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ABSTRACT In this paper, we propose an intelligent constant false alarm rate detector, which uses support
vector machine (SVM) techniques to improve the radar detection performance in different background
environments. The proposed detector uses the variability index statistic as a feature to train a SVM and
recognizes the current operational environment based on the classification results. The proposed detector
has the intelligence to select the proper detector threshold adaptive to the current operational environment.
This detector provides a low loss performance in homogeneous backgrounds and also performs robustly in
nonhomogeneous environments including multiple targets and clutter edges.

INDEX TERMS Constant false alarm rate, support vector machine, variability index, automatic censored
cell averaging, greatest of.

I. INTRODUCTION
Constant false alarm rate (CFAR) is a useful method in adap-
tive radar detection when the background noise is unknown.
The most traditional CFAR methods are the well known
mean level detectors [1]–[3]. The cell averaging (CA-) CFAR
[1] has the optimal performance in a homogeneous environ-
ment for various signal-to-noise ratios (SNR). However, non-
homogeneous environments including multiple targets and
clutter edges are often encountered in practice. For exam-
ple, one or more interfering targets are present in the refer-
ence window for multiple targets. Moreover, clutter edges
result in a transition from one level noise power to another.
Unfortunately, the CA-CFAR suffers a severe performance
degradation in nonhomogeneous environments. The greatest-
of (GO-) CFAR [2] provides a better performance in con-
trolling probability of false alarm (Pfa) in the case of clutter
edges, but results in a dramatic probability of detection (Pd )
loss in multiple targets. The smallest-of (SO-) CFAR [3]
has better performance in multiple targets, but experiences
more false alarms than the CA-CFAR in clutter edges. More-
over, the order statistics (OS-) based CFAR attempts to
enhance the robustness of mean level detectors against mul-
tiple targets, but suffers from excessive false alarms in clutter
edges [4]–[11]. In [12], an automatic censored cell aver-
aging (ACCA-) CFAR detector is proposed based on an

ordered data variability. The ACCA-CFAR acts like the
CA-CFAR in a homogeneous environment and performs
robustly in multiple targets, but experiences even more false
alarms than the OS-CFAR in clutter edges. Based on above
discussions, a composite detector is proposed to accommo-
date various environments encountered in practice. In [17],
the variability index (VI-) CFAR detector is presented.
The VI-CFAR dynamically switches to the CA-, SO-, or
GO-CFAR, depending on the outcomes of the VI and the
mean ratio (MR) hypothesis tests. However, its detection
performance degrades considerably when interfering tar-
gets are not confined to a single half of the reference
window [12], [17].

With machine learning achieving ground breaking success
in many research fields, a switching CA/OS CFAR based
on neural network (NN-CFAR) is proposed for improving
the radar target detection in different environments [18]. The
inputs of the neural network are the CA-CFAR threshold,
the OS-CFAR threshold, and the test cell. Although the NN-
CFAR is more robust in multiple targets than the CA-CFAR,
its Pfa is even worse than the OS-CFAR during clutter edges.

Support vector machine (SVM) techniques are a powerful
machine learning method for classification, regression [19]
and other learning tasks [20]. In this paper, we propose
an intelligent CFAR detector based on SVM (SVM-CFAR)
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FIGURE 1. Block diagram of SVM-CFAR.

and use the VI as a feature to train the SVM. Specially,
the test cell is taken into consideration to calculate the VI. The
SVM-CFAR detector has the intelligence to select a proper
detector threshold according to the classification results of
the SVM. In this manner, the detector provides low loss
performance in homogeneous backgrounds and also performs
robustly in nonhomogeneous environments including multi-
ple targets and clutter edges.

Section II discusses the operations of the
SVM-CFAR including detector description, feature extrac-
tion, SVM-CFAR algorithm, and performance analysis. The
SVM-CFAR simulation results for various environments are
summarized in section III. Section IV gives conclusions.

