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Window-Dominant Signal Subspace Methods for
Multiple Short-Term Speech Source Localization
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Abstract—Signal subspace has been widely exploited to localize
multiple speech sources. However, most signal subspace methods
cannot count the number of sources, and do not make use of
speech sparsity in the frequency domain. This paper presents
a grid search window-dominant signal subspace (GS-WDSS)
method and a closed-form WDSS (CF-WDSS) method to localize
short-term speech sources. Such methods are based upon the
generalized sparsity assumption that each window containing
some time-adjacent bins is dominated by one source, as opposed
to the conventional assumption that each individual bin is
dominated by one source. The generalized assumption enables
the principal eigenvector of the spatial correlation matrix on
each window to span the signal subspace of the window-dominant
source. The direction-of-arrival (DOA) of the dominant source
is estimated from the principal eigenvector. The DOAs and the
number of sources are eventually summarized from the DOA
histogram of all dominant sources. The conventional assumption
is a special case of the generalized assumption. By using the
generalized assumption, the performance in estimating DOAs of
the window-dominant sources is significantly improved at the cost
of acceptable masking effect. The superiority of the proposed
methods is verified by simulated and real experiments.

Index Terms—Speech source localization, signal subspace,
speech sparsity, closed-form solution, window-dominant source.

I. INTRODUCTION

Real-time speech source localization using microphone ar-
rays is of great significance in numerous applications such as
speech separation, speech enhancement, or speaker tracking
[1]–[6]. The timely knowledge about speakers’ locations is an
essential prerequisite for these systems. Especially, in some
scenarios where speech sources are present for a short time
or their locations are time-varying, the localization must be
conducted on a short-term segment such as a word-length
utterance, instead of a long-term segment such as a sentence-
length utterance. The challenging issue for short-term source
localization is the robustness with respect to acoustic in-
terferences such as environmental noises or reverberations.
Generally speaking, the requirements to robust localization are
twofold. One is the enough frames that are provided by the
long-term source signal. The other is the robustness of local-
ization method that resists interferences. As insufficient frames
are available in a short-term segment, the robust localization
method is required for the short-term source localization.

Signal subspace methods are robust for the short-term
source localization. Numerous broadband subspace methods
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[9]–[24] that are derived from the narrowband subspace meth-
ods [7], [8] have been proposed in the past three decades.
These methods have an inherent advantage to localize multiple
broadband sources. The incoherent subspace methods (ISSM)
are simple but effective to localize multiple speech sources
with high spatial resolution. In these methods, the broadband
speech signal is decomposed into multiple narrowband signals,
and a narrowband subspace method is applied to each of these
narrowband signals [9]–[11]. Contrary to ISSM, the coherent
signal subspace methods (CSSM) coherently transform the
spatial correlation matrix from each narrowband component to
a reference narrowband, and then apply a narrowband subspace
method on the reference narrowband [12]–[16]. Although
CSSM was reported to outperform ISSM [12], CSSM depends
on an initial focusing angle and an inaccurate estimate of this
angle causes performance degradation. The covariance matrix
based methods are closely related to the subspace methods,
where the covariance matrix is expressed as the function of the
steered direction [17]–[19]. When the array is steered toward
the true direction of a source, the principal eigenvector spans
the signal subspace of the steered source and the remaining
eigenvectors span the subspace of noise and other sources.

Although the conventional subspace methods well address
the problem of multiple sources, they still have three common
disadvantages. First, most methods require the number of
sources to be estimated in advance, and are sensitive to the
estimate of the source number. Second, their computational
efficiency is undesirable due to the widely-used grid search.
Estimation of signal parameters via rotational invariance tech-
niques (ESPRIT) is a special subspace method that does not
require grid search. But ESPRIT was originally designed for
the uniform linear array [8], [20], [21] and the complicated
transformation from the arbitrary array geometry into the
linear geometry results in reduction of estimation accuracy
[22]–[24]. Even though the grid search can be accelerated
by optimizing the search strategy, the acceleration is achieved
at the cost of performance degradation [25]–[28]. Lastly, the
speech signal is commonly taken as a general broadband
signal, but such an approach ignores a special property of
speech signals.

Speech is a special broadband signal which is sparsely
distributed in the frequency domain [29], [30]. It is conven-
tionally assumed that multiple speech sources have different
distribution in the frequency domain, and that at most one
source is dominant in power for an individual bin while the
contributions from the remaining speech sources are negli-
gible. This sparsity assumption is referred to as W-disjoint
orthogonality in [29]. Such an assumption can simplify the
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multiple source localization on the full frequency band to
the single source localization at individual bins. On linear
arrays, numerous closed-form methods have been presented
based on a simplified model where direction-of-arrival (DOA)
estimation is equivalent to the time delay estimation [31]–
[39]. On planar arrays, the simplified model enables some
closed-form methods [40]–[42], whereas some methods still
use the grid search to find DOAs due to their complicated cost
function [43]–[47]. The closed-form methods usually exhibit
high computational efficiency as the grid search is avoided.

Robustness as well as computational efficiency are impor-
tant factors for short-term speech source localization. For
long-term speech sources, the poor robustness of localiza-
tion method may not substantially degrade the performance
because the interferences can be effectively alleviated by
sufficient frames. Most sparsity-based methods were reported
to work on long-term speech segments with duration of at
least one second [29], [32]–[35], [37]–[46]. If those methods
are applied on the short-term speech sources with duration
much less than one second, the acoustic interferences become
the major hindrance for robust localization.

By making use of the speech sparsity and the signal sub-
space, this paper proposes two real-time methods to estimate
DOAs of multiple sources on short-term speech segments. The
contributions of this paper are twofold. First, this paper makes
the generalized sparsity assumption that each window con-
taining some time-adjacent bins is dominated by at most one
speech source. The conventional sparsity assumption [29] is a
special case of the generalized assumption. Second, this paper
relates the signal subspace to the generalized assumption.
A grid search subspace method and a closed-form subspace
method are respectively presented based on this relation.

