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a b s t r a c t

The purpose of this study was to quantify muscle activity in the time–frequency domain, therefore
providing an alternative tool to measure muscle activity. This paper presents a novel method to measure
muscle activity by utilizing EMG burst presence probability (EBPP) in the time–frequency domain. The
EMG signal is grouped into several Mel-scale subbands, and the logarithmic power sequence is extracted
from each subband. Each log-power sequence can be regarded as a dynamic process that transits
between the states of EMG burst and non-burst. The hidden Markov model (HMM) was employed to
elaborate this dynamic process since HMM is intrinsically advantageous in modeling the temporal
correlation of EMG burst/non-burst presence. The EBPP was eventually yielded by HMM based on the
criterion of maximum likelihood. Our approach achieved comparable performance with the Bonato
method.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The detection of muscle activity using surface electromyogra-
phy (EMG) is one of the fundamental steps in many applications
such as motor control (Merlo et al., 2003; Micera et al., 2001),
posture and gait analysis (Bonato et al., 1998; Li et al., 2007), and
myoelectric control of prosthetic devices (Dalley et al., 2012;
Severini et al., 2012). The literature has widely reported various
computerized detection techniques of muscle activity onset, in
which the most common utilized parameters were associated with
the EMG signal amplitude (Bonato et al., 1998; Hodges and Bui,
1996; Santello and McDonagh, 1998). However, most EMG onset
detection methods up to now only give EMG burst presence
information in the time domain (Hodges and Bui, 1996; Lee
et al., 2007; Merlo et al., 2003; Micera et al., 2001; Santello and
McDonagh, 1998; Severini et al., 2012; Staude, 2001; Xu et al.,
2013), the more detailed information in each frequency compo-
nent is absent. A novel time–frequency representation is required
to investigate the changes in wideband spectral power over time
during EMG bursts. Moreover, EMG signal is sparsely distributed
in the time–frequency domain, namely not each frequency

component is occupied by EMG signals even for EMG bursts are
present. Thus, it is required to identify the frequency components
of non-burst EMG and further suppress them in the detection of
the onset of muscle activity.

Signal presence probability can give a full description of signal
presence in the time–frequency domain. This description method
was conventionally used for speech signal processing, wherein it
was derived from the ratio between the local energy of the noisy
speech and its minimum within a specified time window (Cohen
and Berdugo, 2002). This ratio-based method subsequently evolved
into a Gaussian mixture model (GMM) that consists of speech and
non-speech Gaussian models (Cohen, 2003; Rangachari and Loizou,
2006). But the GMM does not consider the temporal correlation of
signal power. To overcome this limitation, the hidden Markov
model (HMM) has successfully been applied to estimation of speech
presence probability (SPP), which has the capability of modeling the
temporal correlation (Ying and Yan, 2013). Since the envelope of
EMG signal exhibits the temporal correlation, similar to speech
signal, HMMs have been applied to modeling the EMG signal (Chan
et al., 2002, 2006; Lee, 2008).

The aim of this study was to quantify muscle activity in the
time–frequency domain, therefore providing an alternative tool to
measure muscle activity. This paper presents a new measure of
muscle activity for mitigating the effects of the frequency compo-
nents of non-burst EMG signals by introducing EMG burst pre-
sence probability (EBPP) to characterize the EMG activity.
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2. Methods

2.1. EMG burst presence probability

Motivated by previous SPP estimation studies (Cohen, 2003; Cohen and Berdugo,
2001, 2002; Gerkmann et al., 2008; Rangachari and Loizou, 2006), we estimated the
probability of the presence of EMG bursts using a sequential GMM that consists of
EMG burst and non-burst Gaussian models. Let sℓ ¼ 1 and sℓ ¼ 0 respectively
indicate the two hypotheses of EMG burst presence and absence in the ℓth frame,
corresponding to the EMG burst and non-burst states. The GMM is represented as

pðyℓ jλℓÞ ¼
X
sℓ

pðyℓ ; sℓ jλℓÞ

¼
X
sℓ

pðsℓ jλℓÞpðyℓ j sℓ ; λℓÞ ð1Þ

where yℓ represents the logarithmic power in the ℓth frame, λℓ denotes the
parameter set, pðsℓ jλℓÞ represents the priori distribution of EMG burst presence/
absence, and pðyℓ j sℓ; λℓÞ is the conditional probability density function of EMG
burst presence/absence, given by

