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Abstract—We address adaptive radar detection of targets em-
bedded in ground clutter dominated environments characterized
by a symmetrically structured power spectral density. At the de-
sign stage, we leverage on the spectrum symmetry for the inter-
ference to come up with decision schemes capable of capitalizing
the a-priori information on the covariance structure. To this end,
we prove that the detection problem at hand can be formulated in
terms of real variables and, then, we apply design procedures re-
lying on the GLRT, the Rao test, and the Wald test. Specifically,
the estimates of the unknown parameters under the target pres-
ence hypothesis are obtained through an iterative optimization al-
gorithm whose convergence and quality guarantee is thoroughly
proved. The performance analysis, both on simulated and on real
radar data, confirms the superiority of the considered architec-
tures over their conventional counterparts which do not take ad-
vantage of the clutter spectral symmetry.

Index Terms—Adaptive radar detection, constant false alarm
rate, generalized likelihood ratio test, recursive estimation, sym-
metric spectra.

I. INTRODUCTION

I N THE LAST YEARS, radar community undertook dif-
ferent routes towards the design of adaptive detection

schemes. The most common design criteria as the Generalized
Likelihood Ratio Test (GLRT), the Rao test, and the Wald test
have been exploited in conjunction with specific conditions on
the interference affecting the target echoes usually arising in
some operating scenarios.
The seminal approach by Kelly et al. [1]–[3] did not foresee

any additional assumption on the spectral properties of the inter-
ference except for the circular symmetry [4]. The authors sup-
pose that a set of secondary data, free of signal components
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and sharing the same spectral properties of the data under test
(primary data), is available to estimate the interference covari-
ance matrix. However, this scenario (also known as homoge-
neous scenario) dictates a constraint on the number, say, of
secondary data. More precisely, conventional decision schemes
require the inversion of the sample covariance matrix. To this
end, it is required that has to be greater than or equal to the
dimension of the data vectors, say. Additionally, detection
performances are strongly affected by the estimation quality of
the interference covariance matrix [1], which relates to . A
lower bound on , which ensures good detection performances,
is , i.e., . When this condition is not fulfilled due,
for instance, to heterogeneity between primary and secondary
data, severe performance degradations are experienced [5]–[7].
As a matter of fact, secondary data are often contaminated by
power variations over range, clutter discretes, and other outliers,
which drastically reduce number of homogeneous secondary
data. Adaptive detection of signals buried in interference en-
vironments for which the secondary data volume is not large is
referred to as sample-starved problem [8], [9].
Strategies conceived to cope with such situations exhibit a

common denominator that consists in incorporating the avail-
able a priori information into the detector design (knowledge-
aided paradigm). For instance, in [10], the authors show that sig-
nificant performance improvements can be achieved exploiting
the available information about the surrounding environment. In
particular, they propose algorithms which use the information
provided by a geographic information system in order to prop-
erly select secondary data. Another example is provided in [11],
where the Bayesian approach is employed assuming that the un-
known covariance matrix of the interference obeys a suitable
distribution. Under this hypothesis, two GLRT-based detectors
are derived and the performance analysis on real data reveals
the superiority of the proposed detectors with respect to their
non-Bayesian counterparts when the training set is small. The
Bayesian framework can be also used together with the struc-
tural information on the interference covariance matrix [12] as
shown in [13], where the disturbance is modeled as a multi-
channel auto-regressive process with a random cross-channel
covariance matrix (see also [14], [15]).
In radar applications, where systems are equipped with array

of sensors, structural information about the interference covari-
ance matrix arises from the exploitation of specific class of ge-
ometries. For instance, in the case of a symmetrically spaced
linear array or a system transmitting symmetrically spaced pulse
trains, collected data could be statistically symmetric in forward
and reverse directions. This results into an interference covari-
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ance matrix which shares a so-called “doubly” symmetric form,
i.e., Hermitian about its principal diagonal and persymmetric
about its cross diagonal [16]. The mentioned special structure
is also induced for the steering vector and allows to achieve in-
teresting processing gains [17]. It is important to highlight that
the persymmetric structure is not limited to linear arrays but it
can be found in different geometries such as standard rectan-
gular arrays, uniform cylindrical arrays (with an even number
of elements), and some standard exagonal arrays [17]. Several
approaches, relying on the persymmetry, have been developed
to achieve improved detection performances in training-limited
scenarios; just to give some examples, see [18]–[27].
Another source of a priori information, which can be ex-

