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Experimental demonstration of anomalous Floquet
topological insulator for sound
Yu-Gui Peng1,2,*, Cheng-Zhi Qin1,*, De-Gang Zhao1,*, Ya-Xi Shen1, Xiang-Yuan Xu3,4, Ming Bao3, Han Jia3

& Xue-Feng Zhu1,2

Time-reversal invariant topological insulator is widely recognized as one of the fundamental

discoveries in condensed matter physics, for which the most fascinating hallmark is perhaps a

spin-based topological protection, the absence of scattering of conduction electrons with

certain spins on matter surface. Recently, it has created a paradigm shift for topological

insulators, from electronics to photonics, phononics and mechanics as well, bringing about

not only involved new physics but also potential applications in robust wave transport.

Despite the growing interests in topologically protected acoustic wave transport, T-invariant

acoustic topological insulator has not yet been achieved. Here we report experimental

demonstration of anomalous Floquet topological insulator for sound: a strongly coupled

metamaterial ring lattice that supports one-way propagation of pseudo-spin-dependent edge

states under T-symmetry. We also demonstrate the formation of pseudo-spin-dependent

interface states due to lattice dislocations and investigate the properties of pass band and

band gap states.
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T
he study of topological properties or invariants in periodic
physical systems has become one of the most active fields
in many branches of physics1–20. As basic elements of

topological band theory, these topological invariants are very
interesting, because they imply the presence of non-trivial bulk
topologies, giving rise to the presence of gapless edge or surface
states featured with the absence of scatterings. Probably the most
well-known example should be the integer quantum Hall effect
discovered by Klitzing et al.21 under strong magnetic fields and
low temperatures, where the quantized Hall conductivity is
insensitive to local perturbations and the quantization (TKNN
integer) was afterwards discovered to have an expression of the
first Chern number of the bands below the chemical potential22.
Another seminal work is the Kane and Mele model, dealing
with time-reversal (T) invariant systems of strong spin–orbit
couplings23. In that work, Kane and Mele23 introduce a
distinctive Z2 index to describe the T-invariant quantum spin
Hall phase that has a spin-dependent topological protection and
robustness against non-magnetic disorder and interactions under
T-symmetry. The new topological phase in the presence of
T-symmetry was later termed topological insulators, now widely
recognized as a fundamental discovery in condensed matter
physics1–5.

In the past decade, exploration for new types of topological
insulators is substantively followed up in different subfields
of physics, making a paradigm shift for topological states,
from electronics to photonics6–12,24,25, phononics13,14 as well as
mechanics15–17. In photonics, the field of topological insulators is
rapidly developing in the past few years, where one of most
representative example should be the Floquet topological
insulator, proposed in periodically driven systems. There are
basically two types of Floquet topological insulator. One is based
on temporal modulation26. As the time reversal symmetry is
broken, such topological insulator can support non-trivial
one-way edge states that are immune to disorder-induced
backscattering. The other relies on the three-dimensional chiral
couplings9, where the z direction wave evolution can be mapped
into the temporal modulation in the x–y plane. In reality, it is
quite challenging to realize very fast temporal modulation or
fabricate delicate three-dimensional helical waveguide array on
chip. A more attractive solution is proposed by Hafezi et al.7,8

employing a two-dimensional (2D) coupled resonator optical
waveguide (CROW) lattice to exhibit an optical analoge of
quantum spin Hall effect. In stark contrast with aforementioned
two types of Floquet topological insulator, the CROW lattice is a
2D time-reversal invariant system, which does not require any
type of external driven and can be easily demonstrated in
experiments. The CROW lattice, for which the configuration is
specifically designed to be periodic, is termed as anomalous
Floquet topological insulator (AFI)11,12 and has zero Chern
number due to the time-reversal symmetry. In acoustics,
unidirectional edge channels have been recently proposed for
scalar acoustic waves propagating in a fluid circulation
array18,27,28, mimicking the integer quantum Hall effect by
breaking T-symmetry via the Doppler effect. However, the
missing part corresponding to T-invariant topological phase for
sound has still not yet been achieved.

