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Source localization in ocean acoustics is posed as a machine learning problem in which data-driven

methods learn source ranges directly from observed acoustic data. The pressure received by a

vertical linear array is preprocessed by constructing a normalized sample covariance matrix and

used as the input for three machine learning methods: feed-forward neural networks (FNN), support

vector machines (SVM), and random forests (RF). The range estimation problem is solved both as

a classification problem and as a regression problem by these three machine learning algorithms.

The results of range estimation for the Noise09 experiment are compared for FNN, SVM, RF,

and conventional matched-field processing and demonstrate the potential of machine learning for

underwater source localization. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.5000165]

[SED] Pages: 1176–1188

I. INTRODUCTION

Machine learning is a promising method for locating

ocean sources because of its ability to learn features from

data, without requiring sound propagation modeling. It can

be used for unknown environments.

Acoustic source localization in ocean waveguides is

often solved with matched-field processing (MFP).1–13

Despite the success of MFP, it is limited in some practical

applications due to its sensitivity to the mismatch between

model-generated replica fields and measurements. MFP

gives reasonable predictions only if the ocean environment

can be accurately modeled. Unfortunately, this is difficult

because the realistic ocean environment is complicated and

unstable.

An alternative approach to the source localization prob-

lem is to find features directly from data.14–17 Interest in

machine learning techniques has been revived thanks to

increased computational resources as well as their ability to

learn nonlinear relationships. A notable recent example in

ocean acoustics is the application of nonlinear regression to

source localization.18 Other machine learning methods have

obtained remarkable results when applied to areas such as

speech recognition,19 image processing,20 natural language

processing,21 and seismology.22–25 Most underwater acous-

tics research in machine learning is based on 1990s neural

networks. Previous research has applied neutral networks to

determine the source location in a homogeneous medium,26

simulated range and depth discrimination using artificial

neural networks in matched-field processing,27 estimated

ocean-sediment properties using radial basis functions in

regression and neural networks,28,29 applied artificial neural

networks to estimation of geoacoustic model parameters,30,31

classification of seafloor32 and whale sounds.33

This paper explores the use of current machine learning

methods for source range localization. The feed-forward

neural network (FNN), support vector machine (SVM), and

random forest (RF) methods are investigated. There are sev-

eral main differences between our work and previous studies

of source localization and inversion:18,26–33

(1) Acoustic observations are used to train the machine learning

models instead of using model-generated fields.26,27,29–31

(2) For input data, normalized sample covariance matrices,

including amplitude and phase information, are used.

Other alternatives include the complex pressure,18 phase

difference,26 eigenvalues,27 amplitude of the pressure

field,29 transmission loss,30,31 angular dependence of

backscatter,32 or features extracted from spectrograms.33

This preprocessing procedure is known as feature extrac-

tion in machine learning.

(3) Under machine learning framework, source localization

can be solved as a classification or a regression problem.

This work focuses on classification in addition to the

regression approach used in previous studies.18,26,28–31

(4) Well-developed machine learning libraries are used.

Presently, there are numerous efficient open source

machine learning libraries available, including

TensorFlow,34 Scikit-learn,35 Theano,36 Caffe,37 and

Torch,38 all of which solve typical machine learning tasks

with comparable efficiency. Here, TensorFlow is used to

implement FNN because of its simple architecture and

wide user base. Scikit-learn is used to implement SVM and

RF as they are not included in the current TensorFlow ver-

sion. Compared to older neural network implementations,

Tensorflow includes improved optimization algorithms39

with better convergence, more robust model with dropout40

technique and high computational efficiency.
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The paper is organized as follows. The input data pre-

processing and source range mapping are discussed in Secs.

II A and II B. The theoretical basis of FNN, SVM, and RF is

given in Secs. II C–II E. Simulations and experimental

results in Secs. III and IV demonstrate the performance of

FNN, SVM, and RF. In Sec. V, the effect of varying the

model parameters is discussed. The conclusion is given in

Sec. VI.

II. LOCALIZATION BASED ON MACHINE LEARNING

The dynamics of the ocean and its boundary cause a sto-

chastic relationship between the received pressure phase and

amplitude at the array and the source range. After prepro-

cessing we assume a deterministic relationship between ship

range and sample covariance matrix. The pressure–range

relationship is in general unknown but may be discovered

using machine learning methods. The received pressure is

preprocessed and used as the input of the machine learning

models (Sec. II A). The desired output may be either discrete

(classification) or continuous (regression) corresponding to

the estimated source range (Sec. II B). The theory of FNN,

SVM, and RF are described in Secs. II C–II E.