ploited in the design of adaptive algorithms, is the possible sym-
metry in the clutter spectral characteristics. In fact, it is well-
known that ground clutter observed by a stationary monostatic
radar often exhibits a symmetric Power Spectral Density (PSD)
centered around the zero-Doppler frequency and whose inte-
gral (clutter power) depends on the type of illuminated back-
ground [28]. This property has been corroborated by diverse sta-
tistical analyses on experimentally measured data [29]–[31] and
implies that clutter autocorrelation function is real-valued and
even. Notice that ground clutter observed by a steady monos-
tatic radar represents the most common situation where the sym-
metry property arises. However, different operating scenarios
yielding this property are possible. For instance, still focusing
on ground clutter, the symmetry can be observed in bistatic,
where a steady transmitter and a steady receiver are present at
different positions, or multistatic, where the surveillance region
contains several steady receivers and transmitters, configura-
tions. Finally, it is important to highlight that sea clutter seldom
possesses a spectrum shape symmetric around zero Doppler due
to the prevailing motion of the sea waves [29], [32]. Clutter
symmetry represents an important structure which reduces the
number of nuisance parameters to estimate and can be exploited
at the design stage. Specifically, collected data are organized
into vectors which, from a statistical perspective, are modeled in
terms of circularly symmetric complex Gaussian vectors. Now,
if the clutter autocorrelation function is real, then the resulting
covariance matrix is real. Each complex vector is thus statisti-
cally equivalent to a pair of independent real Gaussian vectors
and the original detection problem can be transferred from the
complex domain to the real domain. As a result the number of
secondary data is increased by a factor 2.
Following the above guideline, we focus on ground clutter

dominated environments and design four adaptive decision
schemes which leverage on the symmetric PSD structure for
the interference. We first transform the problem from the
complex domain to the real domain and then solve the new
hypothesis test resorting to design procedures relying on the
GLRT, the Rao test, and the Wald test. It is worth observing
that the mathematical derivation of the plain GLRT and the
Wald test for the problem at hand is a formidable task (at least
to the best of authors’ knowledge). For this reason, we exploit
ad-hoc suboptimum procedures (but with a quality guarantee),
which are suitable modifications of previous criteria, to devise
four adaptive decision schemes. More precisely, the first is
obtained by means of the well-known two-step GLRT-based

design procedure [2], whereas the second, which is asymptoti-
cally equivalent to the plain GLRT, is devised according to the
following rationale
1) the plain GLRT is evaluated assuming that target ampli-

tudes are perfectly known;
2) target amplitudes are replaced by suitable estimates pro-

vided by a newly proposed iterative estimation algorithm
exploiting alternating (cyclic) optimization and sharing
quality guarantee.

The last two architectures are devised employing the Rao test
design criterion and an ad-hoc modification of the Wald test
which exploits the amplitude estimates provided by the afore-
mentioned iterative algorithm. The performance analysis con-
firms the superiority of the considered architectures over their
conventional counterparts which do not capitalize on the real
and even PSD of the clutter.
The remainder of this paper is organized as fol-

lows. Section II addresses the problem formulation
while Section III deals with the design of the detectors.
Section IV provides illustrative examples. Some concluding
remarks and hints for future work are given in Section V.
Finally, the appendices contain analytical derivations of the
results presented in the previous sections.