In this study, we have theoretically proposed and experimen-
tally demonstrated the prototype of T-invariant AFI for sound.
The proposed AFI is inspired from the Chalker–Coddington
network model developed in the 1980s for the study of Anderson
transition in quantum Hall systems29. The model of AFI is a
2D coupled metamaterial ring lattice, presented in Fig. 1a,
which can support topological edge states at sufficiently large
coupling strength between neighbouring lattice rings. Figure 1b
schematically shows a unit-cell of the 2D lattice, comprising one

lattice ring in the centre surrounded by four coupling rings.
Here we define a pseudo-spin for acoustic waves based on
wave circulation direction in the lattice rings7,8,11,30, viz. pseudo-
spin-up2clockwise and pseudo-spin-down2anti-clockwise. By
purposely designing the lattice configuration, we have successfully
constructed the acoustic AFI, which can support the pseudo-spin-
dependent edge states, scattering immune to boundary abrupt
variations or lattice dislocations. The edge states with different
pseudo-spins can propagate in opposite directions under
T-symmetry at the same boundary. We emphasize that the edge
states with different pseudo-spins are regarded as decoupled due
to nearly unitary coupling between neighbouring rings, closing
the time-reversed channels for backscatterings. In this case, the
rings no longer act as resonators and the edge state is essentially a
conventional waveguide mode31 (see Supplementary Note 1). For
one specific pseudo-spin, there exists a pair of edge states
propagating along the upper and lower boundaries, respectively,
with opposite group velocities7,8,11,24. The observations reveal
that when the coupling strength between adjacent lattice rings
surpasses a threshold, acoustic waves carrying a pseudo-spin in
one lattice ring may tunnel into the neighbouring coupling ring
with the pseudo-spin flipped and then go to another lattice ring
with the pseudo-spin restored or conserved, rendering an
interesting zigzag route. Our work represents an important step
in the implementation of a diverse family of topological structures
and networks for sound with new properties and functionalities.

Results
Projected band structure for acoustic AFI. As shown in Fig. 1c,
our acoustic metamaterial waveguide is constructed by sub-
wavelength air–metal layers (metal: aluminum alloys) periodically
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Figure 1 | Photograph of the fabricated samples. (a) Photograph of a

2D coupled metamaterial ring lattice composed of 3�4 unit cells. The

U-shape waveguides are the input and output ports for selectively exciting

and extracting edge states with specific pseudo-spins. It is noteworthy that

a ring is purposely removed to form a defect, as marked by the red dashed

box. (b) Photograph of a unit cell composed of one lattice ring surrounded

by four coupling rings with the radius R¼ 77.4 mm. The red arrow shows

that the waves in the lattice ring are carrying pseudo-spin-up, viz.

propagating in clockwise. (c) Zoom-in photograph of the metamaterial

waveguide marked by the black circle in a. The period of the waveguide is

P¼4.3 mm. The thickness and width of the metal plate is t¼ 1.7 mm and

w¼ 17.2 mm.
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stacking along the azimuthal direction of the ring. The effective
refractive index of the fundamental guided mode can be
expressed as32,33

neff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t

p

� �2

tan2 wo
2cair

� �
þ n2

air

s
; ð1Þ

where t, w are the thickness and width of metal plates, p is the
structural period. o¼ 2pf denotes the angular frequency of
acoustic waves. Here, the refractive index of air nair¼ 1 and the
speed of sound in air at room temperature cair¼ 343.21 m s� 1.
For the fabricated sample, the structural parameters are
R¼ 77.4 mm, w¼ 17.2 mm, t¼ 1.7 mm and P¼ 4.3 mm. In
stark contrast to the natural existing materials with refractive
indices always lower than nair

34, the extremely anisotropic
metamaterial can support tightly guided acoustic waves, as the
effective refractive index is much larger than nair. To suppress
high-order guided modes, the operation frequency should satisfy
the cutoff condition of oopcair/w.