A. Input data preprocessing

To make the processing independent of the complex

source spectra, the received array pressure is transformed to a

normalized sample covariance matrix. The complex pressure

at frequency f obtained by taking the discrete fourier transform

of the input pressure data at L sensors is denoted by pðf Þ ¼
½p1ðf Þ;…; pLðf Þ�T . The sound pressure is modeled as

pðf Þ ¼ Sðf Þgðf ; rÞ þ �; (1)

where � is the noise, S(f) is the source term, and g is the

Green’s function. To reduce the effect of the source ampli-

tude jSðf Þj, this complex pressure is normalized according to

~p fð Þ ¼ p fð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

l¼1

jpl fð Þj2
s ¼ p fð Þ

kp fð Þk2

: (2)

The normalized sample covariance matrices (SCMs) are

averaged over Ns snapshots to form the conjugate symmetric

matrix

C fð Þ ¼ 1

Ns

XNs

s¼1

~ps fð Þ~pH
s fð Þ; (3)

where H denotes conjugate transpose operator and ~ps repre-

sents the sound pressure over the sth snapshot. The product

~psðf Þ~pH
s ðf Þ contains an Sðf ÞSðf ÞH term, which for large SNR

is dominant and thus reduces the effect of the source phase.

Preprocessing the data according to Eqs. (2) and (3) ensures

that the Green’s function is used for localization. Only the

real and imaginary parts of the complex valued entries of

diagonal and upper triangular matrix in C(f) are used as input

to save memory and improve calculation speed. These

entries are vectorized to form the real-valued input x of size

L� (L þ 1) to the FNN, SVM, and RF.

B. Source range mapping

In the classification problem, a set of source ranges is

discretized into K bins, r1,…, rK, of equal width Dr. Each

input vector, xn, n¼ 1,…, N, is labeled by tn, where tn 2 rk,

k¼ 1,…, K; this label represents the true source range class

and is the target output for the model. SVM and RF use this

classification scheme to train and predict the source range

for each sample.

For the FNN, the range class tn is mapped to a 1�K
binary vector, tn, such that

tnk ¼ 1 if jtn � rkj �
Dr

2
;

0 otherwise;

8<
: (4)

tn¼ tn,1,…, tn,K therefore represents the expected output

probability of the neural network, i.e., the probability that

the source is at range rk for input xn. These target vectors are

used to train the FNN. The FNN output predictions are given

as a softmax distribution with maximum at the predicted

range (see Sec. II C).

In the regression problem, the target output rn 2 [0, 1)

is a continuous range variable for all three models.

C. Feed-forward neural networks

The feed-forward neural network (FNN), also known as

multi-layer perceptron, is constructed using a feed-forward

directed acyclic architecture, see Fig. 1(a). The outputs are

formed through a series of functional transformations of the

weighted inputs. In the FNN, the outputs are deterministic

functions of the inputs.41

Here, a three layer model (input layer L1, hidden layer

L2 and output layer L3) is used to construct the FNN. The

input layer L1 is comprised of D input variables

x ¼ ½x1;…; xD�T . The jth linear combination of the input var-

iables is given by

aj ¼
XD

i¼1

w
ð1Þ
ji xi þ w

ð1Þ
j0 ; j ¼ 1;…;M; (5)

where M is the number of neurons in L2 and the superscript

indicates that the corresponding parameters are in the first

layer of the network. The parameters w
ð1Þ
ji and w

ð1Þ
j0 are called

the weights and biases and their linear combinations aj are

called activations. In L2, the activations are transformed

using an activation function f(�),

zj ¼ f ðajÞ: (6)

The logistic sigmoid was chosen as the intermediate activa-

tion function for this study, see Fig. 1(b):

f að Þ ¼ r að Þ ¼ 1

1þ e�a
: (7)

Similarly, for output layer L3, the K output unit activa-

tions are expressed as linear combinations of zj
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ak ¼
XM

j¼1

w
ð2Þ
kj zj þ w

ð2Þ
k0 ; k ¼ 1;…;K (8)

where w
ð2Þ
kj and w

ð2Þ
k0 represent weights and biases for the sec-

ond layer.

In the output layer, the softmax function is used as the

activation function. The softmax is a common choice for

multi-class classification problems.41 Here, it constrains the

output class, yk(x, w), to be the probability that the source is

at range rk (Ref. 41):

yk x;wð Þ ¼
exp ak x;wð Þð ÞXK

j¼1

exp aj x;wð Þð Þ
; k ¼ 1;…;K (9)

where w is the set of all weight and bias parameters and yk

satisfies 0� yk� 1 and
P

kyk ¼ 1.

Before applying the FNN to unlabeled data, the weights

and biases w are determined by training the model on

labeled data. Recall that in the FNN case, tn is the binary tar-

get vector, or true probability distribution (see Sec. II B), and

yk(xn, w) is the estimated probability distribution, for the

input xn (see Sec. II A).

During training, the Kullback–Leibler (KL) divergence

DKLðtnjjyðxn;wÞÞ ¼
X

k

tnk lntnk � lnynk½ �; (10)

represents the dissimilarity between ynk ¼ ykðxn;wÞ and tnk,

where tn ¼ ½tn1;…; tnk�; k ¼ 1;…;K. Minimizing the KL

divergence DKL is equivalent to minimizing the cross

entropy function En

Enðtn; yðxn;wÞÞ ¼ �
X

k

tnklnynk; (11)

since the desired output tn is constant (independent of w).

