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LETTER

Wheeze Detection Algorithm Based on Correlation-Coefficients
Analysis

Jiarui LI†,††a), Ying HONG†, Nonmembers, and Chengpeng HAO†, Member

SUMMARY Wheeze is a general sign for obstructive airway diseases
whose clinical diagnosis mainly depends on auscultating or X-ray imaging
with subjectivity or harm. Therefore, this paper introduces an automatic,
noninvasive method to detect wheeze which consists of STFT decompo-
sition, preprocessing of the spectrogram, correlation-coefficients calculat-
ing and duration determining. In particular, duration determining takes the
Haas effect into account, which facilitates us to achieve a better determi-
nation. Simulation result shows that the sensibility (SE), the specificity
(SP) and the accuracy (AC) are 88.57%, 97.78% and 93.75%, respectively,
which indicates that this method could be an efficient way to detect wheeze.
key words: wheeze, large-signals, correlation-coefficients, Haas effect

1. Introduction

Wheeze, as a type of abnormal lung sounds, is observed in
patients with pulmonary diseases such as chronic obstruc-
tive pulmonary disease (COPD) or asthma. It shows a con-
tinuous sinusoidal characteristic in time domain and a sig-
nificant feature of texture in spectrogram. As Ref. [1] notes,
wheeze usually lasts more than 150 ms. Currently, auscul-
tating and X-ray imaging are popular, fast methods to di-
agnose pulmonary diseases related with wheeze. However,
both the methods are subjective and depend on the physi-
cian’s experience. In addition, X-ray imaging is harmful to
patients. Therefore, it is of significance to design an objec-
tive, noninvasive and efficient wheeze detection method.

As shown in Fig. 1, there are unique streak patterns
in the short-time Fourier transform (STFT) spectrogram of
wheeze which don’t appear in that of normal lung sound.
Now, some wheeze detection methods are based on analyz-
ing the feature of time-frequency spectrograms, such as the
energy [2], the power entropy [3], the tonal index [4], [5],
the correlation-coefficients (CCs), etc. Nonetheless, most
detection methods are with large computational complexity,
or the accuracy still needs to be improved. For instance, the
researchers from Nanyang Technological University (NTU)
achieved a detection rate of 85% at 6dB SNR by using the
method based on entropy [3], and Yu [6] proposed a method
depending on correlation-coefficients (CCs) analysis whose
sensibility (SE) and specificity (SP) reached 88% and 94%,
respectively.
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Fig. 1 Comparison of STFT spectrograms.

The objective of this study is to develop an improved
wheeze detection method. First, large-signals are detected
after STFT decomposition. Here, large-signals are defined
as the amplitude spectrum signals whose values are greater
than the empirical threshold. Then, CCs of large-signals are
calculated and a procedure to determine the value and the
duration of CCs is proceeded. Only when the high CCs, de-
fined as the spectrogram correlation-coefficients whose val-
ues are greater than the empirical CCs threshold, last more
than wheeze duration, can they be remained. Otherwise they
will be set to zero. Different from Ref. [6], the determin-
ing of duration considers Haas effect, which is conducive to
the accuracy. At last, the non-zero CCs stand for the ap-
pearing of wheeze. Simulation result proves that the sensi-
bility (SE), specificity (SP) and accuracy (AC) are 88.57%,
97.78% and 93.75%, respectively.
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Fig. 2 The steps in block diagram of the algorithm.

2. Materials and Methods

2.1 Research Dataset

There are several databases of lung sounds used by previous
researchers, such as Marburg Respiratory Sounds (MARS)
[7], European project CORSA [8], etc. Unfortunately, both
of them are not publicly available. The dataset in our re-
search includes two parts: wheeze dataset (70 groups) and
normal lung sound dataset (90 groups). Wheeze dataset
consists of abnormal lung sounds from the American Tho-
racic Society (ATS), the COPD website and some other
lung sound websites. Normal lung sounds gathered from
healthy persons via 3M 3200 electronic stethoscope. Most
of the sounds last 10 seconds, contain 3 breathing cycles
approximately and the sampling frequencies are 11025 HZ,
8000 HZ, 12000 HZ, 8012 HZ and 4000 HZ.