For calculating the projected band structure of AFI, we first
map the lattice onto the equivalent Chalker–Coddington network
model composed of links and nodes28,29. As shown schematically
in Fig. 2a, each red arrow refers to a link, viz. a quarter lattice
ring, and each blue circle refers to a node, viz. a coupling ring. In
the link, the phase delay of acoustic waves is f¼ (pR/2)oneff/cair,
which is dependent on the operation frequency. Each node can be
described by a scattering matrix in a parameterization form
refs 11,30

Sðy;j; w; xÞ ¼ sin yeiw � cos yeiðj� xÞ

cos yeix sin yeiðj� wÞ

� �
; ð2Þ

where yA[0, p/2] characterizes the coupling strength between
adjacent lattice rings. w, j and xA[0, 2p] are the phase
parameters to be determined. As the coupling ring is symmetric
under 180� rotation, the scattering matrix should satisfy S11¼ S22

and S12¼ S21, that is, eiw¼ ei(j� w) and eix¼ � ei(j� x).
Therefore, we obtain w¼j/2 and x¼ (pþj)/2. The scattering
matrix can thus be rewritten into

Sðy;jÞ ¼ eij=2 sin y i cos y
i cos y sin y

� �
; ð3Þ

where j denotes the phase shift in the coupling process. As j has
no influence on the coupling strength, it can be arbitrarily chosen.
For simplicity, we set j¼ 0 and obtain

SðyÞ ¼ sin y i cos y
i cos y sin y

� �
: ð4Þ

From equation (4), the scattering matrix S is only determined by
y, which characterizes the coupling strength between adjacent
lattice rings. It should be mentioned that the coupling strength y
is highly dispersive in our case, whereas in previous theoretical
works11,30, y has always been considered as non-dispersive for the
calculation of ’quasi-energy’ band structures (see Supplementary
Fig. 1). In Fig. 2a, we consider a strip coupled ring lattice
that is periodic in x direction and finite in y direction. The sites of
lattice rings are indicated by (m, n), where m and n are the
column and row indices, respectively. Then, we employ
|jm,ni¼ [am,n bm,n cm,n dm,n]T to represent the amplitudes of
acoustic waves in the lattice ring at the site (m, n). The scattering
matrixes of coupling rings in x and y directions are the same
Sx¼ Sy¼ S(y). Coupling relations between the lattice rings at sites
(m, n) and (mþ 1, n) in x direction, as well as those at sites (m, n)
and (m, nþ 1) in y direction are respectively expressed as follows

dmþ 1;n

cm;n

� �
¼ Sx

am;n

bmþ 1;n

� �
;

bm;nþ 1e� if

am;ne� if

" #
¼ Sy

dm;neif

cm;nþ 1eif

" #
:

ð5Þ

By applying the Bloch condition in x direction |jmþ 1,ni¼
eiKx|jm,ni and the boundary condition in y direction
cm,1¼ e� 2ifbm,1, am,N¼ e2ifdm,N, we can obtain the following
governing equation11

G cj i ¼ eiKx cj i; ð6Þ

where Kx is the Bloch wave vector, |ci¼ [bm,1 dm,1 bm,2 dm,2 � � �
bm,N dm,N]T the wave amplitudes in the mth column, G¼G1 �G2
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Figure 2 | Projected band structure for acoustic AFI. (a) The equivalent Chalker–Coddington network model of the coupled ring lattice that is periodic in

the x direction and finite in the y direction with N unit cells. Red arrows refer to the links, viz. quarter lattice rings, and blue circles refer to the nodes,

viz. coupling rings. (b) The coupling strength y between neighbouring lattice rings as the frequency varies from 7.1 to 7.7 kHz. The yellow region covers the

frequency range of strong coupling for y4p/4. The inset shows the simulated sound pressure amplitude distribution in the U-Ring-U shape waveguide as y
reaches maximum yE0.43p at 7.46 kHz. (c) Projected band structure of the semi-infinite ring lattice (N¼ 20) for pseudo-spin-up Bloch modes. The red

and blue bands denote non-trivial edge states at the upper and lower boundaries of the lattice.
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with G1 and G2 being

G1 ¼

G10

G10

. .
.