For N observation vectors, the averaged cross entropy

and resulting weights and biases are

E wð Þ ¼ � 1

N

XN

n¼1

XK

k¼1

tnklnynk; (12)

ŵ ¼ argmin
w

� 1

N

XN

n¼1

XK

k¼1

tnklnynk

" #
: (13)

For the regression problem, there is only one neuron in

the output layer representing the continuous range variable.

Instead of using Eq. (12), a sum-of-squares error function41

is minimized

E wð Þ ¼ 1

2

XN

n¼1

jy xn;wð Þ � rnj2; (14)

where rn is the true source range at sample n.
Several optimization methods are provided in the

TensorFlow software. In this paper, Adam39 (Adaptive

Moment estimation) is used.

D. Support vector machine

Unlike neural networks, support vector machines

(SVM) are decision machines that do not provide a posterior

probability.41 Instead, the data are divided into two (or

more) classes by defining a hyperplane that maximally sepa-

rates the classes.

First, for simplicity, assume the input xn; n ¼ 1;…;N
are linearly separable (see Fig. 2) and can be divided into

two classes, sn 2 {1, �1}. The class of each input point xn is

determined by the form41

yn ¼ wTxn þ b; (15)

where w and b are the unknown weights and bias. A hyper-

plane satisfying wTxþ b ¼ 0 is used to separate the classes.

If yn is above the hyperplane (yn> 0), estimated class label

ŝn ¼ 1, whereas if yn is below (yn< 0), ŝn ¼ �1. The per-

pendicular distance d of a point xn to the hyperplane is the

distance between the point xn and its projection x0 on the

hyperplane, satisfying

FIG. 1. (a) Diagram of a feed-forward neural network and (b) Sigmoid

function.

1178 J. Acoust. Soc. Am. 142 (3), September 2017 Niu et al.



xn ¼ x0 þ d
w

jjwjj ;

wTx0 þ b ¼ 0; (16)

where k � k is the l2 norm. From Eq. (16), the distance d is

obtained:

d xnð Þ ¼ sn
wTxn þ b

kwk ; (17)

where sn is added in Eq. (17) to guarantee d> 0. The margin

dM is defined as the distance from the hyperplane to the clos-

est points xs on the margin boundary (support vectors, see

Fig. 2). The optimal w and b are solved by maximizing the

margin dM:

argmax
w;b

dM;

subject to
sn wTxn þ bð Þ
kwk � dM; n ¼ 1;…;N: (18)

Equation (18) is equivalent to this optimization problem:41

argmin
w;b

1

2
kwk2;

subject to sn wTxn þ b
� �

� 1; n ¼ 1;…;N: (19)

If the training set is linearly non-separable (class over-

lapping), slack variables41 nn� 0 are introduced to allow

some of the training points to be miclassified, corresponding

the optimization problem:

argmin
w;b

1

2
kwk2 þ C

XN

n¼1

nn;

subject to snyn � 1� nn; n ¼ 1;…;N: (20)

The parameter C> 0 controls the trade-off between the slack

variable penalty and the margin.

Often the relation between yn and xn is nonlinear. Thus

Eq. (15) becomes

yn ¼ wT/ðxnÞ þ b; (21)

where /(xn) denotes the feature-space transformation. By

substituting /(xn) for xn, Eqs. (16)–(20) are unchanged.

The constrained optimization problem can be rewritten

in terms of the dual Lagrangian form:41

~L að Þ ¼
XN

n¼1

an �
1

2

XN

n¼1

XN

m¼1

anamsnsmk/ xn; xmð Þ;

subject to 0 � an � C;

XN

n¼1

ansn ¼ 0; n ¼ 1;…;N; (22)

where an� 0 are Lagrange multipliers and dual variables,

and k/ðxn; xmÞ ¼ /ðxnÞT/ðxmÞ is the kernel function. In this

study, we use the Gaussian radial basis function (RBF)

kernel35

k/ðx; x0Þ ¼ expð�ckx� x0k2Þ; (23)

where c is a parameter that controls the kernel shape.

Support vector regression (SVR) is similar to SVM, but

it minimizes the �–sensitive error function

E�ðyn � rnÞ ¼
0; if jyn � rnj < �;
jyn � rnj � �; otherwise;

�
(24)

where rn is the true source range at sample n and � defines a

region on either side of the hyperplane. In SVR, the support

vectors are points outside the � region.

Because the SVM and SVR models are a two-class

models, multi-class SVM with K classes is created by train-

ing K(K – 1)/2 models on all possible pairs of classes. The

points that are assigned to the same class most frequently are

considered to comprise a single class, and so on until all

points are assigned a class from 1 to K. This approach is

known at the “one-versus-one” scheme,41 although slight

modifications have been introduced to reduced computa-

tional complexity.42

E. Random forests

The random forest (RF) (Ref. 43) classifier is a generali-

zation of the decision tree model, which greedily segments

the input data into a predefined number of regions. The sim-

ple decision tree model is made robust by randomly training

subsets of the input data and averaging over multiple models

in RF.