II. SVM-CFAR DETECTOR
A. SVM-CFAR DETECTOR DESCRIPTION
The SVM-CFAR detector block diagram is provided in Fig. 1.
In-phase I and quadratureQ input signals correspond to sam-
ples of radar range returns from a matched filter receiver. For
a homogeneous noise plus clutter environment, the I and
Q signals are assumed independent and identically dis-
tributed (IID) Gaussian random processes with zero mean.
Consequently, the outputs of the square law detector are an
exponentially distributed random variables, and are serially
sent into a tapped delay line of lengthN + 1. TheN + 1 sam-
ples correspond to an even number N of reference window
xn (n = 1, 2, · · · ,N ) and a test cellD. The reference window
is divided into a leadingwindow and a laggingwindow.When
a target is present in the test cell, the guard cells between the
reference window and the test cell prohibit target energy from
invading the reference window.

For the SVM-CFAR detector, a VI module is employed to
calculate the VI statistic. A priori data are used as a training
data set. In the training stage, A SVM module is trained
by using the training data set. In the practical testing stage,
the SVM module outputs a decision function y based on
the VI of the current reference window and the test cell.

A CFAR module which contains various thresholds cor-
responding to different operational environments provides
an adaptive threshold S according to the decision func-
tion y. For each test cell, the SVM-CFAR makes a target
present or absent decision based on a comparison of the test
cell to the threshold S. Precisely, A target absent decision is
made if the value of the test cell is less than the threshold.
Otherwise, a target present decision is made. The unique
aspect of the SVM-CFAR is that it utilizes the VI as a feature
to train the SVM module and provides the threshold S based
on the classification results of the SVM module.

B. FEATURE EXTRACTION
The VI is a second order statistic which is function of the
estimated population variance σ̂ 2 and estimated population
mean µ̂2. Specially, the test cell is taken into consideration to
calculate the VI in the SVM-CFAR. In this way, we can only
use the VI rather than both the VI and the MR to recognize
the current operational environment.

The VI is calculated by using

VI = 1+
σ̂ 2

µ̂2 = 1+
1

N/2+ 1

N/2+1∑
i=1

(xi − x̄)2

(x̄)2
, (1)

where x̄ is the arithmetic mean of the (N/2+ 1) cells in a half
reference window and test cell. The probability density func-
tion of VI will change considerably, if a target signal or inter-
fering targets present in the test cell or the reference window
and other cells only contain lower power noises.

In [17], the VI and the MR are compared with two thresh-
olds (KVI and KMR) to decide that the VI and the MR come
from a nonvariable or a variable environment. However, for
SVM-CFAR, in the training stage, we need to predefine a
nonvariable or a variable property for each training sample
based on the operational environments.

A simple example of theVI in a homogeneous environment
is shown in Fig. 2. The VIA is the variability index of the
leading window and test cell. The VIB is the variability index
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FIGURE 2. A simple example of the VI in a homogeneous environment.

FIGURE 3. A simple example of the VI in a multiple targets environment.

FIGURE 4. A simple example of the VI in a clutter edges
environment (case a).

of the lagging window and test cell. For a homogeneous
environment, a target signal is in the test cell and lower
power noises are in the reference window, so we assume the
VIA and the VIB are both variable in this situation. Simi-
larly, if one or more interfering targets are present in the
leading or lagging reference windows, the VIA and the VIB
will still indicate a variable environment. The corresponding
example is shown in Fig. 3.

For a clutter edges environment, as the clutter first enters
the reference window, one or more leading window cells will
occur higher power clutters. But the test cell and the lagging
window only contain lower power noises. At this moment,
theVIA and theVIB can be assumed as a variable environment
and a nonvariable environment, respectively. The correspond-
ing example is shown in Fig. 4. As the clutter continues to
move into the test cell, as shown in Fig. 5, the VIA will
appear to be a nonvariable environment, but the VIB will be
a variable environment. Finally, as the clutter fills both the
leading window and the lagging window, each will appear to
be a nonvariable environment. The corresponding example is
shown in Fig. 6.

FIGURE 5. A simple example of the VI in a clutter edges
environment (case b).

FIGURE 6. A simple example of the VI in a clutter edges
environment (case c).

TABLE 1. The relationship between the VI and the operational
environments.

