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Cross Array and Rank-1 MUSIC Algorithm for
Acoustic Highway Lane Detection
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Abstract—A vehicle emits sound as it travels along the road,
which can be used as a kind of robust feature for traffic moni-
toring. In this paper, an acoustic-based lane detection approach is
introduced for a multilane traffic monitoring system. First, a mi-
crophone array is designed according to a typical Chinese highway
configuration. The design is based on the cross-array structure,
and the cross-correlation matrix from the two subarrays in the
selected working frequency band is calculated for the subsequent
traffic monitoring operations. Then, a cross section across the
road is constructed by beamforming, in which the single-source
assumption can be applied, and the passing vehicle azimuth is
detected by the proposed rank-1 Multiple Signal Classification
(MUSIC) algorithm. Finally, a Parzen-window-based technique
is proposed to estimate the vehicle azimuth probability density
function (pdf) from the individual azimuth observations. Lane
centers and boundaries can be revealed from the peak and valley
patterns of the estimated pdf. A prototype traffic monitoring
system is developed, and several lane detection approaches are
compared in both simulated and real-world environments in the
developed system framework. The experimental results exhibit the
efficiency of the proposed approach.

Index Terms—Traffic monitoring, microphone array, beam-
forming, direction-of-arrival estimation, lane detection.

I. INTRODUCTION

IN modern intelligent transportation system (ITS), a large
amount of traffic monitors are distributed in the road net-

work, so that real-time traffic statistics can be collected by the
control center, which will be further used for flow control and
dynamic planning. As the “eyes” and the “ears” of the con-
trol center, these monitoring devices are the essential building
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blocks of the ITS. Developing more reliable and accurate traffic
monitoring techniques will facilitate road condition, improve
public safety, and reduce transportation cost [1].

Various kinds of traffic monitoring techniques are developed
for different road conditions and environments. Among them,
the induction loop has been used for more than fifty years [1],
however, this in-pavement device suffers from high installation/
maintenance cost [2]. Modern non-invasive traffic monitoring
techniques can be roughly classified into two categories: active
and passive [2]. Active approaches mainly based on laser, in-
frared, radar [1], ultrasound, and other techniques. This type of
devices detects vehicles by transmitting a signal and detecting
its reflection. On the other hand, passive approaches, such as
video, passive infrared, magnetic sensors [3], as well as acoustic
based monitors [2], [4], perform vehicle surveillance by the
reflected (visible light), or the emitted signal (infrared, sound,
etc.) from vehicles.

This paper describes an acoustic based lane detection ap-
proach, which is the first step for constructing a multi-lane
acoustic traffic monitoring system. Compared with other ap-
proaches, acoustic based systems have many advantages: First,
acoustic sensor (microphone) is much less expensive than other
types of sensors [4], so, the total hardware cost can be reduced.
Second, acoustic features are very robust against whether, light,
and environmental variations [2], which guarantees the reliabil-
ity of the traffic data. However, there also have some difficulties
to build an acoustic traffic monitoring system: Since the sound
wavelength used for vehicle detection has the magnitude of
centimeters, the resolution of acoustic based devices is limited
under the restriction of acceptable aperture size [5]. Moreover,
in addition to the vehicular sound,1 there are still many other
sounds and noise in an open-air environment, i.e., multi-source
and noisy signals should be processed. How to robustly detect
vehicles in a complex environment is a challenging task for
acoustic traffic monitoring.

There have many researches been conducted for acoustic
vehicle detection and traffic monitoring. For example, in [6],
a uniform linear array (ULA) with four microphones is used
for vehicle approaching detection in T-intersection roads to
prevent traffic accidents. A cross correlation based method is
used for sound source localization in this paper. In [7], two
microphones with optimized inter-sensor distance are used to
collect vehicular sounds, then, the generalized cross correlation
functions and particle filters are used to estimate vehicle speed

1In this paper, since the vehicle emitting noise signal is of interest, here we
use “vehicular sound” to distinguish it from the common use of “noise” for
undesired interference.
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and wheelbase length. In [8], a microphone array is designed
with four subarrays located in its up-down road and cross
road directions. Signals within subarrays are first summed
together as zero-degree delay-and-sum (DS) beamforming [9]
for enhancement purpose. Then, cross correlations between the
enhanced up-down road and cross road subarray pairs are cal-
culated for vehicle detection. Since two perpendicular scanning
directions are adopted, vehicles in different lanes can be distin-
guished in this system. Cross correlation based methods detect
vehicles via the time difference of arrival (TDOA) of sounds
among different microphones. Although high performance can
be achieved by this class of methods in single sound source
cases, the cross correlation spectrum will get more confused
as the number of sources increases [9]. Therefore, the three
preceding approaches are suitable in light and moderate traffic
flow environments.

In addition to the TDOA based approaches, a single micro-
phone approach is proposed in [4] for traffic density state esti-
mation, which classifies the road condition into free, medium,
and jammed traffic flows according to the collected vehicular
sounds. Although this approach is suitable for crowded city
roads, it cannot perform line-wise traffic monitoring, accurate
vehicle counting, and speed estimation. The work in [10] is
another single microphone approach for vehicle monitoring.
In this work, different mathematical and physical models are
established to estimate different vehicular parameters, such as
speed, wheelbase length, and tire track length. However, the
complexity of these models prevents its application in multi-
vehicle conditions. A commercial acoustic multi-lane highway
monitoring system can be found in [2]. This system is based
on the beamforming [11] technique, up to five lanes can be
simultaneously managed, traffic quality measuring indices such
as vehicle count, average speed, and lane occupancy, can also be
derived. However, this system uses a rectangular array, which
contains many array elements, so the total hardware cost is still
high.

