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Abstract—In this paper, we deal with the problem of detecting
the signal of interest in the presence of Gaussian disturbance
with symmetric spectrum and assuming that the cell under test
(primary data) and the training samples (secondary data) share
the same covariance matrix up to an unknown power scaling
factor. Moreover, we exploit the symmetric spectral property
of the disturbance to transfer the binary hypothesis testing
problem from the complex to the real domain and derive an
adaptive detector relying on the two-step Generalized Likeli-
hood Ratio Test design procedure. A preliminary performance
assessment, conducted by Monte Carlo simulation, has confirmed
the effectiveness of the newly proposed detector compared with
the traditional state-of-the-art counterpart which ignores the
spectrum symmetry.

I. INTRODUCTION

The problem of detecting a multichannel signal buried in
temporally and spatially correlated disturbance (clutter plus
noise) has been extensively studied in phased-array radar. In
the past decades, a number of detection algorithms for point-
like targets have been introduced to solve the problem. Most
of them require the estimation of the space-time covariance
matrix of the disturbance to suppress the interferences. Exam-
ples of such detectors include Kelly’s Generalized Likelihood
Ratio Test (GLRT) [1], the Adaptive Matched Filter (AMF)
detector [2], the Adaptive Coherence Estimator (ACE) detector
[3], and the Rao test [4], [5] etc. All of them suppose that a
set of secondary data, free of signal components and sharing
the same spectral properties of the primary data, is available
to estimate the disturbance covariance matrix. However, real-
istic radar scenarios are often non-homogeneous because of
environmental effects and system aspects, which drastically
reduces the number of homogeneous secondary data and
results in significant degradation in detection performance [6].

In order to circumvent the lack of a sufficient amount of
homogenous secondary data, the knowledge-aided approach
has recently gained significant attention. A natural way to
incorporate prior knowledge in solving the detection problem
is a Bayesian approach that models the disturbance covariance
matrix as a random matrix with some prior [7]–[9]. These
Bayesian detectors are modified versions of the standard AMF
or GLRT through diagonal or colored-loading. Another effi-
cient way to alleviate the requirement of the amount of training
data is to exploit the persymmetric structural property of

the covariance matrix. The proposed persymmetric detectors,
obtained by accounting for the persymmetric property at the
design stage, greatly improves the robustness in training-
limited scenarios [10]–[12].

More recently, in [13], another source of a priori infor-
mation, the symmetry in the clutter spectral characteristics
which would reduce the number of nuisance parameters to
estimate, is firstly exploited in the design of adaptive detec-
tion algorithms. This symmetry property implies that clutter
autocorrelation function is real-valued and, hence, the original
detection problem can be transferred from the complex domain
to the real domain. Within this framework, the two-step GLRT
design procedure [2] is exploited to devise an adaptive archi-
tecture for homogenous environment. This design procedure
consists in evaluating the GLRT assuming that the clutter
covariance matrix is known and maximizing over the other
unknown parameters. Then, an appropriate estimate of the
clutter covariance matrix based on the secondary data is
substituted into this test.

In this work, we extend the framework proposed in [13]
to take into account the partially homogeneous environment,
where the primary data and the secondary data share the same
covariance matrix up to an unknown power scaling factor. One
motivation to consider the partially homogeneous model is due
to the use of guard cells in radar signal processing, which may
lead to a power difference between the primary data and the
secondary data. At the design stage, we exploit the fact that
the clutter spectrum is an even function and solve the new
hypothesis test resorting to the two-step design procedure [2].
A preliminary performance analysis confirms the superiority
of the considered architecture over its conventional counterpart
which does not exploit the symmetric spectral property.

The remainder of this paper is organized as follows. Section
II addresses the problem formulation, Section III deals with
the design of the detector, and Section IV provides illustra-
tive examples. Finally, Section V contains some concluding
remarks.