G10

2
66664

3
77775;

G2 ¼

e� 2if

G20

. .
.

G20

e2if

2
66666664

3
77777775
:

ð7Þ

The sub-matrixes G10 and G20 are

G10 ¼
csc y � i cot y

i cot y csc y

� �
;

G20 ¼
ie2if sec y � i tan y

i tan y � ie� 2if sec y

" #
:

ð8Þ

Figure 2b has clearly illustrated the coupling strength y between
neighbouring lattice rings as the frequency f varies from 7.1 to
7.7 kHz. The parameter y¼ arcsin(|Pout|/|Pin|) is numerically
extracted from the U-Ring-U shape configuration by using a
finite element solver (COMSOL Multiphysics TM 4.3b), where
Pin and Pout are the pressure amplitudes at input and output
ports, respectively. The yellow region in Fig. 2b covers the
frequency range of strong coupling for y4p/4 and the coupling
strength reaches a maximum yE0.43p at 7.46 kHz. The inset has
shown the simulated pressure amplitude distribution at 7.46 kHz
to validate the nearly unitary coupling.

In Fig. 2c, we map out the projected band structure for pseudo-
spin-up Bloch modes in the semi-infinite ring lattice by solving
the governing equation (6). Specifically, the number of unit cells
in y direction is set as N¼ 20 and the band structure is plotted by
sweeping the frequency from 7.1 to 7.7 kHz with the step of
Df¼ 0.1 Hz. Each dot in the bands corresponds to a Bloch mode
with an explicit frequency f and a Bloch wave vector k. In
Supplementary Fig. 2, we also show the band structures calculated
by different frequency steps, viz., Df¼ 1, 0.1 and 0.025 Hz, which
clearly shows that the central blank parts of the band structure in
Fig. 2c are shrinking by decreasing the frequency step. In the
strong coupling range for y4p/4, our system may turn into a
topological insulator. It should be mentioned that y4p/4 is a
necessary but not sufficient condition to judge whether the
coupled ring lattice is a topological insulator. Therefore, the
yellow region in Fig. 2b just shows the frequency range where the
ring lattice may possibly be a topological insulator. To accurately
predict the frequency range of topological phase, we need to refer
to the projected band structure plotted in Fig. 2c. We note that
the topological insulator studied in refs 11,12,30 also has bulk
state bands and gapless edge state bands at y4p/4. In Fig. 2c, the
red and blue curves denote the upper and lower edge states
spanning the band gaps with positive and negative group
velocities, respectively. Obviously, the non-trivial edge states
exist in the frequency range of 7.4B7.6 kHz, showing a good
agreement with the shaded region in Fig. 2b. However, in the
weak coupling range for yop/4, the lattice turns into a trivial
insulator supporting two-way edge states. To be specific, at the
frequency around 7.2 kHz, there are actually two pseudo-spin-up
edge states with different group velocities for either boundary. In
Fig. 2c, we have neglected the pseudo-spin-flipping processes at
each coupling connection. If we consider both pseudo-spins, the
projected band structure will have a time-reversal counterpart11.
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Figure 3 | Coupling in the U-Ring-U shape waveguide complex. (a) Photograph of the U-Ring-U shape metamaterial waveguide complex. The structure is

a four-port system with two coupling connections marked by the red elliptical circles. (b) Illustration of the experimental measurement setup. The

metamaterial waveguide is sealed in rigid rectangular pipes to eliminate radiation losses. A condenser microphone is inserted into perforated holes on the

pipe wall, to measure the pressure amplitude in the metamaterial waveguides. (c) Measured pressure amplitude distributions in the coupling ring from

7.4 to 7.6 kHz. (d) The measured pressure amplitude distribution in the coupling ring at 7.46 kHz, replotted from the data on the vertical dashed line in c.