The remainder of this paper is organized as follows: Sec-
tion II formulates the signal model and reviews the related
works. Section III investigates the positive and negative effects
of the generalized assumption, and presents a grid search
method. Section IV presents a closed-form method based on
the generalized assumption. Section V gives the details of
implementation. Section VI gives various experiments and
discussions, and Section VII concludes the study.

II. PRELIMINARIES

A. Signal model
The signal model considers the far-field scenario that D

speech sources impinge on a K-element planar array. As-
suming the free-field model, the signal received by the kth
microphone is expressed as

xk(t) =
D∑
d=1

sd(t− ψk,d) + nk(t), (1)

where sd(t) denotes the signal emitted from the dth source,
nk(t) denotes the additive noise at the kth microphone which
is uncorrected with the source signal, and ψk,d denotes the
propagation time from source d to microphone k. By applying
the short-time Fourier transform (STFT) to (1), we obtain

Xk(ωi) =
D∑
d=1

Sd(ωi)e
−jωiψk,d +Nk(ωi), (2)

where ωi is the angular frequency at the ith frequency, j is an
imaginary unit, Sd(ωi) denotes the Fourier coefficient of the
source signal, and Nk(ωi) denotes the Fourier coefficient of
the noise signal. Using vector notation, (2) is re-written as

x(ωi) =
D∑
d=1

aiSd(ωi) + n(ωi), (3)

where

x(ωi) =
[
X1(ωi), · · · , XK(ωi)

]T
,

n(ωi) =
[
N1(ωi), · · · , NK(ωi)

]T
,

ai =
[
e−jωiψ1,d , e−jωiψ2,d , · · · , e−jωiψK,d

]T
,

where ai is the steering vector for the dth source. If the first
microphone is used as the reference, the steering vector is
represented as

ai = e−jωiψ1,d×
[
1, e−jωi(ψ2,d−ψ1,d), · · · , e−jωi(ψK,d−ψ1,d)

]T
.

(4)
Any microphone can be taken as the reference. The steering
vector is determined by the propagation time delay between
two microphones. The K-element array consists of M mi-
crophone pairs. Given the dth source, the time delay between
the mth microphone pair is represented as the function of its
DOA, as illustrated by Fig. 1(b). It is expressed as

τ (d)m = gTmγ(d)rm/c, (5)

where c denotes the sound velocity, rm denotes the distance
between the two microphones, and the unit vector γ(d) denotes
the DOA of the dth source, which is given by

γ(d) =
[
cosα(d) cosβ(d), sinα(d) cosβ(d), sinβ(d)

]T
, (6)

where α(d) denotes the azimuth angle, β(d) denotes the
elevation angle, and (.)T denotes the transpose. The direction
vector between the locations of the mth pair of microphones
is expressed by a unit vector,

gm =
[
gm,1, gm,2, 0

]T
, (7)

where the third dimension is set to zero, signifying that all
microphones are arranged in a plane. Eventually, the steering
vector is represented as the function of the direction, which is
denoted as ai(γ

(d)) in the followings. The purpose of sound
source localization is to estimate the DOAs of D sources from
the received signal x(ωi).

B. Broadband MUSIC

The broadband multiple signal classification (MUSIC) is a
classical signal subspace method based on the multi-source
model in (3). It utilizes the orthogonality between the steering
vector and the noise subspace. Nk(ωi) is assumed to be
additive white Gaussian noise. The noise subspace is obtained
by decomposition of the time-averaged spatial correlation
matrix at each frequency, which is given by

Ri = E
[
x(ωi)x

H(ωi)
]
= AiR

(s)
i AH

i + σ2
i I, (8)
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Fig. 1. Geometrical relationship: (a) Impinging direction for the dth source; (b) Time delay for the mth pair of microphones.

where (.)H denotes the conjugate transpose, E(.) denotes the
expectation over time, and

R
(s)
i = E

[
sis

H
i

]
,

Ai =
[
ai(γ

(1)),ai(γ
(2)), · · · ,ai(γ(D))

]
,

si =
[
S1(ωi), S2(ωi), · · · , SD(ωi)

]
.

(9)

The D×D matrix R
(s)
i has full rank if D sources are mutually

uncorrelated, and then the noise subspace is formed from
the eigenvalue decomposition of the correlation matrix. The
eigenmatrix for the noise subspace is expressed as

Vi =
[
ui,D+1, · · · ,ui,K

]
, (10)

where the K eigenvectors are arranged in the descending order
with respect to their eigenvalues.

The cost function of the broadband MUSIC tests the orthog-
onality between the steering vector and the noise subspace on
all available frequencies, which is given by

fMUSIC(γ) =
∑
i

aHi (γ)ViV
H
i ai(γ). (11)

The DOAs of the multiple sources are estimated by minimiz-
ing the cost function. Unfortunately, (11) is a trigonometric
function, which does not have a closed-form solution to
DOA. A grid search has to be used to find the optimal
estimates of DOAs. Most signal subspace methods rely on
an accurate estimate of the source number to discriminate the
noise subspace from the signal subspace. Properly speaking,
the source number at each frequency should be accurately
estimated in advance since the speech signal is sparsely
distributed in the frequency domain. For long-term speech
segments, the source number at each frequency is generally
equivalent to the number at the full band since the sufficient
frames can guarantee that all speech sources are present at
every frequency. However, this equivalence does not hold
true for short-term segments because the speech sources are
usually absent in some frequencies. The source number at each
frequency ranges from zero to the maximum (e.g. the source
number at the full band). It is quite difficult to accurately

estimate the number of sources on individual frequencies for
a short time. The ambiguity in the source number causes
difficulty when applying the subspace methods on the short-
term speech sources. Fortunately, this problem can be avoided
by considering the speech sparsity.

C. Sparse source localization

Speech is usually taken as a sparse source signal in numer-
ous localization methods [29]–[47]. Based on speech sparsity,
the multi-source model (3) is simplified to a single-source
model,

x(ωi) ≈ ai(γ
(d′))Sd′(ωi), (12)

where the index for the dominant source is given by

d′ = arg max
d∈[1:D]

∣∣∣Sd(ωi)∣∣∣. (13)

Most sparsity-based methods regard the background noise as
a nondirectional source, and do not take into account noise-
dominating bins. Therefore, the noise item is disregarded in
the signal model.