A. Notation

In the sequel, vectors and matrices are denoted by boldface
lower-case and upper-case letters, respectively. As to the
numerical sets, R is the set of the real numbers, RNˆM
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is the set of the pN ˆ Mq-dimensional real matrices, C is
the set of the complex numbers, and CNˆM is the set of
the pN ˆ Mq-dimensional complex matrices. The real and
imaginary parts of a complex vector or scalar are denoted by
ℜp¨q and ℑp¨q, respectively. Symbols p¨qT and p¨q: stand for
transpose and conjugate transpose, respectively. Finally, the
acronym iid means independent and identically distributed.

II. PROBLEM FORMULATION

Assume that a sensing systems acquires data from N ě 2
channels which can be spatial and/or temporal. The echoes
from the cell under test are properly pre-processed; then, they
are sampled and organized to form a N -dimensional vector, r
say. We want to test whether or not r contains useful target
echoes assuming the presence of a set of K secondary data.
Summarizing, we can write this decision problem as follows

$
’’&

’’%

H0 :

"
r “ n,
rk “ nk, k “ 1, . . . ,K,

H1 :

"
r “ αv ` n,
rk “ nk, k “ 1, . . . ,K,

(1)

where

‚ v “ v1 ` jv2 P CNˆ1 with }v} “ 1, v1 “ ℜtvu, and
v2 “ ℑtvu is the nominal steering vector;

‚ α “ α1 ` jα2 P C with α1 “ ℜtαu and α2 “ ℑtαu
represents the target response;

‚ n “ n1 ` jn2 and nk “ n1k ` jn2k P CNˆ1, k “
1, . . . ,K , with n1 “ ℜtnu, n2 “ ℑtnu, n1k “ ℜtnku,
and n2k “ ℑtnku, are iid complex normal random
vectors with zero mean and unknown positive definite
covariance matrices given by

E
“
nn

:
‰

“ γM0, E
”
nkn

:
k

ı
“ M 0, (2)

with γ ą 0. Furthermore, we assume that the disturbance
exhibits a power spectral density symmetric with respect to
the zero frequency, which implies that M0 is real-valued, and
n1, n2 and n1k, n2k, k “ 1, . . . ,K , are iid Gaussian vectors
with zero mean and covariance matrices

E
”
n1n

:
1

ı
“ E

”
n2n

:
2

ı
“ γM ,

E
”
n1kn

:
1k

ı
“ E

”
n2kn

:
2k

ı
“ M , (3)

with M “ 1

2
M0 P RNˆN . Thus, problem (1) is equivalent

to
$
’’’’&

’’’’%

H0 :

"
z1 “ n1, z2 “ n2,
z1k “ n1k, z2k “ n2k, k “ 1, . . . ,K,

H1 :

$
&

%

z1 “ pα1v1 ´ α2v2q ` n1,
z2 “ pα1v2 ` α2v1q ` n2,
z1k “ n1k, z2k “ n2k, k “ 1, . . . ,K.

(4)

Remark 1: Transferring problem (1) form complex domain to
real domain, is equivalent to doubling the number of secondary
data and, hence the new receiver obtained by solving problem
(4) would work when 2K ě N instead of K ě N which
is required by the traditional detectors in [1]–[3]. Moreover,
we expect that the new receiver exhibits superior detection

performance with respect to its counterpart which ignores the
spectrum symmetry.

III. DETECTOR DESIGN

In this section, we solve problem (4) resorting to the two-
step GLRT design procedure which consists in evaluating the
GLRT of the cell under test assuming that the covariance
matrix M is known and then replacing it with a proper
estimate. As a preliminary step toward the derivation of the
receivers, let us denote by Z “ rz1 z2s the primary data
matrix and ZS “ rz11 . . . z1K z21 . . . z2Ks the secondary
data matrix. Under the assumption that M is known, the
GLRT is given by [14]

max
α1,α2

max
γ

f1pZ;M , γ ,α1,α2q

max
γ

f0pZ;M , γq
H1

ż
H0

η, (5)

where η is the threshold value to be set according to the
desired Probability of False Alarm (Pfa), and fjpZ, ¨q is the
probability density functions (PDF) of primary data under Hj ,
j “ 0, 1, namely

f0pZ;M , γq “
1

p2πqN detpγMq

ˆ exp

"
´
1

2
Tr

„
1

γ
M

´1
ZZ

T

ȷ*
, (6)

and

f1pZ;M , γ ,α1,α2q “
1

p2πqN detpγMq

ˆ exp

"
´
1

2
Tr

„
1

γ
M

´1
`
u1u

T
1 ` u2u

T
2

˘ȷ*
, (7)

where u1 “ z1 ´α1v1 `α2v2, and u2 “ z2 ´α1v2 ´α2v1.
It is easy to show that the MLEs of γ under H0 and H1

are given by

pγ0 “
Tr

”
M

´1
ZZ

T
ı

2N
,

pγr “
Tr

“
M

´1
`
u1u

T
1 ` u2u

T
2

˘‰

2N
. (8)