2.2 The Proposed Method

A block diagram of the proposed method is depicted in
Fig. 2. To be more specific, it is realized by the following
steps:

2.2.1 Decomposition by STFT

Spectrogram, a graphical representation of the way a sig-
nal’s frequency contents evolving over time, is achieved by
using the STFT decomposition, as defined in Eq. (1). In
Eq. (1), x[n] is the signal in time domain, and w[n] denotes
the window function.

X(m, k) =
+∞∑

n=−∞
x[n]w∗[n − m]e− j2πnk/N (1)

2.2.2 Preprocessing of Spectrogram [9]

A smoothing procedure is used first at each time instance
to estimate the trend which is the basic lung sound of the
spectrogram. Then detrending of the spectrogram is calcu-
lated by subtracting the trend from the original lung sound.
After that, in view of the characteristic of wheezes, large-
signals detecting is implemented in four respective fre-
quency bands: B-1: 100–300 HZ, B-2: 300–500 HZ, B-3:
500–800 HZ, B-4: 800–1000 HZ. Large-signals are defined
as the amplitude spectrum signals whose values are greater
than the empirical threshold, as given in Eq. (2), where AB−k

are constants set empirically (AB−1=3, AB−2=3, AB−3=2 and

Fig. 3 An detecting example of wheeze.

AB−1=2).

Threshold = Mean Value + AB−k ∗ Standard Deviation

(2)

2.2.3 CCs Calculating and Wheeze Detecting

There are unique stripe patterns in STFT spectrogram of
wheeze which do not appear in that of normal lung sound.
Therefore, wheeze provides higher CCs than normal lung
sound [6]. Moreover, these high CCs will be consecutive on
account of the characteristic of wheeze continuity.

Thus, the CCs of large-signals are utilized to determine
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the lung sound. It calculates the CCs of large-signals and
then determines the duration of high CCs which are greater
than the CCs threshold. If these high CCs last more than
the wheeze duration (150 ms), this segment of lung sound,
which the high CCs correspond to, will be judged as wheeze,
as depicted in Fig. 3. The CCs threshold is empirically set
to 0.9.

Particularly, better than the past method, the determin-
ing of duration is based on Haas effect, taking into account
that there are some CCs less than the threshold (Fig. 4(c))
which gives rise to the discontinuity of high CCs and then
causes error in wheeze detection, as the arrowhead indicated
in Fig. 4(c). The Haas effect is a psychoacoustic effect which
is often equated with the underlying precedence effect. The
precedence effect appears if the subsequent wave fronts ar-
rive between 2 ms and about 50 ms later than the first wave
front. However, this range is signal dependent. For speech
the precedence effect disappears for delays above 50 ms, but
for music the precedence effect can also appear for delays
of some 100 ms [10]. Hence, according to Haas effect, if the
time interval between two high CCs is less than the thresh-

Fig. 4 Influence of considering Haas effect.

old of Haas effect, these two CCs are considered continu-
ous. It is clear from the comparison between Fig. 4(c) and
4(d) that the marking of wheeze is much more accurate with
considering Haas effect. The threshold value is set 100 ms
in this paper.

3. Results

3.1 Simulation Results

Figure 5 shows the simulation results of the wheeze case and
normal lung sound case by using the introduced method. In
particular, a red curve is obtained by replacing the contin-
uous high CCs and the others with ones and zeros respec-
tively, where ones indicate the occurrence of wheeze, as
shown in Fig. 5(e) and 5(f). In addition, it could be observed
that CCs of wheeze are larger and last for a longer time.

There are three common parameters used to estimate
the accuracy of wheeze detection method named sensitivity
(SE), specificity (SP) and accuracy (AC), which are calcu-
lated as Eq. (3) to (5), respectively [4], [9], [11]:

S E =
T P

T P + FN
(3)

S P =
T N

T N + FP
(4)

AC =
T P + T N

T P + T N + FP + FN
(5)

TP, TN, FP and FN are, respectively, the number of
true positive, true negative, false positive and false negative
detected results.