The time delays that are derived from the phase difference
of Fourier coefficients are widely employed to estimate the
DOA of the dominant source [29]–[40], [42]. For a given bin,
the time delay for the dominant source is given by

τ
(d′)
m,i ≈ ∠Xk2(ωi)− ∠Xk1(ωi)

ωi
+ pTi, (14)

where ∠(.) denotes the phase operation, p denotes the period
number, and Ti denotes the period at the ith frequency, given
by

Ti = 2π/ωi.

In all potential delays, there exists the minimal delay, η(d
′)

m,i ∈
[−Ti/2, Ti/2]. The time delay is expressed as the sum of the
minimal delay and pm,i periods, given by

τ
(d′)
m,i ≈ η

(d′)
m,i + pm,iTi. (15)

The minimal delay can be easily determined from the phase
difference. But the period number results in ambiguity in the
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time delay. The ambiguity is often resolved by the geometric
constraint, as illustrated in Fig. 1(b). The constraint is given
by

−rm ≤ cτ
(d′)
m,i ≤ rm. (16)

The sufficiently small distance enables the minimal delay to
be the unique candidate [39]–[41], [47], namely τ (d

′)
m,i = η

(d′)
m,i .

However, the small distance will favour the coherence in low
frequencies [31], which degrades the performance of localiza-
tion. Ambiguity about the period number is encountered when
the time delay is estimated from widely spaced microphones.
There may exist several candidates for a period number, which
is given by the set,

Pm,i =

{
p

∣∣∣∣∣⌈−rm − cη
(d′)
m,i

cTi

⌉
≤ p ≤

⌊rm − cη
(d′)
m,i

cTi

⌋}
, (17)

where ⌈.⌉ and ⌊.⌋ respectively denote the ceil and floor integer
operations. On linear arrays, some methods traverse all the
candidates to find the optimal one [33], [37]. But the traversing
method is very computationally expensive on the widely-
spaced planar array. There are in total

∏M
m=1 C(pm,i) potential

combinations for the period numbers, [p1,i, · · · , pM,i], where
C(.) denotes the operation of taking cardinality of the set of
all possible values. For long-term speech sources, the time-
delay histogram is a simple but effective method to resolve
the ambiguity [42]. But a short-term speech segment provides
insufficient time delays to construct a reliable histogram.
Estimation of the period number is a critical point in the time
delay estimation.

For the mth microphone pair, the time delay can determine
an included angle between the microphone pair direction and
the DOA of the dominant source. As shown in Fig. 1(b), the
geometric relationship is expressed as

cos θm,i = cτ
(d′)
m,i /rm. (18)

But the included angle has an ambiguity to DOA in a three-
dimensional space. At a specific bin, an explicit DOA is
determined by at least two time delays that are estimated
from the unaligned microphones. For a planar array, the DOA
of the dominant source is represented as the function of all
the delays. Finally, the DOAs and the number of the speech
sources are obtained by the histogram or clustering analysis
from the DOAs of all dominant sources. The sparse source
methods will have the advantage in computational efficiency
if the closed-form solution can be derived from the simplified
model. However, the disadvantage is the masking effect at
each bin, where the dominant source masks the signals of the
remaining sources. If a weak speech source is masked by a
strong source at most bins, the weak source will be missde-
tected or inaccurately localized. The relationship between the
dominant and masked sources is investigated thoroughly in
[29].

III. SPEECH SPARSITY AND GRID SEARCH METHOD

The dominant source is conventionally considered at indi-
vidual bins, whereas this paper considers the dominant source
in the window that contains L time-adjacent bins. It is well

known that the spectral amplitude of a speech source is
temporally correlated, and therefore, the dominant source at
a given bin is usually identical to the dominant sources at its
time-adjacent bins. Based on such fact, the sparsity assumption
is generalized from each individual bin to the L-bin window.

We collect a window of Fourier coefficients at frequency
bin i that originates from time ℓ up to ℓ + L − 1, name-
ly

[
xℓ(ωi),xℓ+1(ωi), · · · ,xℓ+L−1(ωi)

]
. The dominant source

associates with the maximal intensity, the index of which is
expressed as

d′ = arg max
d∈[1:D]

ℓ+L−1∑
t=ℓ

∣∣∣Sd,t(ωi)∣∣∣2. (19)

With the sparsity assumption, an approximation is given by
ℓ+L−1∑
t=ℓ

∥∥xt(ωi)∥∥2 ≈
ℓ+L−1∑
t=ℓ

∣∣Sd′,t(ωi)∣∣2, (20)

where the index for the window-dominant source is given by
(19). Accordingly, the spatial correlation matrix on the (i, ℓ)th
window is approximated as

Ri =
1

L

ℓ+L−1∑
t=ℓ

xt(ωi)x
H
t (ωi)

≈ ai(γ
(d′))aHi (γ(d′)) ·

ℓ+L−1∑
t=ℓ

∣∣Sd′,t(ωi)∣∣2
L

.

(21)

The approximation means Ri to be a rank-1 matrix, which
enables the steering vector of the dominant source to be ap-
proximated as the principal eigenvector of the signal subspace.
It is expressed as

ui,1 ≈ e−jωiziai(γ
(d′))/

∥∥ai(γ(d′))
∥∥,

∠ui,1,k = −ωi(ψk,d′ + zi),
(22)

where ui,1,k is the kth element of principal eigenvector ui,1,
and zi is the arbitrary real constant that is introduced by the
complex eigenvalue decomposition.

The approximation in (20) is equivalent to that in (22).
They are evaluated by the similarity between the principal
eigenvector and the steering vector, which is defined as

ρd′,i =

∣∣uHi,1ai(γ(d′))
∣∣∥∥ai(γ(d′))

∥∥ . (23)

The similarity degree ranges from a completely uncorrelated 0
to a completely similar 1. If the contribution from the masked
sources is very small relative to the contribution from the
dominant source, the similarity degree will be close to 1.
The similarity degree reflects to what extent the generalized
assumption holds true. Several simulated experiments were
conducted to investigate the generalized assumption.