In conclusion, for a homogeneous environment and multi-
ple targets, both the VIA and the VIB can be assumed to be a
variable environment. However, for clutter edges, either the
VIA or the VIB appear to be a nonvariable environment. The
relationship between the VI and the operational environments
is shown in Table 1.

C. SVM-CFAR ALGORITHM
From above discussions, we find that the VIA and the VIB
can be the features to classify the operational environments.
On the other hand, due to the surprising classification capabil-
ity, SVM is extensively used in many classified applications.
SVM has two main advantages. First, in SVM, the training
data are first mapped into a high dimensional feature space
through a nonlinear feature mapping function. Second, SVM
can find the solution of maximizing the separating margin of
two different classes in this feature space while minimizing
the training errors. Therefore, we consider using the VIA and
the VIB as the features to train a SVM. Then, the SVM can
output a decision function y according to the classification
results.

The decision function y of the SVM module can be
expressed as [21]

y = sgn
(
EwTφ (Ex)+ b

)
, (2)
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where Ex is a testing sample (Ex ∈ Rd , d is the dimension of the
testing sample), Ew is a vector variable, b is a bias, T represents
a transpose operator, φ (Ex) represents a nonlinear feature
mapping function, and sgn represents a signum function [21]

sgn (x) =


−1 if x < 0
0 if x = 0
+1 if x > 0.

(3)

In SVM-CFAR, Ex = [VIA,VIB] (the VIA and the VIB comes
from the current reference window and the test cell) and
d = 2. To obtain Ew and b in (2), the SVM module need to
be trained by using the training data set.

The distance between two different classes in the feature
space is 2/ ‖Ew‖. To maximize the separating margin and to
minimize the training errors, the primal optimization prob-
lem is

min
Ew,b,Eξ

1
2
‖Ew‖2 + C

M∑
i=1

ξi

subject to yi
(
EwTφ (Exi)+ b

)
≥ 1− ξi,

ξi ≥ 0, i = 1, 2, · · · ,M , (4)

where Exi is ith training sample, yi is the corresponding
label (yi ∈ {−1, 1} for a two-classes pattern), (Exi, yi) repre-
sents ith training data, ξi is the training error of ith training
data, M is the number of the training data, and C is the
regularization parameter which provides a tradeoff between
the distance of the separating margin and the training errors.
In SVM-CFAR, Exi =

[
VIA,i,VIB,i

]
, where VIA,i and VIB,i

are the VIA and VIB of ith training sample, respectively.
Moreover, based on the discussions in Table 1, if the oper-
ational environment of ith training sample is clutter edges,
we will define yi = −1. Otherwise, yi = 1.
Due to the possible high dimensionality of the vector

variable Ew, (4) is equivalent to solving the following dual
problem [21]

min
Eα

1
2

M∑
i=1

M∑
j=1

yiyjαiαjφ (Exi)
Tφ
(
Exj
)
−

M∑
i=1

αi

subject to
M∑
i=1

yiαi = 0,

0 ≤ αi ≤ C, i = 1, 2, · · · ,M , (5)

where each Lagrange multiplier αi corresponds to ith training
data (Exi, yi). The kernel function K

(
Exi, Exj

)
= φ(Exi)

Tφ
(
Exj
)
,

so we have

min
Eα

1
2

M∑
i=1

M∑
j=1

yiyjαiαjK
(
Exi, Exj

)
−

M∑
i=1

αi

subject to
M∑
i=1

yiαi = 0,

0 ≤ αi ≤ C, i = 1, 2, · · · ,M . (6)

TABLE 2. The adaptive threshold S of the SVM-CFAR in different
environments.

After (6) is solved, using the primal-dual relationship,
the optimal Ew satisfies

Ew =
Ms∑
i=1

yiαiφ (Exi), (7)

where Ms is the number of support vectors. The decision
function y of the SVM module can be rewritten as

y = sgn

( Ms∑
i=1

yiαiK (Exi, Ex)+ b

)
. (8)

In (8), αi and b can be obtained through the training stage.
Then, to get the decision function y, we only need to substitute
the Ex into (8) in the practical test stage.
In general, the radial basis function (RBF) kernel is a

reasonable first choice [22]

RBF : K
(
Exi, Exj

)
= exp

(
−σ

∥∥Exi − Exj∥∥2) , σ > 0, (9)

where σ is kernel parameters, and exp represents an exponent
function.