Consider a decision tree (see Fig. 3) trained on all the

input data. Each input sample, xn, n¼ 1,…, N, represents a

point in D dimensions. The input data can be partitioned into

two regions by defining a cutoff along the ith dimension,

where i is the same for all input samples xn, n¼ 1,…, N:

xn 2 xleft if xni > c;

xn 2 xright if xni � c; (25)

where c is the cutoff value, and xleft and xright are the left and

right regions, respectively. The cost function, G, that is mini-

mized in the decision tree at each branch is35

FIG. 2. (Color online) A linear hyperplane learned by training an SVM in

two dimensions (D¼ 2).
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c� ¼ argmin
c

G cð Þ;

G cð Þ ¼ nleft

N
H xleftð Þ þ

nright

N
H xrightð Þ; (26)

where nleft and nright are the numbers of points in the regions

xleft and xright. H(�) is an impurity function chosen based on

the problem.

For the classification problem, the Gini index35 is cho-

sen as the impurity function

H xmð Þ ¼
1

nm

X
xn2xm

I tn; ‘mð Þ 1� 1

nm
I tn; ‘mð Þ

� �
; (27)

where nm is the number of points in region xm and ‘m repre-

sents the assigned label for each region, corresponding to the

most common class in the region:35

‘m ¼ argmax
rk

X
xn2xm

Iðtn; rkÞ: (28)

In Eq. (28), rk, k¼ 1,…, K are the source range classes and tn
is the label of point xn in region m, and

Iðtn; rkÞ ¼
1 if tn ¼ rk;
0 otherwise:

�
(29)

The remaining regions are partitioned iteratively until

regions x1;…; xM are defined. In this paper, the number of

regions, M, is determined by the minimum number of points

allowed in a region. A diagram of the decision tree classifier

is shown in Fig. 3. The samples are partitioned into M¼ 3

regions with the cutoff values 1.9 and 4.6.

For RF regression, there are two differences from classi-

fication: the estimated class for each region is defined as the

mean of the true class for all points in the region, and the

mean squared error is used as the impurity function

‘m ¼
1

nm

X
xn2xm

rn;

H xmð Þ ¼
X

xn2xm

‘m � rnð Þ2; (30)

where rn is source range at sample n.
As the decision tree model may overfit the data, statisti-

cal bootstrap and bagging are used to create a more robust

model, a random forest.44 In a given draw, the input data,

xi; i ¼ 1;…;Q, is selected uniformly at random from the full

training set, where Q�N. B such draws are conducted with

replacement and a new decision tree is fitted to each subset

of data. Each point, xn, is assigned to its most frequent class

among all draws:

f̂
bagðxnÞ ¼ argmax

tn

XB

b¼1

Iðf̂ tree;bðxnÞ; tnÞ; (31)

where f̂
tree;bðxiÞ is the class of xi for the bth tree.

F. Performance metric

To quantify the prediction performance of the range

estimation methods, the mean absolute percentage error

(MAPE) over N samples is defined as

EMAPE ¼
100

N

XN

i¼1

Rpi � Rgi

Rgi

����
����; (32)

where Rpi and Rgi are the predicted range and the ground

truth range, respectively. MAPE is preferred as an error mea-

sure because it accounts for the magnitude of error in faulty

range estimates as well as the frequency of correct estimates.

MAPE is known to be an asymmetric error measure45 but is

adequate for the small range of outputs considered.

G. Source localization algorithm

The localization problem solved by machine learning is

implemented as follows:

(1) Data preprocessing. The recorded pressure signals are

Fourier transformed and Ns snapshots form the SCM

from which the input x is formed.

(2) Division of preprocessed data into training and test data

sets. For the training data, the labels are prepared based

on different machine learning algorithms.

(3) Training the machine learning models. X ¼ ½x1…xN� are

used as the training input and the corresponding labels as

the desired output.

FIG. 3. (Color online) Decision tree classifier and corresponding rectangular

regions shown for two–dimensional data with K¼ 2 classes (D¼ 2, M¼ 3)

and 1000 training points.
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(4) Prediction on unlabeled data. The model parameters

trained in step 3 are used to predict the source range for

test data. The resulting output is mapped back to range,

and the prediction error is reported by the mean absolute

percentage error.

III. SIMULATIONS

In this section, the performance of machine learning on

simulated data are discussed. For brevity, only the FNN clas-

sifier is examined here, although the conclusions apply to

SVM and RF. Further discussion of SVM and RF perfor-

mance is included in Secs. IV and V.

A. Environmental model and source-receiver
configuration

Acoustic data are simulated using KRAKEN (Ref. 46)

with environmental parameters simulating the Noise09

experiment,47 see Fig. 4(a). The source frequency is 300 Hz.

The source depth is 5 m in a 152 m waveguide, with a 24 m

sediment layer (sound speed 1572–1593 m/s, density 1.76 g/

cm3, attenuation coefficient 2.0 dB/k) and a fluid halfspace

bottom (sound speed 5200 m/s, density 1.8 g/cm3, and atten-

uation coefficient 2.0 dB/k). The sound speed profile of water

column is shown in Fig. 4(b). The vertical array consists of

16 receivers spanning 128–143 m depth with inter-sensor

spacing 1 m.