The accuracy of the algorithm introduced in this paper
is shown in Table 1.

Fig. 5 Simulation results.
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Table 1 Accuracy of the method introduced in this paper.

TP FN TN FP SE SP AC
62 8 88 2 88.57% 97.78% 93.75%

Fig. 6 The influence of preprocessing and considering Haas effect.

The simulation result in Table 1 shows that this method
could be an efficient way to detect wheezes. The similar
method raised in Ref. [12] gets a result that the SE and SP
are 83% and 86%, respectively, while an improved one with
88% SE and 94% SP has been reported in Ref. [6]. How-
ever, both of the methods don’t achieve satisfied detecting
accuracies based on our dataset.

Compared with the method proposed in Ref. [6], [12],
there are three aspects of improvement for the detection
method. First, since most of the frequency components of
wheeze are limited within a range of 100 to 1000 Hz, the
CCs of the spectrogram within only this frequency band will
be calculated. Therefore, the influence of most noises whose
frequency are less than 100 Hz or greater than 1000 Hz, such
as basic lung sound, heart sound and other noises are re-
moved. Second, the large-signals detection removes the un-
derlying basic lung sound which facilitates the detection of
wheeze. In fact, most of the noises mentioned above, espe-
cially heart sound and basic lung sound, will bring contin-
uous high CCs which exerts a bad influence upon the accu-
racy, especially FP. As shown in Fig. 6(c), there are a few of
segments of normal lung sound are judged as wheeze mis-
takenly without preprocessing. Third, the consideration of
Haas effect increase the accuracy of wheeze marking and
reduces the FN. It’s clear from the comparison between
Fig. 6(d) and 6(f), the wheeze appearing in the first breath
cycle is not marked without considering Haas effect on ac-
count of the discontinuity of CCs.

In addition, the method proposed in Ref. [6] determines

Fig. 7 The comparison of detecting results between the methods raised
in Ref. [6] and this paper.

wheeze by calculating the WR(wheeze ratio). However,
the threshold of WR is related to the stethoscope. For ex-
ample, the WR of the normal lung sound (Fig. 7(e)) and
wheeze (Fig. 7(f)) from the dataset of R.A.L.E. are 55.22%
and 69.05%, respectively. That is to say, if this method is
applied on other stethoscopes, the threshold value should
be updated by training which needs large amounts of nor-
mal lung sounds and wheezes. By contrast, the method de-
scribed in this paper could be used by any stethoscope di-
rectly. Therefore, our method has a better generality and
transferability. A comparison of the detecting results be-
tween the methods raised in Ref. [6] and this paper is given
in Fig. 7.

3.2 Noise Testing

In order to examine noise robustness of the method proposed
in this paper, Gaussian white noise is added to the dataset
with different levels of SNR (from −10 dB to 40 dB, with a
step of 1 dB) for testing and the change of AC is shown in
Fig. 8.

It is clear that AC is a little unsatisfactory when SNR
is under 0 dB. However, when SNR is greater than 0 dB, AC
is higher than 90% and reaches an average value of 93.17%.
This is because Gaussian white noise increases the power
uniformly. Consequently, the higher the power of Gaussian
white noise is, the much more difficultly large-signals can
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Fig. 8 Noise testing.

be detected. As a result, AC decreases with SNR reducing.

4. Conclusions

In this study, an efficient wheeze detection method is in-
troduced which could be well used in the medical equip-
ment and patients’ health care systems. The method consists
of STFT decomposition, preprocessing of the spectrogram,
CCs calculating and duration determining. Particularly, the
step of duration determining takes Haas effect into account,
which achieves a better determination than the past method.
A number of 70 wheezes from patients with pulmonary dis-
eases and 90 normal lung sounds in total have been tested,
and the result has proved that SE, SP and AC are 88.57%,
97.78% and 93.75%, respectively. This method could be
used as an objective clinical diagnosis for patients with lung
diseases related to wheezes, such as COPD and asthma.

Further extension of the latter, not only being tested in
large scale experiments, but also reducing the complexity of
computation and increasing the accuracy, will be proceeded.
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