A. Notation

In the sequel, vectors and matrices are denoted by boldface
lower-case and upper-case letters, respectively. Symbols
and denote the determinant and the trace of a square ma-
trix, respectively. If and are scalars, then is the usual
product of scalars; on the other hand, if and are generic
sets, denotes the Cartesian product of sets. The imagi-
nary unit is , i.e., . The -entry of a generic matrix
is denoted by . Symbol represents the -di-

mensional identity matrix, while is the null vector or matrix of
proper dimensions. The Euclidean norm of a vector is denoted
by . As to the numerical sets, is the set of real numbers,

is the set of -dimensional real matrices (or
vectors if ), is the set of complex numbers, and
is the set of -dimensional complex matrices (or vec-
tors if ). Symbol is used to represent the set of

positive definite symmetric matrices. The real and imag-
inary parts of a complex vector or scalar are denoted by
and , respectively. Symbols , and stand for
complex conjugate, transpose, and conjugate transpose, respec-
tively. The acronym iid means independent and identically dis-
tributed while the symbol denotes statistical expectation.
Finally, means that is proportional to .

II. PROBLEM FORMULATION

In this section, we introduce the detection problem at hand
and show that, under the assumption of a symmetric spectrum
for the interference, it is equivalent to another decision problem
dealing with real vectors and matrices. To this end, let us begin
by formulating the initial problem in terms of a binary hypoth-
esis test. Specifically, we assume that the considered sensing
systems acquires data from channels which can be spa-
tial and/or temporal. The echoes from the cell under test are
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properly pre-processed, namely, the received signals are down-
converted to baseband or an intermediate frequency; then, they
are sampled and organized to form a -dimensional vector,
say. We want to test whether or not contains useful target
echoes assuming the presence of secondary data.
Summarizing, we can write this decision problem as follows

(1)

where
• with , and

is the nominal steering vector;
• with and
represents the target response which is modeled in terms
of an unknown deterministic factor accounting for target
reflectivity and channel propagation effects;

• and
, with ,

and , are iid circular complex normal random
vectors with zero mean and unknown positive definite co-
variance matrix ; it is important to observe here
that, since the interference shares zero mean and exhibits
a PSD symmetric with respect to the zero frequency1 (i.e.,
the PSD is an even function), the covariance of the inter-
fering signals is real and even.

Now, recall that a zero-mean complex Gaussian vector
and , is said

to be circular complex normal [34] if
. Under the above assumption, the co-

variance matrix of can be written as

(2)

In (1), we have modeled the disturbance in terms of circular
complex normal random vectors with zero mean and real co-
variance matrix, which, in turn, implies that the cross-covari-
ances between the real and imaginary parts of and

, are zero. Thus, we can claim that and
, are iid real Gaussian vectors with zero

mean and covariance matrix . As a con-
sequence, we can recast problem (1) into the equivalent form

(3)

The above problem is formally equivalent to (1). As a matter
of fact, for the latter problem, the relevant parameter to de-
cide for the presence of a target is , or, equivalently, the pair

. After transformation leading to (3), the formal struc-
ture of the decision problem is again

.

1Observe that if the PSD of the clutter is real and even then, due to the
time/frequency duality theorem [33], the inverse Fourier transform of the PSD,

say, is a real and even function. In addition, due to the Wiener-Khintchine
Theorem, is the autocorrelation function of the clutter [33].

In the next section, we focus on problem (3) and devise adap-
tive decision schemes based upon the GLRT, the Rao, and the
Wald test design criteria.

III. DETECTOR DESIGNS

In this section, four different decision rules are proposed. The
first two rely on suitable modifications of the GLRT design cri-
terion. In particular, we consider the so-called two-step GLRT
which consists in evaluating the GLRT of the cell under test as-
suming that is known and then replacing it with a proper es-
timate. On the other hand, the second architecture is conceived
exploiting a recursive estimation strategy of the target response
within the GLRT framework (this point is better explained in
what follows). The third decision scheme comes from the appli-
cation of the Rao test design criterion to the problem at hand. Fi-
nally, the last architecture is devised using the Wald test design
criterion where we do not exploit the maximum likelihood esti-
mates of the parameters under , but those obtained by means
of the recursive estimation algorithm.
As preliminary step towards the receiver derivations,

let us define the following quantities. Specifically, de-
note by the primary data matrix and

the overall matrix of the
training samples. Moreover, the probability density functions
(pdfs) of under and are given by

(4)

and

(5)

respectively, while the pdf of is the same under both hy-
potheses, namely

(6)

A. Two-Step GLRT
Assume that is known, then the GLRT based upon primary

data has the following form

(7)

where is the detection threshold2 chosen to ensure the desired
level for the Probability of False Alarm . In Appendix A,
we show that (7) is equivalent to the following decision rule

(8)

2Hereafter, is used to denote the detection threshold or any proper modifi-
cation of it for all the considered receivers.
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where and
. The adaptivity is achieved replacing

with
(9)

namely -times the sample covariance matrix obtained from
the secondary data. Summarizing, the Two-Step GLRT is given
by

(10)

In the following, we refer to the above decision scheme as Sym-
metric Spectrum-AMF (SS-AMF).