A source traveling away from the receiver at 2 m/s is

simulated by varying the range from 0.1 to 2.86 km at 2 m

intervals. Realizations with different SNRs are generated by

adding appropriate complex Gaussian noise to the simulated

received complex pressure signals.

Since the source moves in range and the source level is

assumed constant, SNR is defined at the most distant range

bin

SNR ¼ 10 log10

XL

l¼1

jp̂lj2=L

r2
dBð Þ; (33)

where p̂l is sound pressure signal received by the lth sensor

at the longest source-receiver distance and r2 represents the

noise variance.

B. Input preprocessing and learning parameters

The SCM for a 16–element vertical array is formed at

each range point by averaging over Ns¼ 10 successive snap-

shots (nine snapshots overlapped) according to Eq. (3). The

number of neurons in the input layer is therefore D¼ 16

� (16þ 1)¼ 272. The range sample interval is 2 m, with

1380 total range samples (1 s duration per snapshot). Thus, a

total of N¼ 1380 input matrices constitute the sample set

spanning the whole range 0.1–2.86 km.

For each SNR, two realizations of noisy measurements

are generated. One realization of size 1380� 272 is used for

the training set. For the test set, the range sample interval is

changed to 20 m, and a realization of size 138� 272 is used

as input.

In the test set, K¼ 138 output neurons represent ranges

from 0.1 to 2.86 km incremented by 20 m. The number of

neurons in the hidden layer is M¼ 128. To prevent overfit-

ting, the “keep dropout” technique,40 with probability 0.5, is

used. The initial learning rate for the Adam optimizer39 is

0.01 and the maximum number of iterations is 1000.

C. Results

The prediction performance is examined for four SNRs

(�10, �5, 0, 5 dB). Figure 5 compares range predictions by

FNN and the true ranges on test data. For the four SNRs

tested, the MAPE for the FNN predictions is 20.6%, 6.5%,

0.2%, and 0.0%, respectively.

As described in Sec. II, the output ynk of FNN represents

the probability distribution over a discrete set of possible

ranges. To demonstrate the evolution of the probability dis-

tribution as the FNN is trained, ynk versus training steps is

plotted in Fig. 6 for the signal with SNR 5 dB at range

1.5 km. After 300 training steps, the FNN output probability

distribution resembles the target output.

In Fig. 7, the convergence of the FNN algorithm is

investigated by plotting the cross entropy Eq. (12) versus the

optimization step on training and test data. It shows that the

FNN converges after about 300 steps at all SNRs. For low
FIG. 4. (Color online) (a) Waveguide parameters and source-receiver con-

figuration. (b) Sound speed profile of water column.
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SNRs (<0 dB), the FNN classifier generates poor predictions

on test data while performing well on training data, which

indicates overfitting.

Increasing the training set size can reduce overfitting

but additional data may be not available due to experimental

or computational constraints. For higher SNRs (e.g., 0 and

5 dB), both test and training errors converge to low cross

entropy, indicating good performance. Therefore, best per-

formance of machine learning methods is expected for high

SNR.

IV. EXPERIMENTAL RESULTS

Shipping noise data radiated by R/V New Horizon dur-

ing the Noise09 experiment are used to demonstrate the

performance of the FNN, SVM and RF localization. The

experiment geometry is shown in Fig. 8, with bottom-

moored vertical linear arrays (VLAs) indicated by triangles

and the three ship tracks used for range estimation. The

hydrophone sampling rate was 25 kHz.

The data from VLA2, consisting of 16 hydrophones at

1 m spacing, are used for range estimation. The frequency

spectra of shipping noise recorded on the top hydrophone

during the three periods are shown in Fig. 9. The striations

indicate that the source was moving. The SNR decreases

with increasing source-receiver distance.

FIG. 5. (Color online) Range predictions by FNN on test data set with SNR

of (a) �10, (b) �5, (c) 0, and (d) 5 dB.

FIG. 6. (Color online) Output probability for range 0.1–2.86 km (the true

range is 1.5 km) after training steps (1, 100, 200, 300). The top line repre-

sents the target output.

FIG. 7. (Color online) Cross entropy Eq. (11) versus optimization steps on

training (solid) and test (dashed) data with SNR of (a) �10, (b) �5, (c) 0,

and (d) 5 dB.

FIG. 8. (Color online) Ship tracks for Noise09 experiment during the peri-

ods (a) 01/2031/2009, 01:43–02:05 (training data, ship speed 2 m/s), (b) 01/

31/2009, 01:05–01:24 (Test-Data-1, ship speed �2 m/s), and (c) 02/04/2009,

13:41–13:51 (Test-Data-2, ship speed 4 m/s).
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Data from period 01:43–02:05 on January 31, 2009 are

used as the training set and 01:05–01:24 on January 31 and

13:41–13:51 on February 4 are used as the test sets (Test-

Data-1 and Test-Data-2).