Lane detection is very important for multi-lane traffic moni-
toring, since the accuracy and robustness of the detected lanes
will directly affect the following traffic indices calculation.
In this paper, an acoustic highway lane detection approach
is proposed. This approach is based on the famous MUSIC
(MUltiple SIgnal Classification) algorithm [12]–[15], which
first detects the direction of arrival (DOA) of passing vehicles,
then, estimates lane positions by the cumulated DOA statistics.
Our contributions in this paper are: (1) a microphone array
is designed for traffic monitoring; (2) the rank-1 MUSIC al-
gorithm is derived for real-time vehicle detection, which has
higher angular resolution and lower computational complexity;
(3) a lane detection algorithm which detects lanes from vehicle
DOA statistics is presented. The rest of this paper is organized
as follows: In Section II we briefly introduce the basic concept
of acoustic traffic monitoring and the idea of microphone array
design. In Section III the rank-1 MUSIC algorithm for vehicle
detection is depicted, then, the method for lane center and
boundary detection is given in Section IV. Experiments and
comparisons are conducted in Section V to show the effective-
ness and performance improvement of the proposed approach.
At last, we conclude this paper in Section VI.

The frequently used notations in this paper are listed below
for easy reference.

1. Italic lowercase letters denote scalars, boldface italic low-
ercase letters denote column vectors, and boldface italic
uppercase letters denote matrices, e.g., a, a, and A.

2. Superscripts ∗, T , and H denote complex conjugate,
matrix and vector transpose, and conjugate transpose,
respectively, AH = (AT )

∗
= (A∗)T .

3. Commas separate values within rows, e.g., a = [a1, a2]
T .

4. The source signal, the array collected signal, and the
beamforming output are denoted by the letters s, x, and
y, respectively.

5. Indices m and n denote array element index and source
index, respectively. There are M array elements and N
sources in the model.

6. Subscripts h and v denote the horizontal and the vertical
subarray in the cross array, which have Mh and Mv

elements, respectively.
7. Subspaces are denoted as boldface italic uppercase hand-

written letters, e.g., S and E for signal and noise sub-
spaces.

II. MICROPHONE ARRAY DESIGN

A. Fundamentals of Acoustic Highway Traffic Monitoring

As depicted in Fig. 1, the acoustic monitor is installed on the
existing roadside structure with its normal direction pointing to
the road center. Vehicle emits sound (consists of engine noise,
tire noise, exhaust noise, air turbulence noise, etc. [4], [10])
when it travels along the road. The sound is captured by the
acoustic monitor, and then analyzed for vehicle detection and
traffic monitoring. It is unnecessary to calibrate the monitor’s
normal direction carefully in the installation, as the relative lane
positions can be automatically detected by the lane detection
algorithm.

The basic idea of acoustic traffic monitoring is utilizing
beamforming techniques [5], [11], [16] to form multiple
“detection zones” in different look directions. Because of the
spatial filtering property [11] of the beamforming, incoming
vehicular sounds other than the array look direction will be
attenuated by the algorithm. Then, the resulted signal energy
can be accumulated to determine the presents or absences of a
vehicle in a detection zone, which can be further used for traffic
monitoring. Different detection zones with different shapes,
widths, and positions are formed for different purposes. Fig. 2 is
the top view of Fig. 1, the monitor operates from a “sidefire”
position. There are two kinds of detection zones constructed:
fine detection zones (red ellipses) and coarse detection zones
(green ellipses). Fine detection zones are used to detect lanes,
they have smaller widths and fixed positions. Multiple fine
detection zones are concatenated to form a cross section across
the road. Once a vehicle passes through this cross section, its
azimuth will be detected by the algorithm in Section III, and
lane positions will be estimated by the algorithm in Section IV.
On the other hand, coarse detection zones are used for lane-
wise traffic monitoring. The width of a coarse detection zone
covers an entire lane, and each lane is managed by multiple
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Fig. 1. Acoustic highway traffic monitoring. The lengths are in centimeters, and the angles are in degrees. The lane width is 375 cm. We suppose that the monitor
is used for one-side traffic monitoring, so, the monitor’s normal direction is pointing to the road center of the up-road direction.

Fig. 2. Coordinate system and detection zones. The angles are in degrees.

(at least two) coarse detection zones. Basic measuring indices
which reflect the road condition and traffic quality, such as
vehicle count and lane occupancy can easily be derived by
counting the number and the detection time of passing vehicles.
In addition, vehicle speed and vehicle size (small vs. large) can
be estimated from the vehicle detection time differences among
coarse detection zones in the same lane [3]. Since the observed
lane positions may change with weather, temperature, and
traffic conditions, the positions and widths of coarse detection
zones are adaptively updated in the monitoring procedure.