The SVM module consumes extra computational costs.
However, there are many methods to alleviate the extra com-
putational costs in the SVM-CFAR. First, the most computa-
tional tasks are completed during the training stage. Second,
only the support vectors can participate in the computation
of (8). The last but most important method is that using
the VI rather than the entire reference window [19] as a
feature to train the SVM module can dramatically reduce
the computational burdens. This is because the computational
costs of a SVM is order (expd ) [21], [22]. Fortunately, d of
the SVM-CFAR is merely 2 through feature extraction.

D. THE CFAR MODULE
The CFAR module of the SVM-CFAR contains two CFAR
detectors, the ACCA-CFAR and the GO-CFAR. The CFAR
module calculates one adaptive threshold S from the two
detectors according to the decision function y. y = 1 indicates
that the current operational environment is a homogeneous
environment or multiple targets, so S = SACCA (SACCA is
the adaptive threshold of ACCA-CFAR). On the contrary,
y = −1 indicates that the current operational environment
is clutter edges, so S = SGO (SGO is the adaptive threshold of
GO-CFAR). The adaptive threshold S of the SVM-CFAR in
different environments is shown in Table 2.

26968 VOLUME 5, 2017



L. Wang et al.: Intelligent CFAR Detector Based on SVM

TABLE 3. The training data set in our simulations.

E. SVM-CFAR PERFORMANCE ANALYSIS
The goal of the SVM-CFAR is to achieve a good perfor-
mance in different environments, which requires that the
SVM module has a low probability of classification error.
Based on above discussions, y = 1 and D > SACCA indicate
that the current operational environment is a homogeneous
environment or multiple targets and there is a target in the
test cell. However, if the SVM module outputs y = −1 due
to classification error and D < SGO, this classification error
will degrade the Pd of the SVM-CFAR. A Pd hypothesis test
for a two-classes pattern is defined as

β = P [y = −1,D < SGO |y = 1,D > SACCA ] . (10)

From (10), we can find that a classification error may
increase β. The relationship between the Pd of the SVM-
CFAR and β can be expressed as

Pd,svm = Pd,desired − β, (11)

where Pd,desired is a desired Pd , which corresponds to the
Pd of the ACCA-CFAR for homogeneous environments and
multiple targets. From (11), it can be seen that the greater β,
the worse Pd,svm.

In an analogous fashion, y = −1 and D < SGO indicate
that the current operational environment is clutter edges and
there is no target in the test cell. However, if the SVMmodule
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FIGURE 7. Pd against SNR of CA-CFAR, GO-CFAR, SO-CFAR, OS-CFAR,
ACCA-CFAR, VI-CFAR, and SVM-CFAR in homogeneous environments.

FIGURE 8. β in homogeneous environments.

outputs y = 1 due to classification error and D > SACCA, this
classification error will degrade the Pfa of the SVM-CFAR.
A Pfa hypothesis test for a two-classes pattern is defined as

γ = P [y = 1,D > SACCA |y = −1,D < SGO ] . (12)

Similarly, from (12), we can find that a classification error
may increase γ . The relationship between the Pfa of the
SVM-CFAR and γ can be expressed as

Pfa,svm = Pfa,desired + γ, (13)

where Pfa,desired is a desired Pfa, which corresponds to the Pfa
of the GO-CFAR for clutter edges. From (13), it can be seen
that the greater γ , the worse Pfa,svm.

III. PERFORMANCE OF SVM-CFAR DETECTOR
A. TRAINING DATA SET
For a design Pfa = 10−4, we study the performance of
the SVM-CFAR for N = 24. The training data set in our

FIGURE 9. Pd against SNR of CA-CFAR, GO-CFAR, SO-CFAR, OS-CFAR,
ACCA-CFAR, VI-CFAR, and SVM-CFAR in one interfering target
environments.

