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ABSTRACT 
The inversion for surface nuclear magnetic resonance (SNMR) data in layered electrically conductive 
media can be concluded as the problem to solving a matrix equation An=E, where A is a kernel 
function matrix, E is a initial amplitude sequence of the measured data and n  is the unknown water 

content distributions sequence. The precision of A mainly depends on the estimation to the spacial 
resistivity distributions. Because of the intrinsic error existing in both A and E and the big condition 
number of A, a regularization - total least square (R-TLS) model of the SNMR inversion is firstly 
proposed in this paper. Then the model is transformed into a constrained nonlinear optimization 
problem, and the solution to the optimization problem is obtained by using an proposed improved 
particle swarm optimization (IPSO) algorithm. Although An=E is generally an ill-conditioned and 
highly underdetermined equation, the proposed algorithm still works effectively. The whole proposed 
approach is examined by using synthetic data and practical field data, which well demonstrates the 
capability of the approach. The results of the synthetic data example demonstrate that proposed 
approach can well derived the construction information of the hypothesis model under poor relative 
error of the resistivity distributions (ERRORlayer = 17.7%) and poor SNR (SNR = 5dB) at the root mean 
square 5.11%, while all existing approaches are useless at all in this example. And the inversion results 
by the proposed approach for the practical field example, when SNMR has been used in combination 
with Vertical Electrical Sounding (VES), can well meet with the construction information from an in-
site borehole under poor SNR (SNR = 6.9dB) at the root mean square 2.92%. 

KEYWORDS: Surface nuclear magnetic resonance; Total least square; Regularization; Non-

linear optimization; Particle swarm optimization; Vertical electrical sounding 
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INTRODUCTION 

Simple in operation, rich in information and unique in solution, the surface nuclear magnetic 
resonance (SNMR) is a geophysical technique specifically developed for hydrogeological 
investigations. Along with its unintermittent growth and its exploration, this technique has been 
applied successfully to the detection of groundwater, archaeological work, test of shallow 
groundwater quality, etc [1]-[3]. SNMR energizes the hydrogen nuclei in the groundwater by 
transmitting an electromagnetic pulse at the Larmor frequency followed by a certain dead time, when 
the pulse is terminated. The resonance signal emitted by the hydrogen nucleus is then received. 
Receptions of the SNMR data are carried out by varying the pulse moment. The structure of 
underground aquifer can be derived from the inversion of the SNMR data [4]. 

In recent years, the SNMR technology has been paid much attention to by many experts and 
scholars and certain achievements have been made. With the development of research work, the one-
dimensional forward and inversion theory has been ripening, and it provides theoretical foundation 
for further study to two-dimensional and three-dimensional forward and inversion [5]-[6]. The 
inversion algorithms of SNMR data are all based on the forward equation An E= , where A  is a 
kernel function matrix, E  is a initial amplitude sequence of the measured data and n  is the unknown 
water content distributions sequence. The precision of A  mainly depends on the estimation to the 
spacial resistivity distributions. However, the array A  is estimated from the prior information about 
the resistivity distributions which is obtained by the other geophysical methods or the drilling data 
around the site. An improved simulated annealing algorithm (ISA) was proposed to improve the 
stability of the existing inversion algorithms and speed up the convergence [7]. The QT inversion that 
considers the entire data set and inverts the data set directly for water-content distribution was 
designed to improve the accuracy [8]. The full decay inversion of SNMR data was proposed to 
improve the accuracy by the gated integration technique [9], which is similar to the QT inversion in 
the solution methods. However, the existing inversion algorithms are all based on the assumption that 
the prior information about the resistivity distributions is objective and reliable. Because of the initial 
data errors, the accuracy of the result will decrease. We find that the existing inversion algorithms are 
all useless when the estimation of the resistivity distributions is poor, especially when the resistance is 
less than 50Ω•m. In solving the equation containing errors in both A  and E ， the total least square 
model outperforms the least square model, which is used to improve the accuracy in this paper. 
Besides, An E=  is a ill-conditioned equation for the big condition numbers of A . The 
regularization has high-performance in solving the ill-conditioned equation [10]. Therefore, the R-
TLS model of the SNMR inversion is proposed in this paper to improve the stability and accuracy of 
the inversion result, which is transformed into a constrained nonlinear optimization problem. Then the 
IPSO algorithm is described to solve the constrained nonlinear optimization problem, which still 
works effectively under An E=  being a highly underdetermined equation. 
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NON-LINEAR INVERSION OF SNMR DATA IN LAYERED 

