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We present a passive geoacoustic inversion method using two hydrophones, which combines noise interferometry
and time reversal mirror (TRM) techniques. Numerical simulations are firstly performed, in which strong fo-
cusing occurs in the vicinity of one hydrophone when Green’s function (GF) is back-propagated from the other
hydrophone, with the position and strength of the focus being sensitive to sound speed and density in the bottom.
We next extract the GF from the noise cross-correlation function measured by two hydrophones with 8025-m
distance in the Shallow Water ’06 experiment. After realizing the TRM process, sound speed and density in
the bottom are inverted by optimizing focusing of the back-propagated GF. The passive inversion method is
inherently environmentally friendly and low-cost.
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Wave propagation in oceans is usually influenced
significantly by bottom properties, especially for shal-
low water or transitional areas. Due to the diffi-
culty and high cost of direct measurement for the bot-
tom parameters, geoacoustic inversion as an impor-
tant kind of indirect method has received considerable
attention in underwater acoustics. A variety of inver-
sion methods have been developed in recent years,[1−8]

and most of them are based on active schemes. In the
active inversion methods, physical properties of the
environment affecting acoustic propagation can be re-
trieved from observations of signals generated by pow-
erful controlled sound sources.[9]

Passive acoustic inversion method employs the
ubiquitous ambient noise as a replacement of the des-
ignated probing signals.[10] For the passive method, a
critical issue is Green’s function (GF) retrieval. The
process by which approximations to GFs between two
locations are estimated by cross-correlating time se-
ries of ambient noise recorded at those locations is
widely referred to as noise interferometry (NI). The
underlying theory has been well developed.[11−14]

It is well known that if a pulse signal is radi-
ated at one point and the field is recorded at mul-
tiple distant locations, then retransmitting the time-
reversed recorded signals at those locations results in
a wave field that focuses at the original sound gener-
ation point.[15−17] This process is referred to as im-
plementation of a time reversal mirror (TRM). Roux
and Kuperman[18] firstly demonstrated that the GFs
obtained from noise cross-correlation functions (NC-
CFs), rather than measured responses to active source
transmissions, can be used to successfully implement
a TRM. The time reversal of ocean noise makes one
of the receivers act as a virtual source.

In this Letter, we combine the NI and TRM tech-
niques to invert ocean bottom parameters passively.
Firstly, numerical simulations are performed to ver-
ify that bottom parameters can be determined from

the requirement that the TRM focuses the wave field
at the position of the sound source or, by extension,
of the virtual source created through NI. Secondly,
we extract the GF from the NCCF measured by two
single hydrophones in the Shallow Water ’06 (SW06)
experiment.[19] Thirdly, combined with the extracted
GF, the TRM is used to search for the optimal sound
speed and density in the bottom.
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Fig. 1. Geometry of the ocean environment between
SHRU 1 and SHRU 2 in the SW06 experiment.

We consider the ocean environment as shown in
Fig. 1, which is the same as one part of the SW06 ex-
periment. In the experiment, five single hydrophone
receiving units (SHRUs) were positioned on the across
shelf path. We choose the waveguide between SHRU
1 and SHRU 2 to analyze. The water depth at the
position of SHRU 1 is 85m, and that at the position
of SHRU 2 is 107 m. We assume that the bathymetry
between the two receivers varies linearly. Both of the
SHRUs are located 7 m above the bottom, and the
horizontal distance between them is 8025m. The bot-
tom is modeled as a uniform fluid halfspace in this
work. The averaged sound speed profile measured in
the experiment is used in the following simulations.

Let a point sound source be located at the position
of SHRU 1, to emit a signal 𝑠0(𝑡) with a spectrum

∗Supported by the National Natural Science Foundation of China under Grant Nos 11434012 and 41561144006.
**Corresponding author. Email: qjx@mail.ioa.ac.cn
© 2017 Chinese Physical Society and IOP Publishing Ltd

094301-1

PACS 2010
PACS

PACS 2010
PACS

PACS 2010
PACS

PACS 2010
PACS

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

http://cpl.iphy.ac.cn
http://www.cps-net.org.cn
http://www.iop.org


CHIN.PHYS. LETT. Vol. 34, No. 9 (2017) 094301

𝑆(𝜔). The spectrum has the form

𝑆(𝜔) =

{︂
1, 10Hz ≤ 𝜔/2𝜋 ≤ 70Hz,

0, elsewhere.
(1)

In the frequency domain, the acoustic pressure at the
position of SHRU 2 is given by