Substituting (7) and (8) in (5), after some algebraic manipu-
lations, the natural logarithm of (5) can be recast as

zT
1 M

´1
z1 ` zT

2 M
´1

z2

min
α1,α2

fpα1,α2q
ż
H0

η, (9)

where η is the suitable modification of the threshold in (5),
and

fpα1,α2q “ u
T
1 M

´1
u1 ` u

T
2 M

´1
u2. (10)

In the next step, our objective is to minimize fpα1,α2q with
respect to α1 and α2. To this end, we evaluate the first
derivatives with respect to α1 and α2, which are given by

Bfpα1,α2q
Bα1

“ ´2vT
1 M

´1
u1 ´ 2vT

2 M
´1

u2,

Bfpα1,α2q
Bα2

“ 2vT
2 M

´1
u1 ´ 2vT

1 M
´1

u2. (11)



Setting to zero the two derivatives of (11), yields

pαr “
vT
1 M

´1
z1 ` vT

2 M
´1

z2

vT
1 M

´1
v1 ` vT

2 M
´1

v2

,

pαi “
vT
1 M

´1
z2 ´ vT

2 M
´1

z1

vT
1 M

´1
v1 ` vT

2 M
´1

v2

. (12)

Based on the above results, the GLRT can be recast as
`
v
T
1 M

´1
z1 ` v

T
2 M

´1
z2

˘2
`

`
v
T
1 M

´1
z2 ´ v

T
2 M

´1
z1

˘2
`
zT
1 M

´1
z1 ` zT

2 M
´1

z2

˘ `
vT
1 M

´1
v1 ` vT

2 M
´1

v2

˘
H1

ż
H0

η.

(13)

The most natural estimator of M in Gaussian disturbance
is the sample covariance matrix based on the secondary data,
namely, S “ ZSZ

:
S . Plugging S in place of M into (13),

the GLRT is finally given by
`
v
T
1 S

´1
z1 ` v

T
2 S

´1
z2

˘2
`

`
v
T
1 S

´1
z2 ´ v

T
2 S

´1
z1

˘2
`
zT
1 S

´1
z1 ` zT

2 S
´1

z2

˘ `
vT
1 S

´1
v1 ` vT

2 S
´1

v2

˘
H1

ż
H0

η.(14)

Interestingly, it is easy to show that (14) can be expressed in
terms of the original complex vectors v and r as follows

ˇ̌
vTS

´1
r

ˇ̌2
`
rTS

´1
r

˘ `
vTS

´1
v

˘
H1

ż
H0

η. (15)

Apparently, detector (15) shares the same detection structure
as the ACE, with the only difference being that the SCM based
on ZK is real and takes the place of the usual SCM based upon
rk, k “ 1, . . . ,K . Accordingly, detector (15) will be referred
to in the sequel as the Symmetric Spectrum ACE (SS-ACE).

IV. PERFORMANCE ASSESSMENT

This section is devoted to the performance assessment of the
newly proposed detector in terms of Probability of Detection
(Pd). Moreover, the Constant False Alarm Rate (CFAR) prop-
erty is investigated. To this end, we firstly examine the scale
invariance property of the SS-ACE in comparison with the
so-called Symmetric Spectrum AMF (SS-AMF) introduced in
[13]. Secondly, we compare the new receiver with the ACE in
PHE. In the examples, we also include the curves of the ACE
for known M0, which cannot be used in practice but offers
a baseline for comparison. This detector is referred to in the
sequel as the benchmark detector.