pðyℓ j sℓ ¼ i;λℓÞ ¼ 1
πηi;ℓ

exp �y2ℓ=ηi;ℓ
� � ð2Þ

where ηi;ℓ9Efy2ℓ j sℓ ¼ ig denotes the short-term magnitude spectrum of the EMG
burst/non-burst components. Accordingly, the EBPP is represented as

pℓ ¼
pðyℓ; sℓ ¼ 1jλℓÞ

pðyℓ jλℓÞ
¼ pðsℓ ¼ 1jλℓÞpðyℓ j sℓ ¼ 1; λℓÞP

sℓ pðsℓ jλℓÞpðyℓ j sℓ ;λℓÞ
ð3Þ

2.2. Muscle activity estimation using EMG burst presence probability

Presence of EMG burst in a given frame can be determined by the ratio between
the local energy of the noisy EMG and its minimumwithin a specified time window.
Thus, EMG burst and non-burst frequency components can be detected by an EBPP
estimator in frequency subands. It follows from Eq. (3), the computation of the EBPP
requires an estimate for the parameter set λℓ . The algorithm of improved minima
controlled recursive averaging (IMCRA) represents the parameter set as a function of
a posteriori and a priori signal-to-noise ratio (Cohen, 2003). Similar to the IMCRA
method, the constrained sequential HMM can be used to estimate SPP, which has the
capability of modeling the temporal correlation (Ying and Yan, 2013). Specifically,
HMMs can model a time sequence of presence/absence of EMG burst as a dynamic
process of the transition between EMG burst and non-burst states (Chan et al., 2002,
2006; Lee, 2008). Similar to the estimation of SPP in previous studies (Ying and Yan,
2013), the EBPP was derived from the HMM in this study. An HMM considers a log-
power sequence in a causal window of L samples, xℓ ¼ fxℓ� Lþ1 ;…; xℓg. The
logarithmic powers of EMG burst and non-burst are assumed to follow a Gaussian
distribution. The transitional dynamics of the power sequence between EMG burst
and non-burst states is modeled by a Markov chain, in which the output probability
of each state is represented by the Gaussian model. These transition probabilities are
estimated from the observed data based on the criterion of maximum-likelihood.

In the succeeding sections, λℓ denotes the parameter set of HMM that is
estimated from log-power sequence xℓ , and sℓ ¼ fsℓ�Lþ1 ;…; sℓg represents a state
sequence corresponding to xℓ . Given a training sequence xℓ , a maximum-likelihood

estimate of the parameter set λℓ is given by

λℓ ¼ argmax
λ

ln
X
sℓ

pðxℓ ; sℓ jλÞ ð4Þ

The model parameters were determined by using the expectation–maximiza-
tion (EM) algorithm. The HMM probability density function

P
sℓpðxℓ ; sℓ jλℓÞ and the

mathematical details of the HMM were described in Ying and Yan, 2013.
The EMG signal was first chopped into a series of frames using a Hanning

window (window length: 32 ms, overlapping step: 16 ms). The signal of each frame
was subsequently transformed into the frequency domain by the fast Fourier
transform (FFT). Then, the signal is grouped into eight Mel-scale subbands by using
the logarithmic value of the absolute magnitude sum of included FFT bins, where
the boundary for the d-th Mel-scale is given by

Id ¼ 700� exp
dm
2595

� log10
� �

�1
� �

� NFFT=f ð5Þ

where f is the sampling frequency, NFFT is the FFT length, and NF is the number of
Mel-scale subbands, and m is the maximal Mel value, given by

m¼ 2595� log 10 ð1þðf =1400ÞÞ
NF

ð6Þ

The whole band was partitioned into NF subbands by the boundaries
I0 ; I1; I2 ;…; INF

� �
. Finally, the EBPP was computed at each subband, which describes

the EMG burst in the time–frequency domain using energy information along both
time and frequency axes. Our method utilizes a one-dimension HMM model on
each subband. All HMMs run in parallel.

2.3. Performance evaluation

The EBPP was examined using both simulated and experimental surface EMG
signals to measure muscle activity. A series of EMG signals were simulated at a
sampling rate of 2000 Hz by filtering white Gaussian noise with a shaping filter
modeling the characteristics of typical surface EMG (Shwedyk et al., 1977; Stulen
and De Luca, 1981). The shaping filter is defined as

Hsf sð Þ ¼ ksð2πf hÞ2
sþ2πf l
� 	ðsþ2πf hÞ2

ð7Þ

where s is the Laplace variable, k is a scaling factor. The cutoff frequencies f l and f h
of the band-pass filter were set to 80 Hz and 120 Hz (Bonato et al., 1998; Vannozzi
et al., 2010), respectively. An independently generated zero-mean white Gaussian
noise was added to clean EMG signals to simulate surface EMG recordings with
different noise levels. The standard deviation of the noise was determined by the
noise level resulted in different SNRs (20, 15, 10, 8, 5 and 2 dB, respectively) of the
EMG signal. The SNRs were selected according to previous studies (Bonato et al.,
1998; Li et al., 2007). For each SNR, 60 trials of signal were generated.