A two dimensional coordinate system is required for multi-
lane traffic monitoring. Here we suppose the monitor is
mounted far enough from the sound sources, so that the far-field
model [16] can be applied. The DOA of a sound source in far-
field model is described by two parameters: azimuth (ϕ) and
elevation (θ) in spherical coordinate system. The coordinate
system used for vehicle detection is also depicted in Figs. 1 and
2, where the monitor is facing down to the road. Since direc-
tions behind the monitor are not required, the azimuth here
ranges from −90◦ to 90◦, with 0◦ at the normal direction. Please

Fig. 3. Rectangular array and corresponding cross array. In this figure, the
array is facing to the reader, so, the azimuth is reversed compared with Fig. 2.

note that the four-lane highway architecture used in this paper
is only for demonstration purpose, the proposed algorithm can
easily be configured to manage more than four lanes.

B. Rectangular Array vs. Cross Array

A planar array is required for two dimensional source local-
ization. Instead of the rectangular array topology used in the
system of [2], the cross array structure is used in this paper, as
shown in Fig. 3. Both the rectangular and the cross array use the
uniform element spacing scheme, however, the horizontal and
the vertical spacing dh and dv are different.

The signal model in (1) [13] is used to compare the two array
topologies, where s = [s1, . . . , xN ]T and x = [x1, . . . , xM ]T

are the source and the collected narrow band signals with
the central frequency equals to f , e is the noise term, A =
[a1, . . . ,aN ] is the mixing matrix, and an = [a1n, . . . , aMn]

T

is called the steering vector of source n. In far-field model, amn

can be given by equation (2), where j =
√
−1, c is the wave

propagation speed (340 m/s for sound in the air), dn is an unit
vector indicating the look direction of source n, and rm is the
mth array element position relative to the phase center. Both
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dn and rm are in the three dimensional Cartesian coordinate
system [5], [11], [16].

x = As+ e (1)

amn = exp

(
j2πf

dT
nrm

c

)
(2)

For the rectangular array, the beamforming output yr can be
calculated according to (3), where w is called the beamformer,
which can be designed by different beamforming algorithms
[11], [17] for different signal enhancement requirements.

yr = wHx (3)

In acoustic traffic monitoring, signal energy of the array out-
put should be accumulated for vehicle detection. Substituting
the signal model (1) into (3), and supposing different sources,
sources and noise are uncorrelated, the output energy can be
depicted in (4)–(6), where E{·} for expectation, Crx and Cre

are the signal and noise correlation matrix of the rectangular
array, σ2

n = E{sns∗n} is the power of source n.

Crx =E{xxH} (4)

Cre =E{eeH} (5)

E{yry∗r} =wHCrxw

= |wHa1|
2
σ2
1 + · · ·+ |wHaN |2σ2

N +wHCrew
(6)

Supposing the DOAs of different sources are different, when
the beamformer w is steered to the look direction of source
n, only the |wHan|2σ2

n term in (6) has significant value,
so, source n is enhanced. In an open-air environment, the
noise vector e in (1) consists of sensor noise, environmental
noise, and many other vehicular sounds far away in different
directions, i.e., the diffuse noise model [18], [19] should be
considered. The result is that the noise correlation matrix Cre

usually has full rank, which increases the difficulty of the
vehicle detection problem [13].

On the other hand, as shown in Fig. 3, cross array [20]–[22]
is made up of two perpendicular ULAs, which are referred to
the horizontal and the vertical subarray in this paper. The two
subarrays can share the same phase center if they both have odd
number of elements. Two different beamformers can be used to
manipulate the two subarrays, as shown in equation (7) and (8).

yh = wH
h xh (7)

yv = wH
v xv (8)

Cross array is also called multiplicative array [22], since the
energy accumulation of the array is just the cross correlation of
its two subarray’s outputs. Here we omit the tedious mathemat-
ical proof, and give the conclusion that, in far-field model, the
output of the cross array can be depicted in the form of (9)–(11)

[23], whereCcx andCce are the signal and the noise correlation
matrix of the cross array.

Ccx =E{xhx
H
v } (9)

Cce =E{eheHv } (10)

E{yhy∗v} =wH
h Ccxwv

=wHa1σ
2
1 + · · ·+wHaNσ2

N +wH
h Ccewv (11)

Comparing equation (11) with equation (6), we can find
that they have very similar form: Both arrays utilize the inner
product between the beamformer and the steering vector of the
original rectangular array for signal enhancement. This means
that for signal power estimation tasks, the cross array can
approximate the performance of the corresponding rectangular
array in theory, however, with much fewer array elements [22]!

To reduce the hardware cost, meanwhile maintaining the
array performance, the cross array scheme is adopted in our
system. After the collected time domain acoustic signals are
transformed to frequency domain by short-time Fourier trans-
form (STFT) [24], the correlation matrix can be approximated
according to (12), where Δτ is the selected STFT frame index
interval, [f1, f2] is the working frequency band interval, which
should be chosen fmin < f1 < f2 < fmax. The lower and up-
per bound fmin and fmax will be determined in the following
two subsections. When f2 − f1 is not too large, the data can still
be considered as narrow band signals with the central frequency
f = (f1 + f2)/2.