B. GLRT-Based Receiver
In this subsection, we propose an ad-hoc receiver exploiting

the GLRT design idea. To this end, observe that the GLR based
upon primary and secondary data can be written as

(11)

and involves the joint maximization of the pdfs with respect to
, and , which becomes an intractable problem

from a mathematical point of view. To redress this difficulty,
we modify the GLRT approach according to the following ra-
tionale:
1) assume that , are known and compute the

GLRT, namely, perform the optimization with respect to
;

2) optimize the compressed likelihood function obtained at
previous step with respect to , by means of an
iterative estimation algorithm.

Thus, the th root of the compressed likelihood functions
under both hypotheses and with respect to are given by

(12)

under , where
, and

(13)

under . In (12) and (13), is defined by (9) and the estimates
of under and are given by

(14)

and , respectively. It still remains to
optimize over , which is tantamount
to solving

(15)

Now, let us focus on the determinant of and ob-
serve that it can be written as

(16)

where . As a con-
sequence, (15) amounts to . At this point,
before describing the procedure aimed at finding the stationary
points of , an intermediate result is mandatory. More
precisely, the following proposition holds true.
Proposition 1: is a coercive or radially unbounded

function.
Proof: See Appendix B.

As a consequence of the above proposition, the continuous
and non-negative function has a global minimum,
which should be sought among its stationary points. To find
them, we follow an iterative procedure based on alternating
(cyclic) optimizations, which estimates , as-
suming that , is known. More precisely,
let us start fixing with known3, and minimize

over . To this end, we set the deriva-
tive of to zero and solve the following equation

(17)

It is tedious but not difficult to show that the above equation can
be recast as

(18)

where the expressions of the coefficients , are
given in Appendix C. Observe that (18) is a cubic equation with
real coefficients and, hence, it admits at least one real solution.
The solutions of this equation can be explicitly obtained re-
sorting to Cardano’s method [35] and we choose that real one,

, leading to the minimum of .
Once is available, let and repeat

the same line of reasoning used to find also for . In other

3Notice that it is also possible to start from since the procedure is
dual.
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words, we set to zero the derivative of with respect to
, namely

(19)

After algebraic manipulations of the above equation, we obtain
another cubic equation

(20)

The real coefficients of the above equation are given in
Appendix C. Again, Cardano’s method comes in handy to find
closed-form expressions for the solutions of (20). Among them,
we choose the real one, say, leading to the minimum of

.
Generally speaking, the above iterations can be repeated to

obtain values as fine as possible in the sense of the maximum
likelihood estimation. Specifically, at the th step, the pair

is available. Accordingly, we build the function
(or ) and find (or ) which returns the

minimum value of (or ). This point represents
the updated estimate of (or ) and can be used in the next
iteration until a stopping condition is not satisfied. The general
procedure is described by Algorithm 1.

Algorithm 1: Ad-hoc algorithm to estimate .
Require: .
Ensure: ML estimates of .
1: set or ,
2: if then
3: set
4: else
5: set
6: end if
7: repeat
8: set
9: if then
10: replace in with and compute

11: use to update and to obtain
12: else
13: replace in with and compute

14: use to update and to obtain
15: end if
16: until and

Let and the estimates of and , respectively, at the
th iteration of the estimation algorithm, then the final expres-

sion of the ad-hoc receiver is given by

(21)

In the sequel, we will refer to this architecture as Iterative GLRT
(I-GLRT).
Two remarks are now in order. First observe that it is pos-

sible to start the iterations exploiting the estimates of and
obtained by means of the two-step GLRT design procedure,

which are given by (37) and (38). Second, the iterative proce-
dure yields a sequence of estimates

(22)

which shares an important property shown in the following.
Proposition 2: From the sequence (22) it is possible to extract

a subsequence that converges to a stationary point of .
Proof: See Appendix D.