The first experiment investigated the influence of the win-
dow size on the similarity degree. An eight-element circular
array was placed with horizontal orientation in the center of
a simulated room with dimensions of 5 × 8 × 2.7 m. Most
short-term speech segments have no more than three sources
in a common sense because listeners are unable to correctly
percept the target source from more than three competing
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Fig. 2. Similarity degree under various window sizes for the anechoic
condition.
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Fig. 3. Similarity degree under various window sizes for the noise free
condition.

speakers in a phrase-length utterance [48]. Therefore, all
experiments were set to at most three sources in this paper.
Three long utterances with a duration of 200 seconds were
respectively collected from TIMIT database [49], and taken as
the speech sources. They were respectively set at the azimuth
angles of 121◦, 177◦, and 236◦, and at a distance of 1.2 m
from the array center. The environments were simulated by the
image source method [50]–[52] under various reverberation
times. The real noise was recorded in a room by the circular
array. It was added to the simulated data with various SNRs.
All experiments employed 256-point FFT and 32-ms frames
with a half-frame overlap. The sampling rate of all signals is
8 kHz. Fig. 2 and Fig. 3 plot the relationship between the
window size and the similarity under an anechoic condition
and a noise free condition, respectively. This experiment shows
the large window size is helpful to improve the similarity
degree. The performance of DOA estimation for the window-
dominant source is highly correlated with the similarity degree.
Compared with the conventional assumption (L = 1), the
generalized assumption (L > 1) significantly improves the
robustness with respect to acoustic interferences.
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Fig. 4. DCP under various window sizes.

The generalized assumption leads to the more serious mask-
ing effect than the conventional assumption [29]. The window-
dominant source masks the remaining sources even if the
remaining sources dominate some bins inside the window. The
masking effect is assessed by using the consistency between
the window-dominant sources and the bin-dominant sources.
The index for the (i, ℓ)-th window is denoted as d′i,ℓ, and the
indices of the bin-dominant sources inside the window are
denoted as

[
d
′(1)
i,ℓ , d

′(2)
i,ℓ , · · · , d

′(L)
i,ℓ

]
. A dominance consistency

probability (DCP) describes to what extent the bin-dominant
sources are consistent with the window-dominant sources.
DCP is defined as

DCP =

∑
ℓ

∑
i

∑L
t=1 δ(d

′
i,ℓ − d

′(t)
i,ℓ )∑

ℓ

∑
i

∑L
t=1 δ(0)

× 100%, (24)

where δ is the Dirac function. A large value of DCP means
the high consistency that validates the generalized assumption.
The inconsistency leads to the masking effect, and 100% −
DCP denotes the percentage of the masked bins.

The second experiment investigated the relationship be-
tween DCP and the window size. The experimental setup
was the same as the setup used in the first experiment.
But the noise and reverberation were not considered here
because they did not change the conclusion. For a given
window size, DCP is averaged over all times and all available
frequencies, as described by (24). Fig. 4 plots DCPs under
various sizes. The result is twofold. First, most bin-dominant
sources are consistent with the window-dominant source for
small-size windows since DCP is generally much larger than
chance probability 33.3%. This result verifies the correctness
of the generalized assumption on small-size windows. Second,
the large window size enhances the masking effect, and the
conventional assumption (L = 1) has the minimal masking
effect. It is found out from Figs. 2–4 that the 5-frame window
makes a good tradeoff between the masking effect and the ro-
bustness for the dominant source DOA estimation. Therefore,
the window size is set to 5 frames in all following experiments.

Using the five-frame window, we investigated the relation-
ship between the similarity degree and the dominance degree
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Fig. 5. Scatter plots between similarity and dominance degrees.

on the aforementioned simulation. For the d′th source at the
(i, ℓ)-th window, the dominance degree is defined as

κd′,i = 10 log10

[ ∑ℓ+L−1
t=ℓ

∣∣Sd′,t(ωi)∣∣2∑D
d=1
d̸=d′

∑ℓ+L−1
t=ℓ

∣∣Sd,t(ωi)∣∣2
]
. (25)

Fig. 5 shows scatter plots of points (ρ, κ), at different fre-
quencies, wherein the experimental setup is the same as that
in the second experiment. The blue points denote the dominant
sources with the large ratio, and the green points denote the
masked sources with the small ratio. This figure shows that the
dominant sources generally associate with the high similarity,
which validates the approximation in (20) and (22). At low
frequencies, the similarity discrimination over the dominance
degree is insignificant because of the spatial coherence.

By means of testing the similarity degree, a grid search
window-dominant source signal subspace method (GS-WDSS)
is proposed to estimate the DOA of the window-dominant
source. The DOA γ̂

(d′)
i,ℓ is determined by maximizing the

similarity in Algorithm 1, where the subscript (.)(d
′) and (.)ℓ

are omitted for simplicity in the following. The computational
efficiency of this algorithm remains a problem due to the grid
search.

IV. CLOSED-FORM METHOD

This section presents a closed-form window-dominant
source signal subspace method (CF-WDSS) with high com-
putational efficiency. The DOA estimator for the window-
dominant source is derived from the single-source method
in [53]. But the purpose of CF-WDSS is multiple source
localization. CF-WDSS addresses not only acoustic interfer-
ences, but also ambiguity about the period number in time
delay estimation. Fig. 6 plots the block diagram of the CF/GS
methods, where h−1 low frequencies are disregarded because
of spatial coherence.

Algorithm 1 DOA estimation of the dominant source using
GS-WDSS

1: Estimate the correlation matrix at a window using (8);
2: Perform eigenvalue decomposition and extract the princi-

pal eigenvector;
3: for each α ∈ [0◦, 360◦) do
4: for each β ∈ [0◦, 90◦] do
5: Calculate the test DOA using (6);
6: Calculate the test time delays using (5);
7: Calculate the test steering vector using (4);
8: Calculate the similarity degree using (23);
9: end for

10: end for
11: Take the maximal-similarity candidate as the direction.