Ccx ≈
∑

f∈[f1,f2]

∑
τ∈Δτ

xh(f, τ)x
H
v (f, τ) (12)

Finally, the energy q of the cross array can be calculated
according to (13). In addition to the benefit of cost reduction,
there still have other advantages of this approach. First, the
beamformer designing problem is decoupled into two indepen-
dent and smaller problems in (13), which gives the system ad-
ditional flexibility. Second, once the elevation of a cross section
is chosen, the vertical beamformer wv is fixed. Then, different
horizontal beamformers wh(ϕ) for different ϕ can be designed
directly from the vertically preprocessed data z in (14), which
reduces the complexity of cross section construction. To over-
come the enormous variations of the environmental noise, the
DS beamformer with Dolph-Chebyshev taper [25] is used as
the vertical beamformer in our system. Third, multiple coarse
detection zones within ϕ ∈ [−90◦, 90◦] and θ ∈ [−δ, δ] can be
established upon the single correlation matrix Ccx. One coarse
detection zone can be considered as one “virtual sensor” on the
road. Constructing multiple (possibly more than two) coarse
detection zones for each lane may improve the monitoring
accuracy, while no additional physical sensors are required.

q(ϕ) =
∣∣wH

h (ϕ)Ccxwv(θ)
∣∣2 =

∣∣wH
h (ϕ)z

∣∣2 (13)

z = Ccxwv(θ) (14)

Although the rectangular array is more robust than the cor-
responding cross array since more array elements are used,
it has higher cost and lower flexibility. In the rectangular
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TABLE I
LANE LOOK DIRECTIONS (DEGREE)

array scheme of [2], time domain signals are summed together
according to the array’s columns before STFT to reduce the
complexity of the horizontal beamformer design. Column-wise
summation is equivalent to the DS beamforming at θ = 0◦,
which also means that the system can only generate detection
zones at θ = 0◦. To construct two different detection zones per
lane for vehicle speed estimation, the system in [2] accumulates
two correlation matrices in different frequency bands to form
two nested detection zones. Comparing the approach in [2] with
the cross array approach in (13), vehicle traveling directions
(up-road vs. down-road) cannot be distinguished by two nested
detection zones, and an additional correlation matrix is required
to form a new detection zone. Moreover, it cannot construct
detection zones different from θ = 0◦.

C. Array Resolution and Working Frequency Lower Bound

A typical Chinese four-lane highway structure is given in
Fig. 1. Supposing the height of the monitor is 1000 cm, then,
the look directions of lane centers and boundaries can easily
be derived, which are listed in Table I. To perform multi-
lane traffic monitoring, vehicles in adjacent lanes should be
distinguished by the system, so, the angular resolution require-
ment can approximately be estimated as the look direction
differences between adjacent lane centers, which are 14.5◦,
15.8◦, and 5.3◦ between lane 1–2, lane 2–3, and lane 3–4, re-
spectively. Since the system is used in highway environment, it
can be assumed that the distance between adjacent vehicles in
the same lane is large enough when the traffic is not congested.
Therefore, the array resolution in the up-down road direction
is automatically fulfilled once the resolution requirement in the
crossroad direction is reached.

When the wave propagation speed is fixed, the beam width2

(main lobe width) of beamforming algorithms is related to the
array aperture size and the signal frequency [5], [16]. Larger
aperture size and higher frequency result in sharper beam. For
practical usage, the monitor size should keep small enough
for easy installation, so, it is fixed at about 20 cm (crossroad
direction) × 30 cm (up-down road direction) in the array
designing procedure. Although the aperture size is limited, the
frequency range of vehicular sound extends from near 0 Hz to
16 kHz, with significant energy at the lower frequencies [2],
which enable us to select a proper frequency band to meet the
angular resolution requirement.

The DS beamforming is a classical algorithm, in which
signals from different array elements are time delayed and

2In some literatures, beam width refers to the angle between the half power
(−3 dB) points of the main lobe. However, in this paper, we follow the
definition in [9], which refers beam width to the region between the first zero-
crosses on either side of the main lobe (Fig. 4).

Fig. 4. Resolution of the DS beamforming.

TABLE II
WORKING FREQUENCY LOWER BOUNDS (l = 20 cm)

summed together to enhance the signal from a certain direction
[9]. Although the DS algorithm doesn’t have the sharpest beam,
its beam with b can analytically be expressed in equation (15)
[9], which can be used to theoretically estimate the working
frequency lower bound in our problem. Since the cross-road di-
rection needs to be considered, the horizontal subarray aperture
size l is needed in (15).

b = 2 arcsin

(
c

lf

)
(15)

The resolution of a beamformer describes its ability to
distinguish signals coming from two directions close to each
other [16]. The Rayleigh criterion [26] states that two directions
can be just exactly resolved from the observed energy spectrum
when the peak of source 1 falls on the first null of source 2, as
depicted in Fig. 4. According to the preceding formulation, for
the highway structure in Fig. 1, the working frequency lower
bound fmin to distinguish vehicles in different lanes can be
solved from (15), as given in (16), where a = b/2 is the angular
resolution, i.e., look direction difference of two adjacent lane
centers.

fmin =
c

l sin(a)
(16)

According to (16), the fmins to distinguish each pair of adja-
cent lanes are given in Table II. These parameters will be used
in the next subsection to guide the microphone array design.