The proof of this proposition highlights that (22) induces a de-
creasing sequence of objective function values. This
implies that if we use , given by (37) and
(38), respectively, as starting point of the algorithm, then it is
possible to attain better estimates of in the sense of the
likelihood optimization. Interestingly, they also lead to better
detection performances as it will be shown in Section IV. Ad-
ditionally, it is worth noticing that when is
contained within a suitable neighborhood of the global min-
imum, it may happen that the optimum value belongs to the
trajectory described by (22) and the I-GLRT becomes asymp-
totically equivalent to the plain GLRT. On the other hand, the
asymptotic estimates provided by Algorithm 1 are the coordi-
nates of a stationary point that could be either a local minimum
or a saddle point.

C. Rao Test
In Section II, we have observed that the relevant parameter to

the decision problem (3) is given by the vector ,
while the elements of represent the nuisance parameters.
Moreover, since , it can be well-represented by the

-dimensional vector ,
where is a vector-valued function that selects in unequiv-
ocal way (bijection) the elements of a symmetric matrix. Let

the overall parameter vector for the problem at
hand and denote by the estimate of under the hypoth-
esis. It is evident that , where .
Finally, let us partition the Fisher information matrix as follows

(23)
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where

(24)

In (24), ,

(25)

and

(26)

With the above definitions in mind, we can provide the expres-
sion of the Rao test for the problem at hand [36]

(27)

where is the sub-block of the inverse of the Fisher
information matrix formed by selecting its first two rows and
the first two columns; in addition it can be written as

(28)

In Appendix E, it is proved that the Rao test can be simplified
as follows

(29)

In the following, we refer to the above detector as Symmetric
Spectrum-RAO test (SS-RAO). Observe that the decision
statistic in (29) is none other than that in (10) with , which is
the sample covariance matrix over both primary and secondary
data, in place of , namely the sample covariance matrix over
the secondary data. This similarity is also encountered in the
non-symmetric case where the Rao test [37] and the AMF [2]
share the same expression but for the sample covariance matrix.

D. Receiver Based Upon the Wald Test
In the presence of nuisance parameters, the Wald test exhibits

the following form [36]

(30)

where is the value of the relevant parameters
under is themaximum likelihood
estimate of the relevant parameter under , and is the max-
imum likelihood estimate of the entire parameter vector under

, namely with
the maximum likelihood estimate of the interference covariance
matrix under . Since closed form expression for is not

available, we resort to and given in Section III-B in place
of the exact maximum likelihood estimates. Thus, the approx-
imated Wald test, also referred to in the following as Iterative
Wald test (I-WALD), becomes

(31)

where are obtained after iterations of
Algorithm 1 using as initial seed the or

, and
is given by (14) with in place of .
Finally, exploiting results contained in Appendix E, it

is straightforward to obtain that
, where

.

IV. ILLUSTRATIVE EXAMPLES

In this section, we investigate the detection performances of
the previously devised detectors in comparison with conven-
tional architectures that do not exploit the symmetric spectral
properties of the interference. The considered competitors are
Kelly’s GLRT (K-GLRT) [1], the Adaptive Matched Filter4
(AMF), and the Rao test [37]. The analysis is conducted re-
sorting to both simulated and live recorded data.