FIGURE 10. β in one interfering target environments.

simulations is shown in Table 3. The notation − and
...

represent none and ellipsis, respectively. The multiple tar-
gets contain one interfering target in different positions
of the reference window. The clutter enters the refer-
ence window from x1 to xN for clutter edges. The target
SNR = [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30] (dB). There-
fore, the total number of the training data setM = 2∗25∗11∗
10 = 5500. The SVM module is implemented by using the
LIBSVM library [22]. In our simulations, we choose the RBF
kennel function with C = 1 and σ = 1 through a grid-search
method [22]. Ms = 2662.

The detection performance of the well trained SVM-CFAR
is compared to those of the CA-CFAR, the GO-CFAR,
the SO-CFAR, the OS-CFAR, the ACCA-CFAR, and the
VI-CFAR detectors in different environments. The censoring
point of the OS-CFAR is 3N/4 [5], [7]. For the ACCA-CFAR,
we take the lowest cell p = 16 [12].

26970 VOLUME 5, 2017



L. Wang et al.: Intelligent CFAR Detector Based on SVM

FIGURE 11. Pd against SNR of CA-CFAR, GO-CFAR, SO-CFAR, OS-CFAR,
ACCA-CFAR, VI-CFAR, and SVM-CFAR in four interfering targets
environments.

FIGURE 12. β in four interfering targets environments.

B. SIMULATION RESULTS
In Fig. 7, we present the Pd of these detectors in a homo-
geneous backgrounds. We observe that the SVM-CFAR acts
like the CA-CFAR and the ACCA-CFAR in homogeneous
backgrounds. The SVM-CFAR detector slightly performs
better than the VI-CFAR and the GO-CFAR, and is obviously
superior to the OS-CFAR and the SO-CFAR. Fig. 8 shows β,
which is less than 0.001 for different target SNRs in the test
cell. The actual value of β agrees very well with theoretical
value which is calculated by using (11).

Fig. 9 shows that the Pd in the environments with a single
interfering target. We can find that the CA-CFAR and the
GO-CFAR have a substantial performance degradation while
the performance of the SVM-CFAR, the OS-CFAR, and the
ACCA-CFAR is relatively unaffected. The SVM-CFAR per-
formance is somewhat better relative to the SO-CFAR and the
VI-CFAR. Like the ACCA-CFAR, the SVM-CFAR detector
is not affected by the position of the interfering target in the

FIGURE 13. Pfa of CA-CFAR, GO-CFAR, SO-CFAR, OS-CFAR, ACCA-CFAR,
VI-CFAR, and SVM-CFAR in clutter edges environments.

FIGURE 14. γ in clutter edges environments.

reference window. Fig. 11 shows that Pd for the case of four
interfering targets both in the leading window and the lagging
window. In this case, the detection performance degradation
of the SO-CFAR and the VI-CFAR is more severe. We note
that the SVM-CFAR and the ACCA-CFAR are robust in the
sense that no excessive detection degradation occurs. Fig. 10
and Fig. 12 show the β for one interfering target and four
interfering targets, respectively.We observe that β is still very
small for these cases.

The Pfa of the SVM-CFAR in clutter edges environments
is shown in Fig. 13 where the clutter-to-noise ratio (CNR)
is 10dB. We observe that the Pfa of the SVM-CFAR
(Pfa,svm ≈ 0.004) is somewhat worse relative to the Pfa of
the GO-CFAR (Pfa,go ≈ 0.0006) and the Pfa of the VI-CFAR
(Pfa,vi ≈ 0.0007) when the clutter transition occurs at the
test cell. This is because when the clutter fills the test cell,
there is a relatively greater γ (although the maximum of γ
is less than 0.0034), as shown in Fig. 14. However, the Pfa
of the SVM-CFAR is somewhat better relative to the Pfa of
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the CA-CFAR (Pfa,ca ≈ 0.0061) and far better than the Pfa
of the OS-CFAR (Pfa,os ≈ 0.0252), the Pfa of the ACCA-
CFAR (Pfa,acca ≈ 0.0378), and the Pfa of the SO-CFAR
(Pfa,so ≈ 0.2673).