D. Array Element Spacing and Working Frequency
Upper Bound

Another issue should be addressed in sensor array design is
the spatial aliasing problem. The spatial sampling theorem in
equation (17) [5] tells us that the horizontal subarray element
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TABLE III
CROSS ARRAY DESIGNS (l = 20 cm FOR RESOLUTION CALCULATION)

spacing dh should smaller than the half of the minimum wave-
length λmin in the signal of interest to perform the full scan
in ϕ ∈ [−90◦, 90◦]. Equation (17) also gives us the basic rela-
tionship between dh and the working frequency upper bound
fmax.

dh <
λmin

2
=

c

2fmax
(17)

However, in the highway monitoring problem in Fig. 2,
vertical beamformers only need to be steered within a small
elevation range θ ∈ [−δ, δ] (δ = 3◦ in our experiment) to form
vertically separated detection zones. According to the basic
array signal processing theory, the first pair of grating lobes
(spatial aliasing) appears at θg = ±90◦ when the look elevation
θ = 0◦ and dv = λmin. However, signal energy is negligible
at θg ≈ ±90◦ since vehicles are far away from the monitor.
Therefore, the spatial sampling theorem in (17) can be relaxed
to (18) for the vertical subarray, which further reduces the
number of required array elements.

dv < λmin =
c

fmax
(18)

Under the constraints in Table II, equation (17) and (18),
several cross array schemes are derived in Table III, where
Mh, Mv, and M are the element number of horizontal subarray,
vertical subarray, and the total array, respectively.

In Table III, the array resolution increases with fmax, how-
ever, the number of required array elements also increases.
Compared with Table II, if the DS beamforming is used, all
schemes in Table III can distinguish lane 1, 2, and 3, which is
enough for one-side monitoring, however, only the last one can
distinguish all four lanes in Fig. 1.

Finally, the scheme no. 5 in Table III is chosen for our
prototype system, as it has moderate cost and sufficient res-
olution margin, which enable us to further select the proper
working frequency band and optimize the array topology in
experiments. In the next section, we will introduce the rank-1
MUSIC algorithm, which can also distinguish all four lanes in
the simulation because of its super directivity property.

III. THE RANK-1 MUSIC ALGORITHM

A. MUSIC Algorithm Revisited

Supposing there are fewer sources than sensors (N < M),
the signal model in (1) implies that, the source component As

resides in the N dimensional subspace S of the M dimensional
observation space. Subspace S is spanned by all source steering
vectors, as depicted in (19) [13].

S = span{A} = span {[a1, . . . ,aN ]} (19)

Let us denote the noise subspace E as the orthogonal comple-
ment (denoted by the superscript ⊥) of S, which is spanned by
some basis vectors u1, . . . ,uM−N :

E = S⊥ = span{U} = span {[u1, . . . ,uM−N ]} (20)

According to the orthogonality, the null directivity patterns
can be formed when the steering vector a(ϕ) is steered to the
source DOAs, as shown in (21), where ϕn represents the look
direction of an.

UHa(ϕ) = 0, ϕ ∈ {ϕ1, . . . , ϕN} (21)

Equivalently, the MUSIC spectrum is defined in (22), which
has peaks at source DOAs [13]. Although only the azimuth is
used in the derivations in (21) and (22), the algorithm can easily
be extended to the two dimensional case which contains both
azimuth and elevation.

q(ϕ) =
1∣∣UHa(ϕ)

∣∣2 (22)

It is essential for MUSIC to accurately identify S⊥ =
span{U}. In the signal model of (1), when the noise term e is
not salient, U is usually obtained via the eigenvalue decompo-
sition (EVD) of Cx = E{xxH}, by assigning u1, . . . ,uM−N

to the eigenvectors corresponding to Cx’s M −N smallest
eigenvalues [13].

There still have some practical issues to be addressed for the
usage of the classical MUSIC algorithm. First, the number of
sources N , which is usually unknown in real-world applica-
tions, should be estimated correctly in order to select the proper
number of basis vectors to span the noise subspace. Second, the
EVD operation has the time complexity of O(M3), which is
not suitable for real-time DOA estimation.

B. The Rank-1 MUSIC Algorithm for Vehicle Detection

The effect of the vertical beamformer in equation (14) is
forming a cross section across the road, so that the sound
outside this cross section will be attenuated. This effect can be
revealed by equation (23), which is derived by substituting the
signal model in (1) into the horizontal and vertical subarray data
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xh and xv , then, substituting the results into (9) and (14), where
ahn and avn are the horizontal and the vertical steering vectors
of source n.

z = σ2
1ah1a

H
v1wv + · · ·+ σ2

NahNa
H
vNwv +Ccewv (23)

For highway environment, there is a great chance that a cross
section is occupied by only a single vehicle at a time when the
traffic is not congested. Without loss of generality, supposing
source 1 is in the cross section, which means that only the first
term on the right hand side of (23) has significant value. So, the
cross section data z can be reformulated to (24), where r is a
residual term.

z = σ2
1ah1a

H
v1wv + r (24)

r = σ2
2ah2a

H
v2wv + · · ·+ σ2

NahNa
H
vNwv+Ccewv (25)

Under the single source assumption, the vehicle detection prob-
lem in our application can be simplified to a single source az-
imuth estimation problem from the cross section data z in (24).

From the subspaces perspective introduced in the preceding
subsection, it is easy to see that the signal subspace in (24) is
spanned by only one vector ah1. According to the fundamental
subspaces theorem [27] in linear algebra, the noise subspace E ,
which is the orthogonal complement of the signal subspace S,
can be found as the null space of zH if the diffuse noise is not
salient, as depicted in (26), where N(·) for null space.