A. Simulated Data
Since closed form expressions for the Probability of Detec-

tion and the Probability of False Alarm are not avail-
able, the numerical examples are obtained by means of stan-
dard Monte Carlo counting techniques. Specifically, we com-
pute the thresholds necessary to ensure a preassigned value of

and resorting to and independent trials,
respectively.
The interference is modeled as a circular complex

normal random vector with the following covariance matrix
, where is evaluated

assuming a clutter-to-noise ratio of 20 dB, the th ele-
ment of is given by with
and the Doppler frequency of the clutter. Moreover, we
assume that the system exploits temporal channels and
that the Signal-to-Noise-plus-Interference Ratio (SINR) shares
the following expression ,
where the temporal steering vector is given by

with the nor-
malized Doppler frequency5. Finally, in all the considered
examples, we set and plot, for comparison pur-
poses, the GLRT for known interference covariance matrix also
referred to as benchmark detector.
Before proceeding with the performance comparisons, we es-

tablish an empirical criterion to set the number of iterations,
say, required byAlgorithm 1 to provide reliable estimates and by
I-GLRT and I-WALD to achieve the best performances. To this
end, in Figs. 1 and 2 we plot versus SINR for the I-GLRT and

4Note that the AMF coincides with the Wald test for problem (1) [38].
5Observe that we do not distinguish between the actual and the nominal

steering vector because we assume perfectly matching conditions.
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Fig. 1. versus SINR for the I-GLRT assuming ,
and as parameter.

Fig. 2. versus SINR for the I-WALD assuming ,
and as parameter.

the I-WALD assuming different values of ; both figures con-
sider , and . Their inspection highlights
that the upper bound on the performance is achieved exploiting

iterations. Moreover, values of greater than 1
confer to the estimation procedure a more robust behavior with
respect to possible outliers as shown in Figs. 3 and 4. Therein,
we compare the estimates of and provided by Algorithm
1 with those obtained by means of the two-step de-
sign procedure, namely . The actual values
of and are plotted too. The estimates are obtained using
as initial seed of Algorithm 1 the estimate or .
Finally, further simulation results, not reported here for the sake
of brevity, shows that when the curves of referring
to different values of are one and the same. In the remaining
numerical examples, we use , which represents a reason-
able trade off between robustness, detection performance, and
computational load in different operating conditions.

Fig. 3. Estimate of versus Monte Carlo iteration number; estimates pro-
vided by Algorithm 1 (cross marker and no line) and the two-step design pro-
cedure (circle marker and no line). In addition, the actual value of is also
plotted (no marker and dashed line).

Fig. 4. Estimate of versus Monte Carlo iteration number; estimates pro-
vided by Algorithm 1 (cross marker and no line) and the two-step design pro-
cedure (circle marker and no line). In addition, the actual value of is also
plotted (no marker and dashed line).

In Fig. 5, we show the performance of the I-GLRT, the
I-WALD, the SS-AMF, and the SS-RAO in sample-starved
scenarios, namely when the number of secondary data is lower
than the vector size . To this end, we set
and . The plots highlight that the best detection per-
formances are ensured by the I-GLRT with a gain of about 5
dB over the SS-AMF and the I-WALD, which share the same
behavior, whereas, for the considered values of the parameters,
the SS-RAO is useless since its does not achieve values
greater than 0.1 (this was expected due to the small number of
training data).
Figs. 6, 7, and 8 refer to the cases ,

and , respectively. Again, the I-GLRT outperforms the
other decision structures. Moreover, observe that the I-GLRT,
the SS-AMF, and the I-WALD can ensure performance gains
within 1 dB (as shown in Fig. 8) and 5 dB (as shown in Fig. 6)
with respect to their natural competitors. Another important re-
mark concerns the performance hierarchy that keeps unaltered
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Fig. 5. versus SINR for the SS-AMF, the I-GLRT, the SS-RAO, and the
I-WALD assuming , and .

Fig. 6. versus SINR for the SS-AMF, the I-GLRT, the SS-RAO, the
I-WALD, Kelly’s GLRT, the AMF, and the RAO assuming

, and .

as increases. Finally, observe that, for the considered pa-
rameter setting, the SS-RAO and its conventional competitor
achieve at reasonable SINR values only when .

B. Real Data

The aim of this section is two-fold. First, we study the CFAR
behavior of the introduced detectors in the presence of live sym-
metric clutter data which might also deviate from the receivers
design hypotheses, then we assess their detection performance.
To this end, we exploit the MIT-LL Phase-One radar dataset,
which contains land clutter and refers to different bands, polar-
izations, range resolutions, and scanning modes. Each data file
is composed of temporal returns from range cells which
are stored in an complex matrix. Further details on the
description of the dataset can be found in ([39], and references
therein).