MEDIA 

The spatial distribution of the excited magnetic field in layered 

media 

In horizontally stratified Earth models, the radial and vertical components of the magnetic field 
for the i th geological layer are then given by[11] 
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where 0I  is the pulse moment amplitude, 2
0 /i iu i uλ ϖ ρ= + , ϖ  is the Larmor frequency, 0u  is 

the permeability of vacuum, iρ  is the resistivity of the i th geological layer, ( )0J •  and ( )1J •  are 

respectively the zero and one order Bessel function of the first kind, both ia  and ib  are geotechnical 

parameters. 

Forward modeling of SNMR data 

In horizontally stratified Earth models, the discrete model of SNMR data can be written as [6] 

( ) ( )0
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j

E q K q z n z
∞

=

= ∆∑ ,                  （3） 

where iq  is the i th pulse moment, jn  and jz∆  are respectively the water content and thickness of 
the j th geological layer. The kernel function in the columnar coordinates is given by 
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where 0M is magnetic moment of unit volume, 1 0 1 0/b u H I⊥ ⊥= , 1H ⊥  is the vertical component of 
excitation field to the local geomagnetic field, imnjθ  is the excitation angle of the location 
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( ), ,m n jr zΦ , mr∆  and n∆Φ  are respectively the radial and vertical length of the differential element 
( ),m nr Φ , M  and N  are respectively the radial and vertical number of the differential element. 

For a series of pulse moments iq  and a limited detecting depth, the Eq.(3) can be expressed as 

An E= ,                               （5） 

where ( ) ( ) ( )( )1 2, ,...,
N

T

IE E q E q E q= , NI  is the number of pulse moments, ( ),ij i j jA K q z z= ∆ , 

( )1 2, ,...,
N

T

Mn n n n= , NM  is the number of aquifers. 

Inversion modeling of SNMR data by a constraint R-TLS 

method 

In the SNMR inversion, the precision of the kernel function array A  mainly depends on the 
estimation to the resistivity distributions, which is obtained by the other geophysical methods. 
Because of the disturbances from various noises, there are many errors, including systematic errors 
and gross errors, in the obtained data. Hence, the R-TLS model of SNMR inversion is proposed to 
improve the stability and accuracy of the inversion result as follows.  
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where *A  and A  are respectively the measured and real kernel function array, *E  and E  are 
respectively the measured and real initial amplitude array, 

F
•  is F-norm operator, δ  is a positive 

constant，the array L  controls the degree of the smoothness constraint n , which is usually the first 
or second derivative. The Eq.(6) can be translated into the constraint Lagrange equation which is 
given by 
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where µ  is the Lagrange multiplier. When δ  converges to zero, the Eq.(7) can be expressed as 
2
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where ξ  is regularized factors the R-TLS model constraint object function. 

IPSO algorithm applied to solve water resource 

characterization 

Particle Swarm Optimization (PSO) is a popular and bionic algorithm which takes advantage of 
simple algorithm, facile realization, fast convergence rate, etc. It is widely used in non-linear 
optimization, neural network training, complex system control, etc[12]. In the following, the IPSO 
algorithm is described for solving the Eq.(8). 

Step 1: Population initialization. The number of particles NM  in solution space is equal to the 
number of aquifers. ( )0 01 02 0, ,...,

N

T

Mn n n n=  is an initialization particle swarm vector, which range 
from 0 to 1. ( )0 01 02 0, ,...,

N

T

Mv v v v=  is an initialization speed vector, which 0iv ranges from -1 to 1. 
The maximum number of iteration is defined as maxN . The number of iterations Num  is initialized 
as zero. The threshold _Threshold Val of the limited inversion accuracy is initialized as 10-8. 

 
Step 2: Each particle has its objective function value which is decided by a fitness function: 
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where i  is the i th particle, w  is weights for limiting shift step length, iv∆  is the direction vector, 1c  
and 2c  are the limited factors, which are respectively initialized as 0.0005 and 0.001, 1r  and 2r  are 
random numbers, which range from 0 to 1. beatp  is the position with the best fitness found in the i th 
particle. beatg  is the position with the best fitness found so far for the i th particle. The threshold 

thresholdv  of the limited speed is initialized as 0.005, which can avoid getting in the local best solution 
when solving the precise solutions. 