E = span⊥(z) = N(zH) (26)

According to the definition of null space [27], the basis vectors
u which span the subspace N(zH) can be found by solving the
linear equation in (27).

zHu = 0 (27)

Since there are Mh − 1 free variables in (27), the subspace
N(zH) can be spanned by Mh − 1 vectors u1, . . . ,uMh−1

with the format in (28). And u1m, m ∈ {1, . . . ,Mh − 1} can
easily be derived by the closed-form solution in (29) and (30),
where re(·) and im(·) for the real and the imaginary part of a
complex number.

u1 = [u11,−1, 0, . . . , 0]T

u2 = [u12, 0,−1, . . . , 0]T

...
uMh−1 = [u1 Mh−1, 0, 0, . . . ,−1]T

(28)

re(u1m) =
re(z1)re(zm+1) + im(z1)im(zm+1)

re(z1)2 + im(z1)2
(29)

im(u1m) =
im(z1)re(zm+1)− re(z1)im(zm+1)

re(z1)2 + im(z1)2
(30)

Finally, the proposed rank-1 MUSIC spectrum can be derived
according to (31), where U = [u1, . . . ,uMh−1] is derived from
(28)–(30), and each scanning direction ϕ forms a fine detection
zone in Fig. 2. In addition to the vehicle azimuth, vehicle
approaching and leaving status are also required for vehicle
appearance decision. So, the numerator |z|, which represents

the energy in the principal subspace direction, is introduced to
control the spectrum amplitude in (31).

q(ϕ) =
|z|∣∣UHah(ϕ)

∣∣2 (31)

C. Theoretical Analysis

Comparing the rank-1 MUSIC algorithm in (14), (28)–(31)
with the original MUSIC algorithm in (22), we can find that the
rank-1 approach directly works on the cross section data in (14),
and the EVD procedure is not required. To further explain the
proposed algorithm, let’s reformulate the correlation matrix of
the original MUSIC algorithm in the single source case, which
yields equation (32), where x = a1s1 + e.

Cx = E{xxH} = σ2
1a1a

H
1 +Ce (32)

In (32), the signal term σ2
1a1a

H
1 is a rank-1 matrix. When

the diffuse noise term Ce is not salient, we will find by EVD
that the leading eigenvector v1 = a1, and other eigenvectors
v2, . . . ,vM are orthogonal to a1. Then, U = [v2, . . . ,vM ] can
be used by the original MUSIC algorithm in (22).

On the other hand, the correlation of the cross section data in
(24) gives us equations (33)–(35), where R is a residual term.

Z = zzH = σ4
1ε

2ah1a
H
h1 +R (33)

ε2 = aH
v1wvw

H
v av1 (34)

R = σ2
1ah1a

H
v1wv1r + rwH

v1av1a
H
h1σ

2
1 + rrH (35)

Comparing (32) with (33), if the EVD is performed on Z, and
the 2nd to the M th eigenvectors are used to span the noise
subspace, then, we can find that it is equivalent to apply the
original MUSIC algorithm on the horizontal subarray data.
That’s the reason why the proposed approach can estimate the
source DOA in the cross section. However, the noise subspace
can directly be estimated from the cross section data z by
(28)–(30), and no explicit EVD is required. In (33), the matrix
Z, which is used to theoretically estimate the noise basis, is a
rank-1 matrix, so, we name the proposed approach as the rank-1
MUSIC algorithm.

When there are multiple sources in the cross section, the
vector z can no longer be derived from (23) to (24), which
means that the signal and the noise subspaces cannot easily
be derived. However, if we still calculate the noise subspace
according to (28)–(30), the resulted subspace span(U) will
overlap with the signal subspace. This is because the dimen-
sion of span(U) is Mh − 1, and the dimension of the signal
subspace is greater than 1 in the multisource cases. Once the
two subspaces are overlapped, the orthogonality between U
and ah is destroyed, so, the spectrum in (31) yields negligible
response. Although the rank-1 MUSIC algorithm fails to detect
multi-sources, traffic monitoring will not be affected. This is
because lane positions are estimated from the vehicle DOA
statistics, a few of misses will not affect the lane detection
result. In addition, lane-wise traffic monitoring is carried out by
coarse detection zones in Fig. 2, instead of the lane detection
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algorithm. Multi-vehicles in different lanes will separately be
handled by the coarse detection zones in each lane.

As the conclusion to this section, we derive the computa-
tional complexity of the rank-1 MUSIC algorithm, and compare
it with several other DOA estimation approaches. To perform
fairly comparison, we suppose the correlation matrices are
already available. For the planar array approach in [2], since
the data in the same array columns are add together to form the
cross-road cross section, the resulted correlation matrix Cx has
the size of Mh ×Mh. While for the cross array approaches, the
correlation matrix Ccx is calculated according to (12), which
has the size of Mh ×Mv.

First, the DS approach in (36), which is used in [2] for lane
detection, takes the time complexity of O(M2

h) to calculate
the energy spectrum at the look direction ϕ. It’s cross array
version, which is described in (13), takes the time complexity of
O(MhMv). Since Mh > Mv holds in our cross array designs
in Table III, the complexity of (36) is slightly higher than (13).

q(ϕ) = aH
h (ϕ)Cxah(ϕ) (36)

The Capon-MVDR in (37) [28] is another frequently used
DOA estimation approach, which is also used in the lane-
wise vehicle detection module in [2]. To calculate the energy
spectrum in (37), the inverse of the correlation matrix should
be calculated first, which has the time complexity of O(M3

h),
so, the final time complexity of (37) is also O(M3

h).

q(ϕ) =
1

aH
h (ϕ)C−1

x ah(ϕ)
(37)

For the original MUSIC algorithm in (22), the noise subspace
is derived from the EVD of the correlation matrix Cx, so,
the time complexity is O(M3

h). While in the rank-1 MUSIC
approach, the cross section data z should be calculated first by
(14), with the time complexity of O(MhMv). Then, Mh − 1
basis vectors are calculated by (28)–(30), with the time com-
plexity of O(Mh). At last, the energy spectrum is calculated
by (31), with the time complexity of O(M2

h). So, the total time
complexity of the rank-1 MUSIC algorithm is O(M2

h), which is
just the same level as the DS approach used in the lane detection
module in [2]. However, from the experiments in Section V, we
will see that the rank-1 MUSIC algorithm has higher resolution
than the DS approach.