Fig. 7. versus SINR for the SS-AMF, the I-GLRT, the SS-RAO, the
I-WALD, Kelly’s GLRT, the AMF, and the RAO assuming

, and .

Fig. 8. versus SINR for the SS-AMF, the I-GLRT, the SS-RAO, the
I-WALD, Kelly’s GLRT, the AMF, and the RAO assuming

, and .

Let us begin with the CFAR analysis and set the threshold of
the receivers to return assuming spatially homoge-
neous white Gaussian clutter. These thresholds are exploited to
evaluate the actual when the detectors operate in the pres-
ence of measured clutter data. The procedure we adopt to select
the primary and secondary data employed for computing a real-
ization of the decision statistics is pictorially described in Fig. 9,
where the primary cell is denoted by and the set of secondary
data is composed of cells ( even) whose number ranges
from to and between and . In
other words the training set contains the returns from the cells
on the left of and the returns from the cells on the right of
the cell under test. The data window is slided in
both time and space until the end of the dataset. By doing so, the
total number of different data windows is

coinciding with the number of trials available to
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Fig. 9. Data selection procedure for the CFAR analysis.

TABLE I
FOR AND THREE VALUES OF

estimate the actual . Otherwise stated, for each data window,
we perform the four statistical tests and, for each of them, we
count the number of false alarms . The actual false alarm
probability, say, is thus evaluated as

where denotes the number of false alarms resulting
when , namely when the cell under test is the -th range
bin.
As to the temporal steering vector, is chosen equal to 0 Hz

in order to simulate a very challenging condition of a possible
target in deep clutter. The results are reported in Table I for both
HH and VV polarimetric channels. They show that for
the I-GLRT, the SS-AMF, the I-WALD, and the SS-RAO nom-
inally behave in terms of , while as increases all the re-
ceivers exhibit a slight mismatch between and the nominal

. Notice also that the VV channel is higher than the
HH one for all the considered experiments on real data. This
could be practically justified observing that the reflectivity on

Fig. 10. versus SINR for the SS-AMF, the I-GLRT, the SS-RAO, and the
I-WALD assuming ; performance are evaluated
on MIT-LL Phase-One radar dataset. (a) HH Polarization, (b) VV Polarization.

the HH polarization is usually a few dB lower than that on the
VV channel (see Chapter 5 of [32]).
Finally, the curves versus the SINR obtained using the live

dataset are shown in Figs. 10 and 11. They agree with the hier-
archy observed on simulated data with the I-GLRT providing
the best performance.

V. CONCLUSION
We have devised four different decision schemes which take

advantage of some spectral properties of the clutter usually
arising in a ground clutter environment. Specifically, at the
design stage we have assumed an interference PSD real and
even with the consequence that the resulting covariance matrix
is real. This seemingly minor feature reduces the number of
unknowns and allows to recast the problem at hand in terms of
statistically independent and real quantities that can be suitably
exploited for estimation purposes. As a matter of fact, the
architectures devised under the above assumptions are capable
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Fig. 11. versus SINR for the SS-AMF, the I-GLRT, the SS-RAO, the
I-WALD, Kelly’s GLRT, the AMF, and the RAO assuming

; performance are evaluated on MIT-LL Phase-One radar
dataset. (a) HH Polarization, (b) VV Polarization.

of guaranteeing reasonable detection performances also in
sample-starved scenarios. The applied design criteria are the
Rao test, the two-step GLRT, and suboptimum modifications
of both the plain GLRT and the Wald test. Remarkably, these
suboptimum procedures rely on an alternating estimation al-
gorithm for the target response that ensures quality guarantee.
Additionally, we have shown that the estimates provided by the
above algorithm are asymptotically equivalent to the maximum
likelihood estimates. In order to prove the effectiveness of this
approach, the numerical examples shown in Section IV make
use of both simulated data and live recorded data. More
precisely, we have resorted to the MIT-LL Phase-One radar
dataset, which contains land clutter. The analysis has high-
lighted the superiority of the newly proposed architectures over
the conventional detectors which do not capitalize on the real
and even PSD of the clutter. It is also important to remark that
the performances on live recorded data are in agreement with
those obtained on simulated data.