The direction vector v∆  is defined as 
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where { }| 1,0,1ijv x∆ ∈ − . v∆  is a randomly generated matrix each particle, which is written 

as ( )1 2, ,...,
NMv v v v∆ = ∆ ∆ ∆ , where ( )1 2, ,...,

N

T

i i i M iv v v v∆ = ∆ ∆ ∆ .  

In the course of iterative optimization of IPSO algorithms, variable searching step is used to 
improve the accuracy of the calculation and speed up the convergence.  

( )max1 /w Num N w= − ∆ , 

where w∆  is constant step with the value of 0.05. 

Step 3: The score scoreF of each particle is calculated by substituting each 1hn +  into the Eq.(8), 
which is introduced to evaluate the results of the each particle. Then, beatp  and beatg  are updated. 

Step 4: Judgment of terminal condition. If maxNum N>  or scoreF Threshold≤ , the iterates stops 
and the result of inversion is beatg , otherwise it returns to execute Step 2. 

APPLICATIONS 

Tests with synthetic data 

To verify the performance of the new algorithm, the synthetic model parameters are setted at first. 
Then the real initial amplitude array E  and kernel function array A  are obtained by Eq.(4) and 
Eq.(5). The measured initial amplitude array *E  is produced by adding noise to E . The measured 
kernel function array *A  is obtained by substituting the estimated layered model containing relative 
errors into Eq.(4). Finally, the new algorithm (IPSO) is used to solve the Eq.(4). Besides, a 
comparison experiment is made to compare with existing algorithms, including the current best 
algorithm (ISA algorithm [7]), to verify the advantages of the IPSO algorithm. Table 1 shows the 
comparison results for some existing inversion algorithms in some working conditions. 
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Table 1: Performance comparisons about the existing inversion algorithms 

Inversion algorithms Subsurface resistance SNR Kernel 

function M NA ×  Resistance Existential 
error 

SVD[7] High resistance Neglect >20dB M N≥  

Monte Carlo method[13] Unrestricted Neglect >5dB Unrestricted 

Simulated Annealing 
algorithm[6] 

Unrestricted Neglect >5dB Unrestricted 

QT[8] Unrestricted Neglect >2dB Unrestricted 

ISA[7] Unrestricted Neglect >2dB Unrestricted 

 
Here, signal to noise ratio (SNR) is defined as 

2
10 *

2

SNR 20log
d

d d
=

−
,                                                （10） 

where *d  and d  are respectively the measured data and the real data. The relative errors ERRORlayer of the 
estimated layered model is defined as 

*

1

1 100%
NM

i i
layer

iN i

ERROR
M

rr

r=

−
= ×∑ ,                                    （11） 

where *
iρ  and iρ  are respectively resistivities of the estimated and real layered model. The root mean 

square (RMS) of the inversion results is used to evaluate the inversion algorithm's performance, 
which is defined as 

( )2*

1

1RMS 100%
NM

i i
iN

n n
M =

= − ×∑ ,                                （12） 

where in  and *
in  are respectively water content in each layer of the real and inversion result model. 

Both the IPSO and ISA inversion algorithms have been tested with synthetic data. Inversions for 
a layered hydrogeological scenarios is presented, calculated for a square loop antenna with 75m long 
sides in a geomagnetic field of 44,630nT at an inclination of 24°and a maximum pulse moment of 
6.5As. The vertical calculation grid is set to 1m with a maximum depth of 70m. The multi-layer geo-
electrical structure model in Fig.1a describes the real model of two layer resistivity with between 0 
and 15m depth having 104 mΩ⋅  as well as below 15m having 10 mΩ⋅  and the estimated model of 
two layer resistivity with between 0 and 14m depth having 9,700 mΩ⋅  as well as below 14m having 
12 mΩ⋅  (ERRORlayer=17.7%). The measured data shown in Fig.1b is the real data with SNR=5dB 
random noise. The water content model in Fig.1c describes the scenario of a single aquifer with a 
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sharp upper boundary at 25m as well as a sharp lower boundary at 40m and 30 vol.% of mobile water. 
The inversion grid employed consists of 70 equidistant layers with a thickness z 1m∆ = . 