𝑃 (𝑟2, 𝜔) = 𝑆(𝜔)𝐺(𝜔), (2)

where 𝐺(𝜔) is the frequency-domain GF between the
points of SHRUs 1 and 2. Next, reverse the received
time-domain signal and reradiate it. The acoustic
pressure received at the position of SHRU 1 is

𝑃 (𝑟1, 𝜔) = 𝑆*(𝜔)𝐺*(𝜔)𝐺(𝜔), (3)

where * denotes the complex conjugation. The fo-
cusing field is expected at the point of SHRU 1 if
there are sufficient multi-paths connecting the two
points. We calculate the frequency-domain acoustic
pressure 𝑃 (𝑟, 𝑧, 𝜔) using a wide-angle parabolic equa-
tion model RAM.[20] Subsequently, time-domain pres-
sure 𝑝(𝑟, 𝑧, 𝑡) is Fourier-synthesized from 𝑃 (𝑟, 𝑧, 𝜔).

We define 𝐸(𝑟, 𝑧) = |max
𝑡>0

[𝑝(𝑟, 𝑧, 𝑡)]|2. The normalized

peak intensity 𝐽(𝑟, 𝑧) = −10 lg[1 − 0.99𝐸(𝑟, 𝑧)/𝐸0],
with 𝐸0 = max

𝑟,𝑧
[𝐸(𝑟, 𝑧)], is given in the dashed rect-

angular area around SHRU 1 as shown in Fig. 1 in the
following results. Figure 2(a) shows the simulation
result using the bottom parameters with the sound
speed of 1750 m/s, the density of 1.9 g/cm3, and the
attenuation of 0.02 dB/wavelength. A sharpened fo-
cus can be observed in Fig. 2(a) exactly at the posi-
tion of SHRU 1. If the bottom parameters for wave
propagating from SHRU 1 to SHRU 2 are different
from those for back-propagating, the main focus will
shift and blur, or the spurious additional foci will be-
come more pronounced. From Figs. 2(b)–2(d), we can
see that the main-focus shift of the back-propagating
wave is sensitive to mismatches of sound speed and
density in the bottom. The simulation results suggest
that bottom parameters can be estimated from the po-
sition of focusing sound field generated by the TRM. It
should be emphasized that the focusing position is in-
sensitive to the bottom attenuation coefficient, which
is considered as a constant of 0.02 dB/wavelength in
this study.
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Fig. 2. Sensitivity for the position shift of focusing wave field generated by the TRM to the bottom parameters.
The sound speed is 1750m/s and the density is 1.9 g/cm3 in the bottom for forward wave propagating. The sound
speed and density for back-propagating are (a) 1750m/s and 1.9 g/cm3, (b) 1700 m/s and 1.9 g/cm3, (c) 1850m/s
and 1.9 g/cm3, and (d) 1750m/s and 1.5 g/cm3. In each panel, the black dot denotes the position of the sound
source, and the bathymetry is indicated by a thick black line.

For noise data recorded by SHRUs 1 and 2 in
the SW06 experiment, we evaluate the NCCF from a
Fourier transform of the cross spectrum, which is cal-
culated by summating over a large number of data seg-
ments in 5.7 d. There are 10% data segments with the
highest noise level that are discarded to suppress con-
tributions of strong, localized and transient sources.
To equalize contributions of various sources, the noise
spectra are normalized in each data segment. Figure
3(a) shows the final result in the frequency band of
10–70 Hz, in which there are two peaks around the

time delays of ±5.5 s, respectively. The NCCF is ap-
proximately proportional to the sum of forward and
backward GFs between SHRU 1 and SHRU 2, i.e.,
𝐶(𝑡) = 𝐴[𝐺(𝑡) + 𝐺(−𝑡)], where 𝐴 is a constant. An
unexpected smaller peak also appears in Fig. 3(a) be-
cause some signals are probably treated as noise. In
the following we choose the negative time delay part
of NCCF as GF, which is the waveform in the dashed
box in Fig. 3(a). The fine structure of the backward
GF is given in Fig. 3(b). In principle, we could ob-
tain the same GF from the positive time delay part of
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NCCF if the noise field is perfectly diffuse.
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Fig. 3. The noise cross-correlation function (NCCF) for
SHRUs 1 and 2 in the SW06 experiment (a) and the fine
structure of negative time delay part (b). The frequency
band is in the range of 10–70Hz.