(e) The measured and simulated pressure amplitude contrast at 90� and 270� positions in the coupling ring from 7.4 to 7.6 kHz, where the measured

contrast is replotted from the data on the horizontal dashed lines in c.
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For a certain pseudo-spin, the Berry curvature F(k) is an odd
function in momentum space (or k-space). Therefore, the Chern
number C is calculated to be zero according to the definition of
C ¼

RR
FðkÞ=2pds, where the surface integral is operated for a

specific bulk band in the Brillouin zone. According to refs 11,30,
we can use the none-zero n1 invariant to describe the non-trivial
topological properties of time-reversal invariant systems,
for example, AFI, even though the Chern number is zero. The
non-zero n1 is defined by

v1 ¼
1

2p

Z p

�p
dkTr½SðkÞ� 1i@kSðkÞ�; ð9Þ

where the Bloch vector k is integrated over the first Brillouin
zone, see Supplementary Fig. 3 and Supplementary Note 2.

Coupling in the U-Ring-U shape waveguide complex. To
demonstrate the coupling properties between neighbouring lattice
rings in the strong coupling regime, we experimentally study a
U-Ring-U shape waveguide complex displayed in Fig. 3a, which
serves as the fundamental element of AFI. In the waveguide
complex, the lattice rings are replaced by U-shape waveguides, thus
forming a four-port system described by a scattering matrix S(y).
The coupling between two U-shape waveguides is realized via two
connections, as marked by the red elliptic circles. The experimental
setup is shown in Fig. 3b, where the fabricated U-Ring-U shape
waveguide is sealed in rigid rectangular pipes to prevent unwanted
radiation losses during propagation and isolate ambient noises. In
the experiment, we launch acoustic waves from Port 1 and measure
pressure amplitude distributions in the coupling ring by inserting a
condenser microphone into holes perforated on the pipes. Mean-
while, we plug the unmeasured holes with screws.

Figure 3c has shown pressure amplitude distribution in the
coupling ring along the azimuthal direction from 0� to 360�. The
frequency range is taken from 7.4 to 7.6 kHz, which corresponds
to the non-trivial band gap in Fig. 2c. It is observed that the sound
energy is mainly distributed along the lower half ring, leaving the
upper half part almost soundless within the frequencies of our
interest. For a more intuitive presentation, we extract the data on

the vertical dashed line at 7.46 kHz in Fig. 3c and replot the
pressure amplitude distribution on a ring in Fig. 3d. The
measured field distribution in Fig. 3d agrees well with the
simulated result in Fig. 2b, thus validating the nearly unitary
coupling efficiency. In Fig. 3d, the pressure amplitude field in the
lower half ring manifests inevitable attenuation. Such attenuation
mainly stems from thermo-viscous loss in the metamaterial
waveguide with subwavelength slit arrays. The ratio between the
pressure amplitudes at 90� and 270� of the coupling ring is
illustrated in Fig. 3e, which is plotted by using the data on
horizontal dashed lines in Fig. 3c. It clearly shows that the
measured pressure amplitude contrast is above 20 from 7.44 to
7.48 kHz and reaches the maximum value of around 42 at
7.46 kHz. We find out that the measured contrast agrees well with
the simulated one, as shown in Fig. 3e. After studying the
properties of U-Ring-U shape waveguide complex, we can further
design a 2D AFI and investigate the topological edge states in the
strong coupling regime.

Topological wave transportation in acoustic AFI. Basically,
in the strong coupling regime, the direction of propagation and
pseudo-spin of acoustic waves are locked at the boundaries of
AFI. For example, the upper edge supports forward propagating
waves with pseudo-spin-up and backward propagating waves
with pseudo-spin-down, and conversely for the lower edge. In this
section, we will numerically and experimentally display varied
topological wave transportations, such as one-way edge states and
interfacial states, in the acoustic AFI of different lattice configurations.
The simulations are operated in lossless systems. It is necessary to
emphasize that those phenomena are observable even in the presence
of decay processes as revealed in experiments.