A. DOA estimation of dominant sources

For CF-WDSS, the DOA of the window-dominant source is
estimated from the time delays. Even though the propagation
times can not be obtained due to the uncertainty of constant
zi, the time delays can be estimated from the phase differences
of the principal eigenvector in CF-WDSS, as opposed to the
time delays that are estimated from Fourier coefficients in
conventional methods [29], [31]–[42]. The time delay is given
by

τm,i =
∠ui,1,k2 − ∠ui,1,k1

ωi
+ pTi. (26)

With the same principle in (15), the delay for CF-WDSS is
represented by the summation of minimal delay ηm,i and a
certain number of periods pm,iTi. The time delay can not be
obtained until the ambiguity in the period number is resolved.
Nevertheless, the closed-form solution to DOA is given before
the solution to the period number because the latter depends on
the former. The latter will be addressed in the next subsection.

The cosine of included angle θm,i is estimated from the
time delay, which is expressed as

cos θ̂m,i = c(ηm,i + pm,iTi)/rm, (27)

By utilizing the geometric relationship, the estimate of this
cosine is expressed as

cos θ̂′m,i = gTmγi. (28)

In desirable conditions, the difference between the two cosines
should be zero. But there exists an error between them in
the presence of acoustic interferences. At a given window,
the error function is defined as the weighted square error of
cosines of all included angles across all microphone pairs. It
is given by

fi(γi) =

M∑
m=1

wm,i

[
cos θ̂m,i − cos θ̂′m,i

]2
=

M∑
m=1

wm,i

[
gTmγi − c(ηm,i + pm,iTi)/rm

]2
,

(29)

where wm,i is the coefficient that weights the reliability of
the mth microphone pair, and gm is given by (7). By means
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Fig. 6. Block diagram of the proposed methods.

of minimizing the error, the closed-form solution to DOA is
given by

γ̂i =min
γ
fi(γ)

subjected to: γTγ = 1.
(30)

By making use of the Karush-Kuhn-Tucker necessary condi-
tions, an optimal estimate is given by (31), where

g′
m =

[
gm,1, gm,2

]T
,

γ̂i =
[
γ̂1,i, γ̂2,i, γ̂3,i

]T
.

The weight coefficient is determined by the error between
two angles which are obtained by applying the inverse cosine
function on (27) and (28). The error is given by

δm,i = θ̂m,i − θ̂′m,i. (33)

Assuming that the error conforms a zero-mean Gaussian
distribution with variance σ2

i =
∑M
m=1 δ

2
m,i/M , the weight

is represented by the normalized likelihood. It is expressed as

wm,i = exp(−δ2m,i/σ2
i )/

M∑
m=1

exp(−δ2m,i/σ2
i ). (34)

The unreliable estimates of the time delays generally lead
to large error, and thereby associate with small weights,
mitigating negative effects.

B. Estimation of period number

Estimation of the period number is a key point to resolve the
optimal estimate of the dominant source’s DOA. The criterion
of resolving the period number, Pi =

[
p1,i, p2,i, · · · , pM,i

]
, is

to minimize the cost function in (29). The closed-form solution
to the period number is derived by differentiating the cost
function with respect to Pi and solving for its zero.

Substituting the solution (31) in place of the unit direction
in (29), we obtain (32) as the cost function for resolving the
period number, where

Z =
[ M∑
m=1

g′
mg′T

m

]−1

, (35)

and all weight coefficients are set as 1 for the purpose of high
computational efficiency. The optimal estimates of the period

numbers are given by minimizing the cost function, which is
expressed as[

p̂1,i, p̂2,i, · · · , p̂M,i

]
= min

[p1,p2,··· ,pM
] f ′i(p1, p2, · · · , pM ).

(36)
The cost function is convex with respect to Pi, and therefore
has a global minimum. We take the first-order derivative of
(32) with respect to ph,i, and set it to zeros, which is expressed
as

∂f ′i
∂ph,i

=Ti

M∑
m=1,m̸=h

pm,i

[
Chg

′
m − g′T

mZg′
h + vhg

′T
h Zg′

m

]/
rm

+ ph,iTi

[
Chg

′
h + v2h

]
/rh +ChQi + vhg

′T
h ZQi

−
M∑

m=1,m̸=h

g′T
mZg′

hηm,i/rm − vhηh,i/rh = 0,

(37)

where

Ch =
M∑

m=1,m ̸=h

g′T
mZg′

hg
′T
mZ, (38)

Qi =

M∑
m=1

ηm,ig
′
m/rm, (39)

vh = g′T
h Zg′

h − 1. (40)

The coefficients of pm,i in (37) are combined as

Γh,m =


[
Chg

′
m − g′T

mZg′
h + vhg

′T
h Zg′

m

]/
rm m ̸= h

[
Cmg′

m + v2m

]/
rm m = h.

(41)
The constant items in (37) are combined as

Υh,i =

M∑
m=1,m ̸=h

g′T
mZg′

hηm,i/rm + vhηh,i/rh

−ChQi − vhg
′T
h ZQi.

(42)

The equation (37) can thus be rewritten as

M∑
m=1

Γh,mp̂m,i = Υh,i/Ti. (43)
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[
γ̂1,i
γ̂2,i

]
=

[
M∑
m=1

wm,ig
′
mg′T

m

]−1 M∑
m=1

cwm,i(ηm,i + pm,iTi)g
′
m/rm,

γ̂3,i =
√
1− γ̂21,i − γ̂22,i.