IV. CONCLUSION
An intelligent CFAR detector based on support vector
machine techniques is proposed. The proposed detector uses
the variability index as the feature to train a SVM mod-
ule and can select the proper threshold according to the
classification results of the SVM module for different envi-
ronments. The simulation results show that the proposed
detector provides low loss performance in homogeneous
backgrounds and also performs robustly in nonhomogeneous
environments including multiple targets and clutter edges.
Moreover, many researchers have studied the properties of
non-Gaussian distributions in recent years, such as Weibull
distribution, K distribution, Pareto distribution, and so on.
Therefore, we consider using machine learning techniques to
improve the detection performance for above distributions in
future work.

ACKNOWLEDGEMENTS
The authors are grateful to the anonymous reviewers for their
constructive comments.

REFERENCES
[1] H. M. Finn and R. S. Johnson, ‘‘Adaptive detection mode with threshold

control as a function of spatially sampled clutter estimates,’’ RCA Rev.,
vol. 29, no. 3, pp. 414–464, 1968.

[2] V. Hansen and J. Sawyers, ‘‘Detectability loss due to ‘greatest of’ selec-
tion in a cell-averaging CFAR,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. AES-16, no. 1, pp. 115–118, Jan. 1980.

[3] G. V. Trunk, ‘‘Range resolution of targets using automatic detectors,’’ IEEE
Trans. Aerosp. Electron. Syst., vol. AES-14, no. 5, pp. 750–755, Sep. 1978.

[4] J. T. Rickard and G. M. Dillard, ‘‘Adaptive detection algorithms for
multiple-target situations,’’ IEEE Trans. Aerosp. Electron. Syst., vol. AES-
13, no. 4, pp. 338–343, Jul. 1977.

[5] H. Rohling, ‘‘Radar CFAR thresholding in clutter and multiple
target situations,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. AES-19, no. 4, pp. 608–621, Jul. 1983.

[6] P. P. Gandhi and S. A. Kassam, ‘‘Analysis of CFAR processors in homo-
geneous background,’’ IEEE Trans. Aerosp. Electron. Syst., vol. AES-24,
no. 4, pp. 427–445, Jul. 1988.

[7] J. A. Ritcey and J. L. Hines, ‘‘Performance of MAX family of order-
statistic CFAR detectors,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 27,
no. 1, pp. 48–57, Jan. 1991.

[8] M. B. El Mashade, ‘‘Detection analysis of linearly combined order statistic
CFAR algorithms in nonhomogeneous background environments,’’ Signal
Process., vol. 68, no. 1, pp. 59–71, 1998.

[9] C.-J. Kim, H.-S. Lee, and D.-S. Han, ‘‘Generalized OSCFAR detector with
noncoherent integration,’’ Signal Process., vol. 31, no. 1, pp. 43–56, 1993.

[10] S. D. Himonas and M. Barkat, ‘‘Automatic censored CFAR detection
for nonhomogeneous environments,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. 28, no. 1, pp. 286–304, Jan. 1992.

[11] R. Srinivasan, ‘‘Robust radar detection using ensemble CFAR processing,’’
IEE Proc.-Radar, Sonar Navigat., vol. 147, no. 6, pp. 291–297, Dec. 2000.

[12] A. Farrouki andM. Barkat, ‘‘Automatic censoring CFAR detector based on
ordered data variability for nonhomogeneous environments,’’ IEE Proc.-
Radar, Sonar Navigat., vol. 152, no. 1, pp. 43–51, Feb. 2005.

[13] X. Meng, ‘‘Performance analysis of Nitzberg’s clutter map for Weibull
distribution,’’ Digit. Signal Process., vol. 20, no. 3, pp. 916–922, 2010.

[14] X. W. Meng, ‘‘Performance analysis of OS-CFAR with binary integration
for weibull background,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 49,
no. 2, pp. 1357–1366, Apr. 2013.