Future research tracks might concern the extension of the pro-
posed framework to the case of heterogeneous ground clutter,
where the interference in primary and secondary data share the
same covariance structure but different power levels. Finally,
it could be of interest conceiving an automatic spectrum ana-
lyzer that is capable to establish whether or not the clutter spec-
trum shares symmetry properties. Then, according to the clutter
properties, this decision scheme triggers either a conventional
receiver or a newly proposed architecture.

APPENDIX A
DERIVATION OF (8)

In order to find the stationary points of

(32)

we observe that, since the natural logarithm, say, is an in-
creasing function of the argument, the following equality holds
true: ,
where

(33)

In addition, the test

(34)

is statistically equivalent to

(35)

Now, set to zero the gradient of to obtain the fol-
lowing system of equations

(36)

It is not difficult to show that the solutions of the above system
are

(37)

(38)

which replaced in (33) yields

(39)
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APPENDIX B
PROOF OF PROPOSITION 1

can be written in terms of
, and as follows

where and
. Observe that is continuous and

is given by the ratio between the determinant of two positive
definite matrices. As a result, it is strictly positive, namely

. Now, exploit the Schwartz
inequality to show that

(40)

(41)

(42)

(43)

(44)

(45)

where the inequality between (43) and (44) is due to the fact that
.

As next step, let us define
and
, and observe that

. It is clear that and
. Gathering the above results yields

, where . Thus,
by definition, is a coercive or radially unbounded
function.

APPENDIX C
EXPRESSIONS OF THE COEFFICIENTS FOR (18) AND (20)
The coefficients of (18) are give by

(46)

where

(47)

The calculations to obtain the real coefficients of (20) are
analogous to those used for the coefficients of (18) and lead to

(48)

(49)

(50)
(51)

where

(52)

APPENDIX D
PROOF OF PROPOSITION 2

Our goal is to compute a stationary point of
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which is a continuous, coercive, and strictly positive function
of . It follows that it admits the global minimum
and the gradient of evaluated at this point is zero.
According to Algorithm 1 and assuming that is known,

it is clear that (by construction) the estimates
, fulfill the following inequality chain:

. Thus, we have obtained a non-negative (or lower bounded)
and decreasing sequence , which
is thus convergent to a finite limit, i.e.,

(53)

Due to the continuity of in , it is possible to build
a set defined as follows

and, in addition, by the Weierstrass the-
orem on bounded sequences [40] and (53), there exists a con-
vergent subsequence of that must have limit belonging to
. As a matter of fact, denote by , the convergent

subsequence extracted from and consider the subsequence,
say, of induced by . Now, since is regular, then

every subsequence extracted from it is regular and converges to
the same limit. As a consequence, it is possible to extract from

a subsequence , converging to .
As a final step, we prove that is a stationary

point for . To this end, denote by the minimum of
, namely

(54)

and observe that, since is coercive, .
Now, recall that is a convergent
subsequence extracted from and apply Algorithm 1 as-
suming as initial point, then we obtain that

.
Since is decreasing, it follows that
and, hence, the above chain of inequalities continues
as follows

, which, for , becomes
. Exploiting (54) in conjunction with

the last equation yields .
Moreover, since is continuous and differentiable
with respect to , it is clear that

(55)

Following the same line of reasoning, it is not difficult to show
that

(56)

Notice that (55) and (56) can be written in a more compact form
using the gradient operator

(57)

which implies that is a stationary point of
.

APPENDIX E
DERIVATION OF THE RAO TEST

As first step, we denote by the natural logarithm
of the pdf of and under , namely

(58)

It is not difficult to show that

(59)

(60)

Thus, we can write

(61)

Now, let us focus on the Fisher information matrix and exploit
(59) and (60) to evaluate

(62)

As a final step towards the derivation of the Rao test, we only
need to notice that

(63)

(64)

(65)

(66)
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As a consequence, (28) simplifies as

(67)

and, hence,

(68)

Using the above equation in conjunction with (61) leads to the
final expression of the Rao test statistic

(69)
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