The results of ISA inversion and IPSO inversion for SNMR amplitudes are shown in Fig.1b 
and Fig.1c. It can be observed that the results of IPSO inversion agree well with the information of 
the hypothesis model at the root mean square 5.11%, while ISA inversion is useless at the root mean 
square 10.13%. Hence, it is difficult to ascertain the hydrogeological structure and groundwater by 
the existing methods under poor ERRORlayer and SNR. However, the IPSO inversion method has 
many advantages over those available, which is in accordance with the actual results.  
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Figure 1a: The resistivity models using SNMR inversion 
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Figure 1b: SNMR data and model fit for ISA inversion and IPSO inversion 
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Figure 1c: Results of ISA inversion and IPSO inversion for SNMR amplitudes 

Field test case 

Inversions have been carried out for the data obtained from a SNMR sounding (Fig. 2a) at Site1 
in Area 1 in the Vientiane basin, Laos [3]. SNMR has been used in combination with VES and 
borehole in field test. The measurements were conducted using a square antenna loop with a diameter 
of 100m and a maximum pulse moment of 5As. The local geomagnetic field intensity was 43,770nT 
with an inclination of 24°. The inversion grid employed consists of 70 equidistant layers with a 
thickness z 1m∆ = . The measured data shown in Fig.2a contains SNR=6.9dB ambient noise. From a 
VES, the electrical resistivity in Fig.2b has been found to be about 550 mΩ⋅  between 0 and 4m 
depth, about 5,000 mΩ⋅  between 4 and 11m depth and about 20 mΩ⋅  below 11m. At this site, 
borehole measurements confirmed a two-layer case with alluvial deposits between 0 and 38m and 
sandstone of Cretaceous and Jurassic age between 38 and 70m. The water content model in Fig.2c 
describes a three-layer case with the first aquifer between 3 and 16m having about 4% mobile water, 
the second aquifer between 16 and 32m having about 14% mobile water and the third aquifer between 
32 and 70m having about 1% mobile water. 

The SNMR data are respectively interpreted using IPSO inversion and the inversion software 
Samovar v6.2 [3]. The results of inversion are shown in Fig.2a and Fig.2c. The blue line in Fig.2a 
corresponds to a best fit inversion made with the amplitude data. The blue curve (RMS=2.92%) and 
the green curve (RMS=3.65%) in Fig.2c agree well the information from an in-site borehole. Hence, 
the IPSO inversion method has many advantages such as low dependence to initial model, stable 
result and strung anti-noise ability. 
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Figure 2a: SNMR data and model fit for IPSO inversion 

 

101 102 103 104
-70

-60

-50

-40

-30

-20

-10

0
y

ρ/ohm-m

D
ep

th
/m

 

 

Estimated Model

 
Figure 2b: The resistivity model using SNMR inversion 
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Figure 2c: Results of Samovar v6.2 inversion and IPSO inversion for SNMR amplitudes 

CONCLUSIONS 

For horizontally layered conductivity and water content distributions the existing inversion 
algorithms are all based on the assumption that the prior information about the resistivity distributions 
is objective and reliable, which certainly results in low inversion precision. These algorithms are 
useless if the estimation to the resistivity distributions is poor, especially when the resistance is less 
than 50Ω•m. Besides, the kernel function matrix A  has generally big condition numbers. Hence, the 
R-TLS model is proposed to improve the stability and accuracy of the SNMR inversion result, which 
is transformed into a constrained nonlinear optimization problem. To obtain the inversion results, the 
IPSO algorithm is designed, which applies to solving underdetermined equation and removes the max 
number of aquifers limitation. The results of the synthetic data example show that the new algorithm 
agree well the construction information of the hypothesis model under poor conditions 
(ERRORlayer=17.7%, SNR=5dB) at the root mean square 5.11%, while ISA inversion is useless at the 
root mean square 10.13%. The IPSO inversion method has many advantages such as low 
dependence to initial model, stable result, and strung anti-noise ability. The results of the field 
example show that both the new algorithm (RMS=2.92%) and the inversion software Samovar v6.2 
(RMS=3.65%) agree well the construction information from an in-site borehole, and the former 
algorithm has slightly higher precision the posterior one.  
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