The first demonstration is pseudo-spin-dependent topological
transportation of edge states in a lattice composed of 3� 4 unit
cells. One ring is purposely removed to form a dented edge as
shown in Fig. 4. U-shape waveguides are imposed to selectively
excite or extract pseudo-spin-up or pseudo-spin-down acoustic
edge states. In Fig. 4a, we launch guided waves from the lower
arm of the left U-shape waveguide and the pseudo-spin-up edge
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Figure 4 | The simulated and measured pressure amplitude distributions of one-way edge states. (a,b) The simulated pressure amplitude distributions

when pseudo-spin-up and pseudo-spin-down acoustic one-way edge states are selectively excited. We can clearly observe the robustness of the edge

states against the sharp bending of the boundaries. (c,d) The measured sound pressure distributions, corresponding to a and b, respectively. The operating

frequency of sound is 7.46 kHz. The distance between neighbouring lattice rings is 2D.
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state is perfectly excited. The excited edge state is circulating
clockwise in each lattice ring and immune to the dented edge.
Therefore, it propagates through six sharp corners of the lattice
smoothly. Owing to the nearly unitary coupling at each
connection, the backward reflection of pseudo-spin-down
component is negligible, leading to the fact that the output
sound energy is closely equal to the input. However, when we
launch guided waves from the upper arm, we will instead excite
the pseudo-spin-down edge state, as shown in Fig. 4b. The guided
wave in each lattice ring is circulating anti-clockwise and
propagates along a different route with only two sharp corners.
It should be mentioned that the pseudo-spin-dependent
topological transportation of edge states even holds after weak
lattice distortion is imposed (see Supplementary Fig. 4). We
conduct the proof-of-concept experiment in an anechoic
chamber. To prevent unwanted radiation losses during the
propagation, the fabricated metamaterial ring lattice is sealed in
rigid rectangular pipes and pressure amplitude distribution in the
ring lattice is measured by inserting a condenser microphone into
perforated holes on the pipe wall (see Supplementary Fig. 5).
During the measurement, the lab-made sound source is operating
at 7.46 kHz and the unscanned holes are bolted to prevent sound
leakage (see Supplementary Figs 6 and 7). The measured pressure
amplitude distributions for pseudo-spin-up and pseudo-spin-
down acoustic one-way edge states are respectively shown in
Fig. 4c,d, which agrees well with the simulated ones despite of
obvious field attenuation. The significant dissipation is mainly
due to thermo-viscous damping effect in the narrow air channels
between metal plates. The details of experimental measurements
are referring to the Supplementary Note 3. Owing to the perfect
localization of edge states, the number of unit cells in the bulk
region has no influence on the property of edge states. In the
Supplementary Fig. 8, we have calculated band structures for the
lattices with numbers of unit cells N¼ 3, 5, 10, 20, 50 and 100 in
the y direction. The result clearly shows that the edge state bands,
viz., the red and blue curves, are unchanged as the number of unit
cells N in y direction increases. The number N only influence the
bulk state bands very much. For example, as N increases,
the number of bulk state bands also increases. In this work, we
choose the lattice of 3� 4 due to the limitation of experimental
conditions. However, our results still unequivocally show the
existence of topological edge states in the confined system.

In the next, we demonstrate the existence of non-trivial
interface states in a dislocated lattice, where two sub-lattices
(2� 4 unit cells) are horizontally dislocated by half a lattice
constant. Simulation in Fig. 5a unequivocally shows that the
interface state launched at the left can propagate along the
dislocated interface to the right output with little reflections. As
the coupling and lattice rings are chosen to be of the same size,

the lower and upper sub-lattices can match well with each other
at the interface under the dislocation of half a lattice constant.
Basically, the coupling ring of the lower sub-lattice acts as
the lattice ring of the upper sub-lattice and vice versa. Thus, the
interface state can be regarded as pseudo-spin-down edge state
for the upper sub-lattice and pseudo-spin-up edge state for the
lower one, respectively. Differing from the edge states that can
be excited from either the lower branch or the upper branch of
the U-shape waveguide at the left side, the interface state can only
be excited from the lower branch of the U-shape waveguide. If we
launch acoustic waves from the upper branch, we will excite the
bulk state instead of interface state (see Supplementary Fig. 9).
It shows that the field distributions of interface state and bulk
state are complementary to each other in the dislocated lattice.
In Fig. 5b, we provide the measured sound energy distribution of
the interface state, where the interface state can propagate from
the left to right with little reflection. Owing to the presence of
loss, the sound is attenuated exponentially in the propagation.