The GPS antenna on the New Horizon is separated from

the noise–generating propeller by a distance Ld. To account

for this difference we use the range between the propeller

and VLA2 as the ground truth range Rg:

Rg ¼
RGPS � Ld for training data and Test-Data-2;

RGPS þ Ld for Test-Data-1;

(

(34)

where RGPS represents the range between the GPS antenna

and VLA2. According to the R/V New Horizon handbook,

Ld¼ 24.5 m. In the following, the ranges have been corrected

by Eq. (34).

A. Input preprocessing and learning parameters

For the training set and both test sets, the 16� 16 SCM

at each range and frequency, averaged over 10 successive 1-

s snapshots, is used as input. There are 1380 samples in the

training data set and 120 samples in each of the test data sets

(samples are drawn every 10 s for Test-Data-1 and 5 s for

Test-Data-2). The source-receiver range 0.1–3 km is divided

into K¼ 138 discrete range points.

As in the simulations in Sec. III B, the keep probability

for training dropout of the FNN is 0.5, the initial learning rate

is 0.01 and the maximum iteration step is 1000. The number

of neurons in the hidden layer is chosen as M¼ 128 for 1 fre-

quency and M¼ 1024 for 66 frequencies (see Sec. IV B).

For the SVM classifier, Gaussian radial basis function

kernel is used. The parameters c [Eq. (23)] and C [Eq. (20)]

were tested over [10�3 10�1] and [10 103], respectively.

Values of c¼ 10�2 and C¼ 10 are found to be optimal.

For the RF method, the number of trees bagged is 500,

with a minimum of 50 samples required for each leaf.

The performance of all test cases for the FNN, SVM,

RF, and conventional MFP is summarized in Tables I and II.

B. SCM inputs

Because the shipping noise has a wide frequency band

as seen from Fig. 9, the performance of the machine learning

with the single and multi-frequency inputs is investigated.

The FNN classifier is again used an example to illustrate the

benefit of using multiple frequencies.

Input SCMs are formed at 550, 950, and 300–950 Hz with

10 Hz increments (66 frequencies). For the multi-frequency

input, the SCMs are formed by concatenating multiple single-

frequency SCM input vectors. For example, the dimension of

a single frequency input sample is 272, whereas the multi-

frequency input has a dimension 272�Nf for Nf frequencies.

The FNN is trained separately for each case and the source-

receiver range is then predicted at the selected frequencies.

The prediction results on the two test data sets are

shown in Figs. 10(a)–10(f) along with Rg. For single fre-

quency inputs, the minimum error is 12% [Fig. 10(d)] at

550 Hz and the largest error is 18% at 950 Hz [Fig. 10(e)],

both on Test-Data-2. For multi-frequency inputs, the predic-

tion error is 8% on Test-Data-1 and 6% on Test-Data-2, indi-

cating a performance improvement by using multiple

frequencies. In general, the FNN predictions are better at

close ranges due to higher SNR, as expected from the simu-

lation results. However, the FNN with multi-frequency

inputs performs well regardless of source range.

C. Source localization as a classification problem

Source localization is first solved as a classification

problem. Only the best MAPE obtained by FNN (Sec. II C),

SVM (Sec. II D) and RF (Sec. II E) is shown here (Fig. 11).

These results are summarized in Table I.

The lowest MAPE is achieved by the SVM, with 2% on

both data sets. RF also reaches 2% MAPE for Test-Data-2

FIG. 9. (Color online) Spectra of shipping noise during periods (a) 01/31/

2009, 01:43–02:05, (b) 01/31/2009, 01:05–01:24, and (c) 02/04/2009,

13:41–13:51.

TABLE I. Best MAPE rate of FNN, SVM, RF, and MFP predictions.

MAPE

Model Test-Data-1 (%) Test-Data-2 (%)

FNN classifier 3 3

SVM classifier 2 2

RF classifier 3 2

FNN regressor 10 5

SVM regressor 42 59

RF regressor 55 48

MFP 55 36

MFP with measured replica 19 30
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and 3% for Test-Data-1. FNN has 3% MAPE for both test

sets. The performance of these three machine learning algo-

rithms is comparable when solving range estimation as a

classification problem.

The performance of these machine learning algorithms

with various parameters (e.g., number of classes, number

of snapshots and model hyper-parameters) is examined in

Sec. V.

D. Source localization as a regression problem

Source localization can be solved as a regression problem.

For this problem, the output represents the continuous range

TABLE II. Parameter sensitivity of FNN, SVM, and RF classifiers.

