No. 6 (2015) 064302

undergo 1BR for the environment with the seamount
is twice of the rays in the flat bottom environment.
Moreover, the rays marked with the same color and
undergoing the same reflections in Fig. 8 have approx-
imate amplitude and phase. Additionally, other rays
which undergo more than 1BR can also reach the re-
ceiver. Here 20log10 2 approximately equal to 6 dB.
Therefore, the TLs around 28 km decrease up to 7 dB.
In the shadow zone (52–62 km) of the seamount, the
numerical arrival pulse can roughly match with the
experimental results. In fact, the geo-acoustic proper-
ties and slope bathymetry of the first seamount play
important roles in the reflection. Small errors for these
parameters in the model can cause the differences.
This is a challenging problem and may be related to
ray chaos.[6]
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Fig. 8. Eigen rays from the source to the receiver in the
range of 28 km, for a source depth of 200m and a receiver
depth of 170m.

In summary, an experiment has been carried out
to investigate the effects of seamounts on sound prop-
agation in deep water. Obvious TL differences for

propagation in the environments with and without
seamounts are observed. Under conditions where the
seamount is located in the first shadow zone, the TLs
decrease up to 7 dB for the ranges before the top of
the seamount due to the reflection of bathymetry. The
convergence zone structure appearing in the deep wa-
ter with a flat bottom environment might be destroyed
by the direct blockage of the seamount and TLs in-
crease more than 30 dB after passing the seamount.
Abnormal TLs and pulse arrival structures in differ-
ent ranges are explained by using the ray theory. The
numerical TLs and pulse arrival structures can match
with the experimental results very well. Next, a sta-
tistical approach will be used to explain some sound
propagation phenomena after the seamounts.

We thank all the staff for participating in the ex-
periment and developing the sources and receivers.
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