At last, the properties of pass band and band gap states are
investigated by measuring the sound energy spectra and sound
energy distributions in AFI. In Fig. 6a,b, the sound energy spectra
(I1 and I2) are shown to check the bandwidths of the edge states.
In the experiments, I1 and I2 are measured at two different sites,
as marked by the circles in the Supplementary Fig. 10. I1 indicates
the sound energy at the output, whereas I2 reflects the sound
energy penetrated into the bulk. I1 and I2 are normalized with
respect to their maxima (arbitrary unit). In principal, we can
determine the edge states, pass band states and band gap states
from the amplitudes of I1 and I2. Specifically, I140, I2-0 for the
edge states, I140, I240 for the pass band states and I1-0 for the
band gap states. From the provided criterion, one can easily
obtain that the carrying frequencies of edge states span from
7.4 to 7.5 kHz and from 7.55 to 7.6 kHz, as shown in Fig. 6a,
which agrees well with the band structure diagram in Fig. 2c. We
also obtain that the bulk band and the band gap span from 7.5 to
7.55 kHz and from 7.24 to 7.25 kHz, respectively. From the above,
the bandwidths of gapless edge states below and above the bulk
band are thus calculated to be around 100 and 50 Hz, respectively.
Figure 6c,d provide the measured sound energy distributions in
the pass band (7.526 kHz) and the band gap (7.247 kHz). In the
pass band, the sound energy is distributed not only at the edge
but also in the inside bulk. In the band gap, the sound energy is
rapidly decayed in the x direction. Thus, the sound is completely
blocked by the lattice array. We find out that the experimental
results fairly agree with the numerical simulations, after
comparing Fig. 6 with Supplementary Fig. 11. It is also worthy
to be pointed out that the gapless edge states below and above the
bulk bands share similar topological properties. Although their
bandwidths are quite different, the sound energy distributions are
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Figure 5 | The simulated and measured pressure amplitude distributions of the one-way interface state. (a) The simulated pressure amplitude

distribution for the interface state after the lattice is dislocated by half a lattice constant D. The pseudo-spin-up interface state is excited from the lower arm

of the left U-shape waveguide and propagates unidirectionally to the right output. If we excite the wrong spin component at the input port, we will

obtain a bulk state instead of an interface state (see Supplementary Fig. 9). (b) The measured sound energy distribution for this one-way interface state.

The operating frequency of sound is 7.46 kHz.
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nearly the same, as shown by the experimental results in
Supplementary Fig. 12.

Discussion
In summary, we have experimentally demonstrated the prototype
of T-invariant AFI for sound, which permits unidirectionally
propagating pseudo-spin-dependent edge states. Here we would
like to mention the works by Hafezi et al.7,8, where the coupling
rings are aperiodic and well designed for purposely constructing
an effective magnetic field to mimick the quantum Hall effects. In
stark contrast with the work by Hafezi et al.7,8, our proposed AFI
is not only periodic but also featured with the same size of lattice
rings and coupling rings. This particular size selection is
beneficial for the experimental demonstration, as the processing
difficulty of the sample is greatly reduced and the required
distribution of the coupling strength between neighbouring rings
can be well satisfied in practice. In addition, we have discovered a
novel topological interface state after introducing the dislocation
of half a lattice constant into AFI. It should be emphasized that all
the coupled rings need to be identical for the best excitation
of such dislocation-induced topological interface state. It is also
necessary to be mentioned that the T-symmetry between
electrons and acoustic waves have fundamentally different
physical natures. For example, eigenvalues of T2 operator for
electrons T2¼ � 1 and for acoustic waves T2¼ 1 (ref. 24). As a
result, electrons with different spins are completely decoupled
under the protection of T-symmetry, whereas acoustic waves with
different pseudo-spins can easily scatter into each other through
time-reversed channels, such as imperfect couplings. To solve the
backscattering issue in acoustic AFI, it is meaningful to push
the coupling up to unitary and make acoustic waves with different
pseudo-spins nearly decoupled. Another possible way of
eliminating backscattering is breaking T, for example, using
well-designed time-varying modulations18,27,28, which however is
experimentally challenging and beyond the scope of this work.