(a): FNN classifier

MAPE

No. of

hidden

layers

No. of

hidden

neurons

No. of

classes

No. of

snapshots

Test-Data-1

(%)

Test-Data-2

(%)

1 1024 1380 10 7 5

1 1024 690 10 3 6

1 1024 276 10 6 8

1 1024 138 10 8 6

1 1024 56 10 7 4

1 1024 28 10 10 4

1 1024 14 10 16 7

1 1024 138 1 10 5

1 1024 138 5 6 3

1 1024 138 20 8 3

1 64 138 10 9 9

1 128 138 10 7 7

1 256 138 10 8 6

1 512 138 10 8 4

1 2048 138 10 7 5

2 128 138 10 9 8

2 256 138 10 9 9

2 512 138 10 6 8

(b): SVM classifier

MAPE

c C No. of

classes

No. of

snapshots

Test-Data-1

(%)

Test-Data-2

(%)

1380 10 2 3

690 10 2 3

276 10 4 3

138 10 2 2

10–2 10 56 10 3 3

28 10 5 3

138 1 17 5

138 5 2 3

138 20 3 2

(c): RF classifier

MAPE

No. of

trees

No. of

samples

per leaf

No. of

classes

No. of

snapshots

Test-Data-1

(%)

Test-Data-2

(%)

1380 10 4 10

690 10 3 4

276 10 3 3

138 10 3 2

500 50 56 10 9 5

28 10 13 9

138 1 20 15

138 5 6 5

138 20 3 2

FIG. 10. (Color online) Range predictions on Test-Data-1 (a, b, c) and Test-

Data-2 (d, e, f) by FNN. (a), (d) 550 Hz, (b), (e) 950 Hz, (c), (f) 300–950 Hz

with 10 Hz increment, i.e., 66 frequencies. The time index increment is 10 s

for Test-Data-1, and 5 s for Test-Data-2.

FIG. 11. (Color online) Source localization as a classification problem.

Range predictions on Test-Data-1 (a, b, c) and Test-Data-2 (d, e, f) by FNN,

SVM and RF for 300–950 Hz with 10 Hz increment, i.e., 66 frequencies.

(a),(d) FNN classifier, (b),(e) SVM classifier, (c),(f) RF classifier.
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and the input remains the vectorized covariance matrix Eq.

(3). In this case, the highly nonlinear relationship between the

covariance matrix elements and the range, caused primarily by

modal interference, is difficult to fit a nonlinear model. In the

training process, the input data remain the same, the labels are

direct GPS ranges, and the weights and biases are trained using

least-squares objective functions.

The range predictions by FNN with different number of

hidden layers along with the GPS ranges are given in Fig. 12.

Increasing the number of hidden layers increases the nonline-

arity of the model and allows a larger number of parameters

to be learned, thus significantly reducing the error for FNN

regression. Figure 13 shows the results of SVM [Figs. 13(a)

and 13(c)] and RF regressors [Figs. 13(b) and 13(d)] on two

data sets. For these methods, since additional layers cannot

be added to increase the nonlinearity, the performance lags

FNN. The best MAPE values for each regressor are shown in

Table I. Compared with classifiers, the FNN, SVM and RF

degrade significantly for solving regression tasks.

E. Conventional matched-field processing

The Bartlett MFP1 is applied to Noise09 data for compar-

ison. Two kinds of replica fields are used in the Bartlett pro-

cessor. The first is generated by KRAKEN using the Noise09

environment in Fig. 4, with the corresponding ambiguity sur-

faces and maximum peaks shown in Fig. 14. We use the mea-

sured data (i.e., training data, 01/31/2009, 01:43–02:05) as the

second group of replica fields as proposed in Ref. 14. The

results are shown in Fig. 15. For each case, both single fre-

quency (550 Hz) and broadband (300–950 Hz) are considered.

From Figs. 14 and 15, the Bartlett MFP fails to determine

source positions using a single frequency, while the FNN still

generates a number of reasonable predictions [see Fig. 10(a)].

Despite improved performance using broadband MFP, there

are some errors due to sidelobes. The MAPE of MFP predic-

tions is shown in Table I. The minimum MAPE of Bartlett

MFP is 19% on Test-Data-1 and 30% on Test-Data-2, which

is much larger than the machine learning classifiers.

V. DISCUSSIONS

A. Range resolution

The number of classes, corresponding to the resolution

of range steps, was varied to determine its effect on range

estimation results. Previously (see Sec. IV) K¼ 138 classes

were used, corresponding to a range resolution of 20 m. The

MAPE for predictions with different numbers of output clas-

ses by FNN, SVM, and RF classifiers is given in Table II

with 10 snapshots averaged for each sample. These three

classifiers perform well for all tested range resolutions.

FIG. 12. (Color online) Source localization as a regression problem. Range

predictions on Test-Data-1 (a, b, c) and Test-Data-2 (d, e, f) by FNN for

300–950 Hz with 10 Hz increment, i.e., 66 frequencies. (a),(d) 1 hidden

layer, (b),(e) 2 hidden layers, (c),(f) 3 hidden layers. Each hidden layer con-

sists of 512 neurons.

FIG. 13. (Color online) Source localization as a regression problem. Range

predictions on Test-Data-1 (a, b) and Test-Data-2 (c, d) by SVM and RF for

300–950 Hz with 10 Hz increment, i.e., 66 frequencies. (a), (c) SVM for

regression, (b),(d) RF for regression.