Since the closed form expressions for the Pd and the Pfa

are not available, we make use of standard Monte Carlo
counting techniques and evaluate the thresholds necessary to
ensure the preassigned value Pfa “ 10´4 resorting to 100{Pfa

independent trials. On the other hand, the Pd values are
estimated over 104 independent trials. As to the disturbance
model, we assume a clutter-dominated environment with the
covariance matrix M0 “ σ2

nIN ` σ2
cM c, where σ2

n is the
thermal noise power, σ2

c is the clutter power which is evaluated
according to a pre-designed Clutter-to-Noise Ratio (CNR),
defined as CNR “ σ2

c {σ2
n. As to M c, it is Gaussian shaped

with one-lag correlation coefficient ρ. Precisely, the (i, j)th
element of M c is ρ|i´j|2 with ρ “ 0.9. The steering vector

v is given by v “ r1, . . . , 1sT {
?
N , and the signal-to-noise

ratio (SNR) is defined as SNR “ |α|2v:M
´1
0 v.

SNR “ |α|2v:
M

´1
0 v. (16)

A. CFAR analysis

We first examine the invariance of the SS-ACE and the SS-
AMF with respect to the scaling factor γ. Precisely, via Monte
Carlo simulations, we determine the threshold for each test
corresponding to a given Pfa for N “ 16, K “ 32, CNR “
60 dB, and γ varying from 1 to 51 in a step size of 10. For the
convenience of computer simulation, we choose Pfa “ 10´2.
The results are shown in Fig. 1. As it can be seen, the SS-
ACE have a constant threshold independent of the considered
values of γ. In contrast, the SS-AMF are more sensitive to
the variation of γ, because it give thresholds with two distinct
phases: a linearly decreasing phase when γ is small; and a
saturated phase when is large, e.g., greater than 10 in this
example.

B. Performance of detection

In Fig. 2, we study the detection performance of the SS-
ACE and the ACE assuming N “ 16, K “ 17, Pfa “ 10´4,
CNR “ 60 dB, and γ “ 3. As it can be seen from Fig. 2,
the SS-ACE guarantees a Pd gain with more than 15 dB
with respect to the ACE. Thus, incorporating the a priori

knowledge is a very effective means to improve performance
in the presence of a small number of secondary data. We would
like to point out that such an improvement is a theoretical
value. In practice, it will be not fully realistic to have a
perfectly symmetric doppler spectrum and, hence, the Pd

gain will decrease accordingly. However the aforementioned
gain reduces when a sufficient amount of secondary data is
available. This is shown in Fig. 3, which assumes the same
system parameters as in Fig. 2, but for K “ 32. As expected,
the gain of the SS-ACE over the ACE reduces to about 2 dB.

Finally, In Fig. 4 we plot Pd against SNR for the SS-ACE
assuming K ă N . In particular, we set N “ 16 and two cases
of K , i.e., K “ 9 and K “ 14. The plots show that the SS-
ACE can work steadily in the case of K ă N and that the
larger K , the better Pd the SS-ACE has.

V. CONCLUSIONS

In this paper, we have proposed a decision scheme for
adaptive detection in Gaussian clutter with symmetric spec-
trum for partially homogeneous environment. In order to
derive the new detector, we transfer the binary hypothesis test
problem from complex domain to real domain and resort to
the two-step GLRT-based design procedure. The performance
assessment has demonstrated that the proposed receiver can
significantly outperform its natural competitor which ignores
the spectrum symmetry in a scenario where a very small
number of secondary data is available.
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Fig. 1. Thresholds versus γ for the SS-ACE and the SS-AMF when N “ 16,
K “ 32, Pfa “ 10´2 and CNR “ 60 dB.
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Fig. 2. Pd versus SNR for the SS-ACE and the ACE assuming N “ 16,
K “ 17, γ “ 3 and CNR “ 60 dB.
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Fig. 3. Pd versus SNR for the SS-ACE and the ACE assuming N “ 16,
K “ 32, γ “ 3 and CNR “ 60 dB.
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Fig. 4. Pd versus SNR for the SS-ACE assuming N “ 16, K ă N , γ “ 3

and CNR “ 60 dB.
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