(31)

f ′i(p1, p2, · · · , pM ) =

M∑
m=1

[
g′T
mZ

M∑
q=1

[
c(pqTi + ηq,i)g

′
q/rq

]
− c(pmTi + ηm,i)/rm

]2

. (32)

With the same principle, a group of equations for h ranging
from 1 to M are obtained. These equations are summarized
by a matrix equation,

TiΓP̂i = Υi, (44)

where

Γ =


Γ11 Γ12 · · · Γ1M

Γ21 Γ22 · · · Γ2M

· · · · · ·
ΓM1 ΓM2 · · · ΓMM

 , (45)

Υi =
[
Υ1,i,Υ2,i, · · · ,ΥM,i

]T
. (46)

Eventually, the estimate of the period numbers is given by

P̂i = Γ−1Υi/Ti, (47)

where Γ is the function of the array topology, irrelevant to
frequency or time delays. For a given array, constant matrix
Γ−1 is shared for all estimations. Υi is the function of all time
delays η1:M,i, which is calculated individually at each window.
The integral combination that is closest to P̂i is taken as the
solution to the period number, which is given by

pm,i = min
p∈Pm,i

|p− p̂m,i|. (48)

The optimal DOA estimate of the window-dominant source
is eventually obtained by substituting the period numbers and
the minimal time delays into (31). An iterative algorithm is
presented to realize CF-WDSS, as shown in Algorithm 2.
The weights of reliable delays are incrementally increased and
the effects of unreliable delays are weakened with increasing
iterations.

Algorithm 2 DOA estimation of the dominant source using
CF-WDSS

1: Estimate the correlation matrix at a window using (8);
2: Perform eigenvalue decomposition and calculate ηm,i us-

ing (26);
3: Estimate the period number using (47) and (48);
4: Set all weights as w1:M,i = 1 and calculate γ̂i using (31);
5: repeat
6: Let γ′ = γ̂i and calculate the new weights using (34).
7: Calculate γ̂i with the new weights using (31);
8: until (1− γ′T γ̂i < ϵ)

V. IMPLEMENTATION

The DOAs of speech sources are eventually obtained by us-
ing histogram analysis on the estimated DOAs of all window-
dominant sources. Because azimuth discrimination is much
more precise than elevation discrimination for an array with
horizontal orientation, the speech sources are identified by
using azimuths of dominant sources which are given by

α̂i =

 arccos
(
γ̂1,i/

√
γ̂21,i + γ̂22,i

)
if γ̂2,i ≥ 0

180◦ + arccos
(
γ̂1,i/

√
γ̂21,i + γ̂22,i

)
if γ̂2,i < 0.

(49)
The histogram with 1-degree resolution is constructed on the
azimuths of all window-dominant sources. There are often
some phantom peaks in the histogram. The Hanning smoothing
window is helpful to remove phantom peaks. However, a
window with too large size is likely to smooth out the
real peaks. In the preliminary experiment, the 13-histogram-
bin window makes a good tradeoff. The speech sources are
identified by picking peaks in the histogram, as schematically
illustrated in Fig. 7. Each source corresponds to a peak with
occurrence greater than the threshold,

∆ = Oavg + µ(Omax −Oavg), (50)

where Oavg and Omax denote the average of the smoothed
occurrence and the maximum of the smoothed occurrence,
respectively, and the coefficient µ (0 < µ < 1) is set
empirically. A large value of the coefficient µ enables a
conservative detection, which results in less false detections
but more missed true detections. It is vice versa for a small
value of the coefficient. The number of sources is determined
by counting the distinct peaks.

The localization is conducted on every 15-frame segment.
Since the five-frame window makes a good tradeoff, each
speech segment is partitioned into three five-frame subseg-
ments to mitigate the masking effect. Accordingly, the per-
centage of the masked bins is reduced from 48% to 17% at the
cost of increasing the computational load. Each histogram is
constructed on the azimuths from three 5-frame subsegments
that are illustrated by the three overlapped dashed boxes in
Fig. 6. The signal sampling rate, window size, frame length,
and parameters about STFT were the same as that in Section
III. Six low-frequency bins are disregarded (h = 7). The
algorithmic delay of the proposed methods is 0.24 seconds,
which is much less than the algorithmic delay of most methods
[29], [32]–[35], [37]–[46].
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Fig. 7. Schematical illustration of the peak picking method.

VI. EVALUATION

A. Performance

Evaluation was conducted in a simulated room with dimen-
sions of 5 × 8 × 2.7 m. An eight-element uniform circular
array was placed with horizontal orientation at the center of the
room. The radius of the circular array was 8 cm. The speech
sources were located at a horizontal distance of 1.2 m from
the array center. Their vertical heights were 0.96 m relative
to the array plane. The scenarios were simulated using the
image source method [50] - [52] to control reverberation times.
The real room noise was artificially added to the simulated
signals with various SNRs. For conventionally used continuous
speech, it is very difficult to definitely count the actual number
of sources in each short-term segment since the source signal
may be weak in some times. For this reason, this evaluation
was conducted on some specially-designed test samples that
were made by mixing monosyllabic utterances with equal
intensity. The presence of speech sources is ensured by the
process of making the test samples, which is demonstrated
by Fig. 8. The maximal intensity of each source utterance is
aligned along the time. Each 15-frame test sample is artificially
taken from the 7 preceding frames and 7 succeeding frames
around the maximal-intensity frame. Note that the speech
activity detection is out of the scope of this paper because it
is an unknown factor in this evaluation. There are in total 138
test samples, 138× 3 sources for the three-source evaluation,
and 138× 2 sources for the two-source evaluation.

GS-WDSS and CF-WDSS were compared with the broad-
band MUSIC and circular harmonics beamforming (CHB) [43]
methods. CHB utilizes the conventional assumption on speech
sparsity (L = 1). At each bin, the grid search is conducted
to find the azimuth of the bin-dominant source. The speech
sources are eventually identified by the azimuth histogram,
which is the same as the proposed methods. The number of
sources is determined by counting the significant peaks in the
azimuth histogram for the proposed methods and CHB, and
in the spatial power spectrum for MUSIC. It is worthwhile
clarifying that, for MUSIC, the noise subspace is formed by
using the known source number, which means that MUSIC
cannot really determine the number of sources. MUSIC, GS-
WDSS, and CHB perform grid search at 1-degree intervals.
Since the horizontally-oriented array cannot provide precise
discrimination of the elevations, the evaluations focused on
the arrival azimuths.