FIG. 14. (Color online) Localization using Bartlett matched-field processing

based on synthetic replica fields. (a) Ambiguity surface and (b) maximum

peaks for 550 Hz, (c) ambiguity surface and (d) maximum peaks for

300–950 Hz with 10 Hz increment. Circles and solid lines denote predictions

and GPS ranges, respectively.
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B. Snapshots

The number of snapshots averaged to create the SCMs

may also affect the performance. Increasing the number of

snapshots makes the input more robust to noise, but could

introduce mismatch if the source is moving or the environ-

ment is evolving across the averaging period. The range esti-

mation methods are tested using 1, 5, and 20 snapshots and

the corresponding MAPE is shown in Table II. All of the

three models degrade with 1 snapshot due to low SNR and

become robust with more snapshots.

C. Number of hidden neurons and layers for FNN

The MAPE of FNN with different numbers of hidden

neurons and layers is given in Table II. Increasing the number

of hidden neurons increases the number of parameters to fit in

the FNN model. As a result, more of the variance in the data

is captured. FNN has the minimum error when the number of

hidden neurons is chosen as 128 or 2048 for Test-Data-1

(7%) and 512 for Test-Data-2 (4%). In the case of Test-Data-

1, 256, 512, and 1024 have a similar result (8%, 8%, 8%). As

shown in Table II, the FNN with two hidden layers did not

improve the prediction performance for classification.

D. Kernel and regularization parameters for SVM

When using a Gaussian radial basis function kernel, the

parameters c in Eq. (23) and the regularization parameter C
in Eq. (20) determine the best separation of the data by

SVM. The MAPE versus these two parameters on two data

sets is shown in Fig. 16. As seen from the result, there exists

an optimal interval for these two parameters (i.e.,

10<C< 103 and 10–3< c< 10–1). The SVM fails when c
and C are out of this interval, but is robust when c and C are

within the appropriate range.

E. Number of trees and minimum samples per leaf
for RF

The number of decision trees and the minimum samples

per leaf35 are the most sensitive parameters for the RF.

Figure 17 shows the MAPE versus these two parameters.

The RF parameters have a smaller range of possible values

than SVM, but the RF classifier will not fail for any of these

choices. The RF classifier has the best performance for more

than 500 trees and 20 to 50 minimum samples per leaf.

F. CPU time

The three machine learning models are efficient in CPU

time (on a 2015–iMac). For the FNN with 1024 hidden neu-

rons and 1000 training steps, it took 140 s for training and

predicting the results. The SVM took 110 s, and the RF (500

trees and 50 minimum samples per leaf) was the fastest at

52 s.

G. Multiple sources and deep learning

In our study, only one source is considered. The simulta-

neous multiple source localization problem is more challeng-

ing, especially for sources close to each other. Solving this

problem with FNN is a multiple binary classification prob-

lem and will require additional training data.

Although the FNN with one hidden layer works well for

the data sets in this paper, more complicated machine learning

algorithms, e.g., deep learning, may be necessary for more

complicated experimental geometries or ocean environments.

VI. CONCLUSION

This paper presents an approach for source localization

in ocean waveguides within a machine learning framework.

The localization is posed as a supervised learning problem

and solved by the feed-forward neural networks, support

vector machines and random forests separately. Taking

advantage of the modern machine learning library such as

FIG. 15. (Color online) Localization using Bartlett matched-field processing

(training data as replica fields). (a) Ambiguity surface and (b) maximum

peaks for 550 Hz, (c) ambiguity surface and (d) maximum peaks for

300–950 Hz with 10 Hz increment. Circles and solid lines denote predictions

and GPS ranges, respectively.

FIG. 16. (Color online) MAPE of the SVM classifier on (a) Test-Data-1 and

(b) Test-Data-2. c is the kernel parameter and C is the regularization parame-

ter. There are 138 output classes and 10 snapshots averaged for each sample.

FIG. 17. (Color online) MAPE of the RF classifier versus the number of

trees and the minimum samples per leaf on (a) Test-Data-1 and (b) Test-

Data-2. There are 138 output classes and 10 snapshots averaged for each

sample.
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TensorFlow and Scikit-learn, the machine learning models

are trained efficiently. Normalized sample covariance matri-

ces are fed as input to the models. Simulations show that

FNN achieves a good prediction performance for signals

with SNR above 0 dB even with deficient training samples.

Noise09 experimental data further demonstrates the validity

of the machine learning algorithms.

Our results show that classification methods perform

better than regression and MFP methods. The three classifi-

cation methods tested (FNN, SVM, RF) all performed well

with the best MAPE 2%–3%. The SVM performs well if the

model parameters are chosen appropriately, otherwise it

degrades significantly. By contrast, the FNN and RF are

more robust on the choices of parameters.

The experimental results show that multi-frequency

input generates more accurate predictions than single fre-

quency (based on FNN). In the current study, the training

and test data were from the same ship. In a realistic applica-

tion, data from multiple ships of opportunity can be used as

training data by taking advantage of the Automatic

Identification System (AIS), a GPS system required on all

cargo carriers. The tracks were quite similar and it would be

interesting to compare the performance of the three methods

as tracks deviate.
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