IV. PROBABILISTIC MODELS FOR AUTOMATIC

GAIN CONTROL AND LANE DETECTION

A. Automatic Gain Control (AGC)

Before extracting the vehicle azimuth from (31), an AGC
module is required to normalize the energy spectrum into the
interval of [0, 1], which is convenient for vehicle appearance
decision and data visualization (see Fig. 8). The amplitude
variation of the azimuth spectrum can be roughly classified
into two categories: If there is a vehicle in the lane detection
cross section, the spectrum will exhibit high amplitude, with
the peak reveals the vehicle azimuth. However, if there are no
vehicles passed by, the spectrum will stay in a relatively low
level. From the preceding analysis, the azimuth spectrum can

be normalized by (38), where ← means assignment, β is the
background threshold, which is used remove the background
noise response, and α is the foreground threshold, which is used
for the amplitude normalization, q̂ is current local maximum
which is given in (39). After the energy is normalized, a fixed
threshold γ (γ = 0.5 in our system) can be used to determine
the vehicle appearance in the lane detection cross section.

q ←

⎧⎪⎨
⎪⎩

0, q < β
(q−β)
(q̂−β) , q > α
(q−β)
(α−β) , otherwise

(38)

To automatically choose α and β, the amplitude variation
of the azimuth spectrum is modeled by its probability density
function (PDF), which is estimated by the Parzen window
technique [29] as follows. First, a local maximum q̂ of the
spectrum is selected by (39), where Δτagc is a local time
interval (e.g., no. of STFT frames corresponds to 2 seconds in
our system) before current time. The usage of local maxes is
learned from the AGC module in [2], which uses the average of
the local maxes as the normalization threshold. Since the local
maximum can roughly generalize the max response caused by
a single vehicle or caused by background noise, it is a good
approximation in the energy pdf estimation.

q̂ = max
ϕ∈[−90◦,90◦],τ∈Δτagc

q(ϕ, τ) (39)

As the time goes on, after a new local time interval is reached,
the Gaussian kernel used for Parzen window estimation is
constructed by (40), where σagc (σagc = 2 in our AGC module
according to the “three-sigma rule”) controls the window width.
The pdf of the azimuth spectrum is updated according to (41),
where ω (ω = 0.999 in our AGC module) is the forgetting
factor, which makes the pdf, as well as α and β, can be
adaptively adjusted with time.

g(q) =
1√

2πσagc

exp

[
− (q − q̂)2

2σ2
agc

]
(40)

p(q) ← ωp(q) + (1 − ω)g(q) (41)

Typical pdf estimated by (31), (39)–(41) has the bimodal
structure as shown in the example of Fig. 5, where the first
and the second modal stands for the energy distribution of
the background noise and the passing vehicles, respectively.
Obviously, after this pdf is estimated, α can be set to the value
corresponding to the second modal, and β can be set to the value
corresponding to the valley between the two peaks, as shown
in Fig. 5. Sometimes, when the traffic load is very heavy, the
bimodal pdf in Fig. 5 may degenerate to the unimodal structure
since there may always have vehicles in the lane detection cross
section. In this degenerated case, which is equivalent to the
local maxes averaging approach in [2], α can be set to the value
corresponding to the single peak of the curve, and β can be set
several dBs (6 dB is adequate) below α [2].

B. Lane Detection

Since vehicle usually travels along lane centers and seldom
crosses lane boundaries, the observed vehicle azimuths can
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Fig. 5. Typical pdf of the amplitude local maxes. This curve is derived from
real vehicular sound.

also be modeled by a probabilistic based approach. After the
corresponding pdf is estimated, lane centers can be detected as
the peaks of the pdf, and lane boundaries can be detected as
the valleys adjacent to the peak [1], [2]. Please note that the
detected lane positions do not necessarily have to be the same
as the physical lane look directions as illustrated in Fig. 1 and
Table I, also, they may vary with time due to the changes of
weather and traffic conditions [1].

A normalized power accumulation (NPA) based approach is
introduced in [1] and [2] to estimate the pdf from the observed
azimuth spectrums. The basic idea of this approach is shown in
(42), which has the similar idea as (41). In (42), p(ϕ) indicates
the azimuth pdf, q(ϕ) is the azimuth spectrum from (36),
then, normalized by (38). Meanwhile, max q(ϕ) > γ should be
fulfilled, which indicates the presents of a vehicle

p(ϕ) ← ωp(ϕ) + (1 − ω)q(ϕ). (42)

Although this approach works well in [1] and [2], it is not
suitable for the spectrum derived from (31). Because of the
super resolution property of the MUSIC algorithm, the resulted
spectrum usually contains sharp spikes at vehicle DOAs, in-
stead of bell-shaped peaks in [1] and [2]. It means that the
resulted pdf by (42) will not smooth enough for peak and valley
detection, as shown in Fig. 6(a).