The evaluation for short-term speech source localization
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Fig. 8. Demonstration of making test samples: (a) Waveform and intensity
of the first source; (b) Waveform and intensity of the second source; (c)
Waveform and intensity of the third source; (d) Waveform of the mixing
signal, where the dashed line denotes the 15-frame samples used for the test;
(e) Spectrogram of the test signal. The vertical dotted lines denote the center
of the test samples, which corresponds to the maximal intensity of each short-
term utterance.

is more complicated than the conventional evaluation for
long-term speech source localization. Because the sufficient
frames that are provided by long-term utterances lead to few
missed true detections or false detections (e.g. detected but
non-existing sources), the conventional methods were usually
evaluated by means of the localization accuracy such as
the root mean squared error (RMSE) between the real and
estimated DOAs. In short-term speech source localization,
however, the missed detections and the false detections are
frequently present. Besides the detection accuracy, the de-
tection correctness should be considered in the evaluation.
The output sources are classified into the correctly detected
sources and the incorrectly detected sources. The detection
is considered to be correct if the estimated azimuth deviates
no more than 6◦ from the real azimuth of any source. The
threshold for correctness can guarantee the performance of
DOA-based enhancement and separation does not drop signif-
icantly according to our experience. The incorrect detections
consist of the false detections and the inaccurate detections.
The detection correctness is mainly accessed in terms of the
positive detection rate (PDR) (i.e., the ratio of the number
of correctly detected sources to the total number of sources)
and the false detection rate (FDR) (i.e., the ratio of the
number of incorrectly detected sources to the total number of
sources). PDR and FDR jointly evaluate not only the detection
correctness, but also the capability of counting the number of
sources on all test segments. A large value of the coefficient
µ results in small PDR and FDR, and vice versa for the small
coefficient. The receiver operating characteristic (ROC) curve
provides a complete description of the relationship between
PDR and FDR under different coefficients.

The first experiment made use of ROC curves to evaluate
the performance on the simulated data. Three speech sources
were respectively located at the azimuth angles of 121◦, 177◦,
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Fig. 10. The histogram of bin-wise azimuths that are estimated by CF-WDSS.
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Fig. 11. The histogram of bin-wise azimuths that are estimated by GS-WDSS.

and 236◦. The ROC curves were obtained by tuning the
coefficient µ from 0 to 0.4 with 10 equal spaces. Fig. 9 plots
the ROC curves under nine conditions. The experiment shows
that CHB does not work well on short-term segments, and
MUSIC performs best under anechoic conditions. Especially
in the least noisy and reverberant condition of (20 dB, 0
ms), MUSIC can correctly detect all sources without false
detections. However, the performance of MUSIC significantly
degrades with increasing reverberation times. In reverberant
conditions, GS-WDSS outperforms the remaining method-
s. The same conclusion was obtained with the correctness
threshold ranging from 6 to 10 degrees in the preliminary
experiment.

At the most adverse condition (SNR = 10 dB, T60 = 400
ms), a comparison is made to illustrate the advantage of using
a longer window. The smoothed histograms are constructed on
the bin-wise azimuths that are estimated on 138 test samples,
as shown in Figs. 10 and 11. The comparison confirms the
superiority of the generalized assumption.

The second experiment was conducted in a real environ-
ment. It was used to confirm the results of the simulated
experiments. The performance was evaluated in a room with
a reverberation time of 250 ms and SNR of about 15 dB.
There were 80 short-term utterances and 80×3 speech sources
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Fig. 12. ROC curves for the real data.

used for evaluation. The speakers try to synchronize with each
other and pronounce short utterances with equal intensity. The
remaining experimental setup was the same as that of the first
simulated experiment. The ROC curves are shown in Fig. 12.
Although we try to make the same acoustic condition as the
simulated condition, there are still some differences between
them. Nevertheless, the conclusion of the real experiment is
similar to that of the simulated experiment.

The histogram was utilized to intuitively compare the
performance for two given sources with different azimuth
spacings. We simulated an moderately adverse environment
with the reverberation time of 250 ms and the SNR of 10
dB. Two speakers were respectively located at azimuths with
spacing of 14◦, 24◦, and 34◦. The coefficient µ was set to 0.2
for all methods. The remaining setup is the same as that in
the aforementioned experiments. Fig. 13 plots the histograms
for the three spacings of azimuth angles, wherein the vertical
dotted lines denote the real azimuths. This figure shows
that MUSIC is incapable of discriminating the spatially-close
sources. The three sparsity-based methods have a significant
advantage over MUSIC in the spatial resolution. For two
widely spaced sources, the proposed methods still perform
better than CHB and MUSIC. Actually, CHB produces more
false detections than the remaining methods, which are plotted
outside the range of the azimuth in Fig. 13.

The localization accuracy was evaluated on both the simu-
lated and the real data. For a given speech source, RMSE is
averaged over the 69 most accurate detections of the simulated
data, and the 40 most accurate detections of the real data,
wherein the false detections are excluded from evaluation
because they are meaningless for the localization accuracy.
The number of the accurate detections varies over methods
and acoustic conditions. The used number can guarantee that
the false detections are excluded from the evaluation for
all conditions and all methods. Afterwards, RMSE for each
method is averaged over three sources. Table. I presents RMSE
for four methods. The result shows that MUSIC performs
the most accurately in anechoic conditions while GS-WDSS
performs the most accurately in the remaining conditions. The
localization accuracy of CF-WDSS is even higher than that of
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Fig. 9. ROC curves for the simulated data set under various conditions.

TABLE I
RMSE (◦) FOR DIFFERENT CONDITIONS.

Method T60 = 0 ms T60 = 200 ms T60 = 400 ms Real data

0 dB 10 dB 20 dB 0 dB 10 dB 20 dB 0 dB 10 dB 20 dB

MUSIC 0 0 0 0.52 0.38 0.36 1.39 1.19 1.18 0.56

CHB 0.77 0.53 0.45 1.25 0.93 0.90 1.62 1.38 1.33 1.30

GS-WDSS 0 0 0 0.12 0.07 0.02 0.48 0.47 0.45 0.34

CF-WDSS 0.29 0.21 0.19 0.25 0.19 0.18 0.53 0.35 0.33 0.86

MUSIC in the condition of T60 = 400 ms.
Lastly, we investigated the iteration for CF-WDSS in Al-

gorithm 1. For a given iteration number, the convergence
error is averaged over all times, all frequencies, and all
conditions on the first simulated data. The convergence error
is generally reduced with increasing iterations. On average,
the error is reduced by 3◦ within three iterations, and by a
little bit afterwards. For the sake of computational efficiency,
the iteration is conducted at most three times in CF-WDSS.