The experimental surface EMG signals were collected from the brachioradialis
of one normal control subject with no known neuromuscular disease (31, male)
with a Refa EMG system (TMS International B.V., Netherlands). The signal sampling
rate was 2000 Hz.

In addition, the performance of the EBPP method was compared with one previous
method for muscle activity onset detection. The method is based on the double
threshold algorithm (Bonato et al., 1998) (denoted as Bonato method). A two-way
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Fig. 1. Comparison of distributions of logarithmic powers in EMG burst and non-burst states. An example of EMG was collected from the brachioradialis of one normal
control subject with no known neuromuscular disease (31, male) at a sampling rate of 2000 Hz. The corresponding histograms of logarithmic power amplitudes of the EMG
in burst and non-burst states are plotted. Both distributions closely approximate a Gaussian distribution (determined by a Lilliefors test).
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ANOVA (factors are SNR and detection method ) was performed to determine how
much of effects the SNR value and detection method had on the latency.

3. Results

3.1. Distribution of logarithmic powers in EMG burst and non-burst
states

The probability distribution of the logarithmic power amplitudes
of burst or non-burst EMGwas estimated from a histogram using the
aforementioned experimental EMG signals. Fig. 1 shows an example
of experimental EMG and the corresponding histograms of logarith-
mic power amplitudes of the EMG in burst and non-burst conditions,
which display two typical histograms together with two plots of a
Gaussian distribution with mean and variance. The logarithmic
power amplitudes of burst and non-burst EMG were normally
distributed and were fitted by single Gaussian curves (smooth

curves) with means at 21.3 and 53.6 dB, respectively. Furthermore,
the composite normality of the logarithmic power amplitudes of
burst or non-burst EMG was tested using the Lilliefors test (Lilliefors,
1967). The test showed that the logarithmic power amplitudes of
burst and non-burst EMG could be assumed to have a Gaussian
distribution, at risk of 5%. These results provide quantitative evidence
consistent with the hypothesis that the distribution of logarithmic
power amplitudes of burst or non-burst EMG closely approximates a
Gaussian distribution.

3.2. Results from simulated surface EMG signals

We plot the frequency resolution curves of the Mel frequency
warping method in Fig. 2, where the frequency–EBPP curve is also
plotted. Fig. 2 shows that the EMG signal is always present with
higher probability at low frequency than that at high frequency
within the EMG bandwidth, thus the EBPP appears to increase when
the frequency of the corresponding EMG signal decreases. These
results indicate that the Mel-scale emphasizes the lower frequencies,
which distributes linearly and is more meaningful for EMG frequency
warping processing than the uniform frequency warping method.

An example of EBPPs from simulated EMG is shown in Fig. 3,
where the EBPP (c) and the spectrograms of the EMG signal (b) are
presented for an EMG trial corrupted by white noise with different
SNR values (a). The probability of EMG burst presence is a time–
frequency representation, which has three key quantities includ-
ing magnitude, frequency and time, thus provides the probability
of the presence of an EMG burst at a specific time and frequency.
We found that the EBPP demonstrates a consistent but discrimi-
native pattern to detect presence of EMG burst from background
noise therefore providing an alternative tool for muscle activity
detection. Note that we plotted the EBPP with high frequency
resolution instead of using eight Mel subbands to provide a
graphical comparison between the EBPP and noisy spectrum.

Fig. 2. Comparison of frequency resolutions of filter bands with Mel scale
processing and EBPPs across all the frequencies. The EBPP curve uses the scale of
the right axis, and the Mel-scale curve uses the scale of the left axis.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

2000

4000

Time(s)

E
M

G
 A

m
pl

itu
de

(a
.u

.)