In the following we realize a passive TRM using
the GF retrieved from the ambient noise to invert bot-
tom parameters. The process of implementing TRM
is almost the same as the above numerical simula-
tions. The only difference is the absence of a source
in the waveguide. Instead, SHRU 1 serves as a vir-
tual source. At the position of SHRU 2, the retrieved
GF is firstly time-reversed, then we reradiate the re-
versed signal and make it propagate toward SHRU 1
by calculating the backward GF numerically. Next the
quantity 𝐽(𝑟, 𝑧) is plotted around SHRU 1 to find a fo-

cus. We model the bottom as a uniform fluid halfspace
and search for the bottom parameters that minimize
the displacement of main focus from the virtual sound
source. In the geoacoustic inversion, the searching re-
gion for bottom sound speed is from 1650 to 1900m/s.
For a given sound speed 𝑐b, the corresponding density
𝜌b is obtained by the Hamilton sediment empirical re-
lationship for continental terrace[21]

𝑐b = 2330.4− 1257.0𝜌b + 487.7𝜌2b. (4)

Figure 4 gives the displacements of main focus from
the virtual sound source SHRU 1, which are caused
by deviations of bottom parameters from their true
values. The minimum appears at the sound speed of
1770 m/s, which is the optimal value for the environ-
ment between SHRU 1 and SHRU 2. The optimal
density is 2.0 g/cm3 according to the empirical rela-
tionship of Eq. (4).
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Fig. 4. Displacement of main focus from the virtual sound
source versus bottom sound speed.
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Fig. 5. Time reversal of GF retrieved from NCCF in the SW06 experiment. The GF is back-propagated in the
environments with different bottom parameters. Normalized peak intensity of the back-propagated acoustic field in
the vertical cross-section of the waveguide is shown by color. Sound speed and density in the bottom are (a) 1770m/s
and 2.0 g/cm3, (b) 1650m/s and 1.8 g/cm3, (c) 1700m/s and 1.9 g/cm3, and (d) 1900m/s and 2.2 g/cm3. In each
panel, the black dot denotes the position of the virtual sound source SHRU 1, and the bathymetry is indicated by
a thick black line.

094301-3

Chin. Phys. Lett.
References

http://cpl.iphy.ac.cn


CHIN.PHYS. LETT. Vol. 34, No. 9 (2017) 094301

The normalized peak intensity 𝐽(𝑟, 𝑧) of the back-
propagated field for the optimal bottom parameters
is shown in Fig. 5(a). Remarkably, back propagation
of the measured NCCF from the location of SHRU 2
gives a field with a pronounced focus in the vicinity of
SHRU 1. The focusing quality of time-reversed NCCF
in the experiment is comparable to that achieved
in back-propagation of the simulated GF (Fig. 2(a)).
The normalized peak intensity of the back-propagated
field for other bottom parameters are also given in
Figs. 5(b)–5(d). As in numerical simulations, the po-
sition of the main focus of the back-propagated NCCF
proves to be sensitive to the bottom parameters. A
mismatch between the actual bottom parameters and
the parameters assumed in back-propagating the re-
trieved GF shifts and blurs the main focus, while
making the spurious additional foci more pronounced.
The corresponding bottom densities in Fig. 5 obtained
from Eq. (4) are 2.0, 1.8, 1.9 and 2.2 g/cm3, respec-
tively.

A uniform fluid halfspace bottom model is used in
the inversion method, which includes three parame-
ters: sound speed, density and attenuation. As dis-
cussed in Ref. [22], the equivalent single-layer bottom
model has the same effect on the underwater acous-
tic field as the multiple-layer models within some
range-frequency domain of interest. Furthermore,
the Hamilton sediment empirical relationship between
sound speed and density is utilized to reduce the di-
mension of unknown parameters. As a result, this
inversion method could avoid the multiple-solution
problem, which often appears in some other geoacous-
tic inversion methods. It should be emphasized that
the inversion method combining NI and TRM tech-
niques can also be applied to more complex bottom
models. The additional parameters will lead to a con-
siderable increase of computation time for searching
optimal solutions, and the multiple-solution problem
may appear.

In summary, a passive geoacoustic inversion
method combining NI and TRM techniques has been
presented, in which ambient noise recorded on only
two hydrophones is used. In numerical simulations,
strong focusing occurs in the vicinity of one hy-
drophone when the GF is back-propagated from the
other hydrophone, with the position and strength of

the focus being sensitive to sound speed and density
in the bottom. We extract the GF from the NCCF
measured by two single hydrophones in the SW06 ex-
periment. After performing the TRM process, values
of sound speed and density in the bottom are esti-
mated by optimizing focusing of the back-propagated
GF. Compared with active techniques, the passive in-
version method does not contribute to noise pollution
in the ocean, and consequently is inherently environ-
mentally friendly. Moreover, this is a low-cost method
because only two hydrophones are necessary.
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