B. Computational load

The computational loads of four methods were compared.
The computational loads were calculated by counting the
number of basic operations in the source code. For MUSIC,

the orthogonality test is conducted on C(α) × C(β) grids
to search for the local minima. The noise subspace consists
of K − D eigenvectors. Therefore, the computational load
mainly consists of C(α) × C(β) × C(i) × K × (K − D)
complex multiplications and complex additions. GS-WDSS
only uses the principal eigenvector, whereas the grid search
is repeated three times for each localization to mitigate the
masking effect. Its computational load is about 3/(K−D) of
MUSIC. CHB tests the harmonic beamforming on all potential
azimuths, all frames, and all frequencies. The elevation is
disregarded in the test. Its computational load consists of
15 × C(i) × C(α) bin-wise beamformings. For CF-WDSS,
an iterative procedure is repeated no more than three times.
The DOA estimation is conducted at three subsegments and
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Fig. 13. Azimuth histograms of two sources with various azimuth spacings.

TABLE II
COMPUTATIONAL LOAD COMPARISON

Method MUSIC CHB GS-WDSS CF-WDSS
Relative load 55.4 2.5 34.0 1

Per. of eigen decomp. 0.45% 0% 2.2% 73.2%
Per. of bin-wise proces. 99.3% 97.2% 97.3% 5.6%

C(i) frequencies. Therefore, the closed-form solution to the
dominant source DOA is calculated at most 3 × 3 × C(i)
times. The eigen-decomposition is another factor that results in
computational load for MUSIC, GS-WDSS, and CF-WDSS. In
each localization, the decomposition is conducted C(i) times
for MUSIC, and 3×C(i) times for CF-WDSS and GS-WDSS.

According to the computing process of the four methods,
this paper utilizes the relative computational load, the load
percentage of the eigen-decomposition, and the percentage of
bin-wise processing, to evaluate the computational efficiency.
Table II compares the computational loads, where the relative
load is taken with regard to CF-WDSS. The eigenvalue decom-
position is the major computational load for CF-WDSS while
the loads of the remaining methods are mainly contributed by
the grid search. Given the parameter settings in this paper,
the computational load of decomposition is much smaller
than that of grid search, and the computational efficiency
is sorted in the descending order, CF-WDSS>CHB>GS-
WDSS>MUSIC. It should be noticed that MUSIC and GS-
WDSS require extra memory to storage the steering vectors on
all potential directions (C(α)×C(β)×C(i) steering vectors and
118-megabyte memory for the experimental settings) whereas
CF-WDSS does not.

C. Discussion

The performance of four localization methods are eval-
uated using short-term speech segments with duration of
0.24 seconds. Since insufficient frames are provided to four
methods in each localization, the robustness are highlighted
in the experiments. The proposed methods achieve the best
performance under heavy reverberation while they are inferior
to MUSIC in anechoic environments. The performance of the
proposed methods is under the influence of two contradictory
points. One is the DOA estimation of the window-dominant

source, which is highly correlated with the similarity between
the steering vector and the principal eigenvector. Enlarging
the window size is helpful to improve the performance of
the dominant source DOA estimation. The other point is
the masking effect on weak speech sources. Enlarging the
size will enhance the masking effect, which leads to less
windows to be dominated by the weak speech sources. As a
result, it is difficult to identify weak sources in the histogram.
Even in an ideal environment without any interference, the
proposed methods may not correctly detect all sources due to
the masking effect. The experiments in Section III showed that
the five-frame window makes a good tradeoff between the two
points.

CHB utilizes the conventional sparsity assumption in con-
trast to the generalized assumption adopted in the proposed
methods. Although the masking effect in CHB is much smaller
than that in the proposed methods, CHB does not perform well
on short-term speech source localization. Its poor performance
implies that CHB relies heavily on the sufficient frames to
achieve the robust localization. In fact, CHB was reported
to work fairly well on long-term utterances with duration
of 4 seconds [43]. The experiments demonstrate that the
proposed methods substantially outperform CHB on short-
term speech source localization, confirming the superiority of
the generalized assumption.

MUSIC does not utilize the speech sparsity assumption. Its
performance is best in anechoic environments, but significant-
ly deteriorated in reverberant environments. MUSIC has no
masking effect on weak speech sources, and therefore, the
sources can be well detected in less reverberant environments.
MUSIC makes use of the noise subspace as opposed to the
principal eigenvector adopted in the proposed methods. The
proposed methods have three advantages over MUSIC. The
first is the computational efficiency, as shown in Table II.
The second is the robustness over reverberation. MUSIC can
estimate not only the DOA of the dominant source, but also the
DOAs of the masked sources at each frequency bin. However,
the estimation for the masked sources usually suffers from
reverberation since the masked sources generally associate
with weak speech components. On the contrary, the principal
eigenvector generally associates with the direct-path signal,
which is not likely to be affected by the reverberation. The last
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advantage is the capability of counting the number of speech
sources. MUSIC cannot count the number of speech sources.
It should be noted that MUSIC does not perform as well in
reality as in the experiments since the number of sources is
difficult to always estimate accurately.

VII. CONCLUSIONS

Two WDSS methods were developed to localize multiple
speech sources using short-term segments. By tuning the
window size for the generalized sparsity assumption, a tradeoff
is made between the masking effect and the robustness in the
DOA estimation for dominant sources. The proposed methods
not only have the advantage in robustness, but also can count
the number of speech sources. Although CF-WDSS does not
perform as well as GS-WDSS, the former is very computation-
ally efficient to localize speech sources. The proposed methods
are valuable for real-time speech source localization because of
the small latency. The generalized sparsity assumption makes
promises to improve speech source localization in adverse
environments. Besides time-adjacent bins, frequency-adjacent
bins can be considered for the generalized assumption, which
will be addressed in our future work.
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