Our work provides a fertile ground for novel wave
manipulations, such as the unidirectional sound transports and
robust sound transports against perturbations, and pushes
forward the fundamental explorations of topological acoustics.
Of interest will be the extension of our work into non-reciprocal
acoustics regime by integrating time-varying (for example,
rotating the metamaterial rings), shedding lights on the
development of chiral acoustic metamaterials and Chern acoustic
topological insulators with various intriguing non-reciprocal
properties, such as one-way sound isolation.

Methods
Sample preparation. We fabricated the waveguide metamaterial with aluminum
alloys plates. Periodic grooves are perforated on the plate by numerically controlled
machine tools (accuracy: 0.1 mm) with period 4.3 mm, width 17.2 mm and
thickness 2.6 mm, whereas the height of each groove is constant (10 mm) and
much smaller than the wavelength of sound in air (B46 mm at 7.46 kHz). For the
coupled metamaterial ring lattice, the inner and outer radii are 77.4 and 94.6 mm
for each ring, respectively, distance of centres of nearest-neighbour rings is 198 mm
and the angle between adjacent grooves in each ring is 3�.

Experiments setup and measurements. In the experiment, a lab-made sound
source driven by a multifunctional signal generator (SRS MODEL DS345)
and a lab-made power amplifier was placed in front of the tapered end of the
metamaterial waveguide, to generate stable waveguide modes (see Supplementary
Fig. 6). The sound energy is measured through a 1/8-inch diameter Brüel&Kjær
Type-LAN-XI-3160 condenser microphone. The data are recorded with
Brüel&Kjær PULSE 3160-A-042 4-channel analyser. The frequency response is
obtained with fast fourier transform (FFT) analysis of Brüel&Kjær PULSE software
LabShop version 19.0.0.128. To efficiently suppress the unwanted back reflections
at input (or output) facets, we use gradient metamaterials with acoustic impedance
fairly matched to air in broadband (see Supplementary Fig. 13). The fabricated
metamaterial waveguides are all sealed in rigid rectangular pipes, to prevent
unwanted radiation losses during propagation. Pressure amplitude distribution in
the ring lattice is measured by inserting a condenser microphone into perforated
holes on the pipe wall, where the perforated holes are azimuthally periodic and
segregated by 12�. In each measurement, the unscanned holes are bolted to prevent
sound leakage.
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Figure 6 | The measured sound energy spectra and sound energy distributions of pass band and band gap states. (a,b) The measured sound

energy spectra in the frequency ranges of 7.4B7.65 kHz and 7.23B7.27 kHz, respectively. In the experiments, we measured the sound energy spectra

(I1 and I2) at two different sites, as marked by the circles in c,d (also see Supplementary Fig. 10). I1 and I2 are normalized with respect to their maxima

(arb. unit). In light of the amplitudes of I1 and I2, we can clearly observe the bandwidths of gapless edge states, pass bands, as well as band gaps.

(c,d) The measured sound energy distributions in the pass band (7.526 kHz) and the band gap (7.247 kHz), respectively.
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Numerical calculations. We employ COMSOL MultiphysicsTM 4.3b to perform
FEM simulations. The geometrical model of the metamaterial waveguide complex
is built up in the commercial software Pro/Engineer and then is loaded into the
acoustic–solid interaction multi-physics module for the full-wave simulations. The
materials applied in simulations were air and Aluminum (6061 T6). Perfectly
matched layers are imposed on the outer boundaries of simulation domains to
prevent reflections. The largest mesh element size was set lower than 1/10 of the
lowest wavelength and finer meshes were applied at the domain with abrupt
geometry changes.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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