-2000

Fr
eq

ue
cn

y(
H

Z)
Fr

eq
ue

cn
y(

H
Z)

1000

0

200

400

600

800

0
200

400

600

800

SNR=10SNR=8 SNR=15 SNR=5 SNR=20 SNR=2

0

0.5

1.0

Fig. 3. Spectrogram illustrating the EBPP estimated by the sequential HMM method. (a) Superimposing the rectangular envelope built on the basis of the onset/offset to the
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3.3. Muscle activity detection

The EMG recordings were band-pass filtered between 20 and
500 Hz prior to onset detection using the EBPP and Bonato
methods. The onset performance was evaluated by the latency τ,
defined as the absolute difference between the true onset time t0
(e.g. 0.5 s for each testing signal) and the detected onset time td

τ¼ j td�t0 j ð8Þ
The muscle activity detection performance with different

methods is summarized in Fig. 4. Although the EBPP has a larger
latency at high SNR (around 3–4 ms difference from Bonato), but
the EBPP method is more resilient to noise. While the latency
increases by 8–9 ms for the EBPP when SNR is decreased to 2 dB, it
increases almost 70 ms for the Bonato method. A two-way ANOVA
showed no significant effects. The onset detection performance of
all two tested methods was comparable (two-way ANOVA,
P40.05, for all tested SNRs). In the cases of relatively low SNRs,
the method based on EBPP exhibited better performance than the
Bonato method, but without significant difference.

3.4. Testing of experimental surface EMG signals

The performance of the proposed method using an experi-
mental surface EMG was demonstrated. An example of the EBPP
with high frequency resolution from experimental EMG is shown
in Fig. 5, where the EBPPs from the entire Mel-scale subbands

were summed to form the envelope for characterizing muscle
activation. It is easier to visually determine the EMG onset from
the EMG burst spectral structure depicted by the EBPP (Fig. 5c)
than the spectrograms of the EMG signal (Fig. 5b).

4. Discussion

A novel approach for characterizing muscle activation was pre-
sented based on the time–frequency probability computation. The
EMG burst presence was represented by EBPP in each subband of the
EMG signal. The constrained sequential HMM was employed to
model the log-power sequence by taking advantage of the HMM's
capability of modeling the temporal correlation of EMG burst/non-
burst. The EBPP was eventually derived from the HMM parameters
based on the criterion of maximum likelihood. The performance of
the proposed method was examined using both simulated and
experimental surface EMG signals. Our results show that the EBPP
can effectively detect bursts of EMG by suppressing the interference
of frequency components of the non-burst EMG and the EBPPmethod
is resilient to noise.

In this study, exact time–frequency structure has been analyzed
with the use of the EBPP analysis for yielding the analysis of EMG
signal in the time–frequency domain. We observed that EMG signal
is always present with higher probability at low frequency within the
EMG bandwidth than at higher frequencies where the EMG power is
low (Fig. 2). EMG signal is very similar to speech signal at this point
(Lu and Dang, 2008). Thus the low-frequency bands should be
partitioned with a higher resolution than the high-frequency bands.
To emphasize low frequency information of EMG signals, the Mel
frequency warping method was used in this study. It should be noted
that this study utilizes the Mel scale property of frequency resolution,
instead of human auditory perception. We found that Mel-scale is
useful to obtain frequency components of EMG recordings to
characterize the EMG activity.

HMMs preserve the structural characteristics and temporal
ordering of the signal by using a Markov chain topology. Taking
this advantage, a sequence of EMG signals can be modeled by
HMMs. Previous studies have used HMMs to classify EMG signals in
automatic speech recognition systems (Chan et al., 2002, 2006; Lee,
2008). Whereas, the constrained sequential HMM (Ying and Yan,
2013) was utilized in this study to model a time sequence of
presence/absence of EMG burst as a dynamic process of the
transition between the states of EMG burst and non-burst. Similarly,
we estimated the EBPP from the constrained sequential HMM.

SPP estimators have successfully been used in detecting the non-
speech frequency components and further suppressing them in speech
enhancement (Cohen and Berdugo, 2001, 2002; Gerkmann et al.,

Fig. 4. Comparison of onset detection performance using different methods
(mean7standard error). Bonato: the double threshold algorithm; EBPP: method
based on EBPP conditioning. For each SNR level, the mean latency was averaged
over 60 trials of simulated surface EMG signals. The EMG recordings were band-
pass filtered between 20 and 500 Hz prior to onset detection.
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Fig. 5. An experimental EMG recording and the corresponding signal spectra, the EBPPs and the EBPP envelope. (a) A representative EMG trace consisting of four bursts.
(b) The magnitude spectrogram of the EMG data. (c) The EBPPs obtained from the EMG data, the transition from white to black associated with the EBPPs corresponds to
probability changing from 0 to 1. (d) The EBPP envelope generated from the sum of the EBPP at each Mel-scale subband.
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2008). An implication of this is the possibility that the EBPP can be
used to denoise EMG, further studies are therefore recommended to
demonstrate the potential use of the EBPP.
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