[15] C. Y. Chong, F. Pascal, J.-P. Ovarlez, and M. Lesturgie, ‘‘MIMO radar
detection in non-Gaussian and heterogeneous clutter,’’ IEEE J. Sel. Topics
Signal Process., vol. 4, no. 1, pp. 115–126, Feb. 2010.

[16] T. Jian, Y. He, F. Su, C. Qu, and D. Ping, ‘‘Adaptive detection of sparsely
distributed target in non-Gaussian clutter,’’ IET Radar, Sonar Navigat.,
vol. 5, no. 7, pp. 780–787, Aug. 2011.

[17] M. E. Smith and P. K. Varshney, ‘‘Intelligent CFAR processor based
on data variability,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 36, no. 3,
pp. 837–847, Jul. 2000.

[18] B. P. A. Rohman, D. Kurniawan, and M. T. Miftahushudur, ‘‘Switching
CA/OS CFAR using neural network for radar target detection in non-
homogeneous environment,’’ in Proc. Int. Electron. Symp., Sep. 2015,
pp. 280–283.

[19] J. E. Ball, ‘‘Low signal-to-noise ratio radar target detection using lin-
ear support vector machines (L-SVM),’’ in Proc. IEEE Rader Conf.,
May 2014, pp. 1291–1294.

[20] D. He and H. Leung, ‘‘CFAR intrusion detection method based on support
vector machine prediction,’’ in Proc. IEEE Int. Conf. Comput. Intell. Meas.
Syst. Appl., Jul. 2004, pp. 10–15.

[21] C. Cortes and V. N. Vapnik, ‘‘Support vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1997.

[22] C.-C. Chang and C.-J. Lin, ‘‘LIBSVM: A library for support vector
machines,’’ ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, p. 27, 2011.
[Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm

LEIOU WANG (M’16) received the B.S. degree in
communication engineering and the M.S. degree
in computer application technology from Beijing
Union University, Beijing, China, in 2007 and
2011, respectively, and the Ph.D. degree in sig-
nal and information processing from the Univer-
sity of Chinese Academy of Sciences, Beijing,
in 2015. He is currently an Assistant Professor
with the Key Laboratory of Information Tech-
nology for Autonomous Underwater Vehicles,

Chinese Academy of Sciences. His research interests include statistical
signal processing with more emphasis on adaptive radar signal processing,
and circuits and systems low power technology.

DONGHUI WANG received the B.S. degree from
Tsinghua University, Beijing, China, in 1997,
and the Ph.D. degree in microelectronics and
solid state electronics from the Institute of
Semiconductors, Chinese Academy of Sciences,
Beijing, in 2002. He is currently a Professor with
the Key Laboratory of Information Technology
for Autonomous Underwater Vehicles, Chinese
Academy of Sciences. His research interests are
VLSI design and DSP processor design.

CHENGPENG HAO (M’08–SM’15) received the
B.S. and M.S. degrees in electronic engineering
from the Communication University of China,
Beijing, China, in 1998 and 2001, respectively,
the Ph.D. degree in signal and information pro-
cessing from the Institute of Acoustics, Chinese
Academy of Sciences, Beijing, in 2004. He has
held a visiting position with the Electrical and
Computer Engineering Department, Queen’s Uni-
versity, Kingston, Canada, from 2013 to 2014.

He is currently a Professor with the Key Laboratory of Information Technol-
ogy for Autonomous Underwater Vehicles, Chinese Academy of Sciences.
His research interests include statistical signal processing with more empha-
sis on adaptive sonar and radar signal processing.

26972 VOLUME 5, 2017


	INTRODUCTION
	SVM-CFAR DETECTOR
	SVM-CFAR DETECTOR DESCRIPTION
	FEATURE EXTRACTION
	SVM-CFAR ALGORITHM
	THE CFAR MODULE
	SVM-CFAR PERFORMANCE ANALYSIS

	PERFORMANCE OF SVM-CFAR DETECTOR
	TRAINING DATA SET
	SIMULATION RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	LEIOU WANG
	DONGHUI WANG
	CHENGPENG HAO