Reconsider the output of the vehicle detection algorithm
in the previous section, the detected vehicle azimuths can be
considered as examples sampled from the underlying unknown
vehicle azimuth pdf. So, the Parzen window technique [29] can
also be used here to estimate the pdf from a finite number of
observed vehicle azimuths. The detailed steps are depicted in
(43)–(45), which are similar to (39)–(41). First, in (43), the peak
angle ϕ̂ is selected from the result of (31) as the vehicle DOA
(when max q(ϕ) ≥ γ is satisfied), then, the Gaussian window
is constructed according to (44), at last, the pdf is updated
according to (45)

ϕ̂ = argmax
ϕ∈[−90◦,90◦]

q(ϕ) (43)

g(ϕ) =
1√

2πσlane

exp

[
− (ϕ− ϕ̂)2

2σ2
lane

]
(44)

p(ϕ) ← ωp(ϕ) + (1 − ω)g(ϕ). (45)

Fig. 6. Comparison of the NPA based and the Parzen window based lane
detection approaches. The red curve is the estimated pdf, and different lanes
are detected and marked in different colors. Both approaches use the result of
(31) as the input, 150 vehicles are simulated in the environment of Fig. 1 for
the pdf estimation. (a) The NPA based approach. (b) The Parzen window based
approach.

In (44), the value of σlane can be derived from the minimal lane
width of the road environment. From Table I, σlane = 4.5/6 =
0.75 is used in our system according to the “three-sigma rule”
of the Gaussian function.

An example of detected lane positions by the Parzen window
based approach is given in Fig. 6(b). Compared with Fig. 6(a),
all four lanes in the simulated environment of Fig. 1 are clearly
detected in Fig. 6(b). After lanes are detected, the coarse detec-
tion zones in Fig. 2 can be constructed by existing beamforming
techniques. Please refer to [30] for the full acoustic traffic
monitoring system construction.

V. EXPERIMENT

All experiments are carried out on a prototype system devel-
oped in Java, as shown in Fig. 7. There are four main parts in the
system GUI: The table on the top shows the lane-wise statistical
information of the traffic flow, including vehicle type (large vs.
small), vehicle speed, vehicle count, average speed, and lane
occupancy. The acoustic traffic imaging (ATI) panel on the left
visualizes the response of the lane detection cross section, i.e.,
the normalized result from (31), (36), or (37). As the system
is running, the ATI is scrolling upward, with red spots entering
the ATI from the bottom, which reveal the high energy parts
caused by the passing vehicles. In all experiments, the scanning
azimuth ϕ ranges from −90◦ to 90◦, with Δϕ = 0.5◦. The lane
detection panel on the middle right shows the cumulated energy
curve or pdf curve used for lane detection. Lane centers are
marked as gray vertical lines, and different lanes are marked
in different colors. The detected lanes are also painted on the
ATI with the same colors. The lower right part of the GUI is
the vehicle response panel, which visualizes the responses from
different coarse detection zones. These curves are used for lane-
wise traffic monitoring.

Three DOA estimation approaches and two lane detection
approaches are mentioned in this paper, including the DS
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Fig. 7. The prototype system GUI.

approach in (36) [2], the MVDR approach in (37) [28], the
proposed rank-1 MUSIC algorithm in (31), the NPA based ap-
proach in (42) [1], [2], and the proposed Parzen window based
approach (PARZEN) in (43)–(45). In the following experi-
ments, three combinations of these techniques are compared,
including DS + NPA, MVDR + PARZEN, and MUSIC +
PARZEN.

A. Simulated Experiment

To perform comparison, a simulated highway environment
is established according to Fig. 1, and the array scheme no. 1
in Table III is used. One moving vehicle is simulated by
the Gaussian white noise with 20 kHz sampling rate. The
incident azimuth of the sound source is randomly sampled
from four Gaussians which are used to model the four lanes.
The parameters of the four Gaussians are derived according to
Table I. After the vehicle azimuth is chosen, the corresponding
elevation is varying from −90◦ to 90◦ for lane 1 and lane 2,
and from 90◦ to −90◦ for lane 3 and lane 4 during the
simulation, which simulates the up and down-road traveling
vehicles. In all simulations, two vehicles with different lanes
and different speed (elevation changing rate) are simulated
traveling simultaneously in the environment of Fig. 1. Ac-
cording to the environmental configuration, the look directions
of the four lane centers are: −7.9◦, 6.6◦, 22.4◦, and 27.7◦,
respectively.

First, Fig. 8 shows the single-vehicle ATI results from the
compared DOA estimation algorithms. In Fig. 8, we can see
that a simulated vehicle is visualized as a “blob” in the DS
approach, however, as a “line” in the MVDR and the MUSIC
approaches, which means that the latter two approaches have
much higher resolution than the first one. From the width of the
vehicle visualization, we can see that the proposed approach
has the highest resolution.

The high resolution property of the proposed approach can be
further demonstrated in Fig. 9. Fig. 9(a) gives the lane detection
result of the DS + NPA approach, the three peaks are detected
as: −8◦, 6.5◦, and 24.5◦. Comparing this result with the true
lane centers, we can find that lane 1 and lane 2 are correctly
detected within the error tolerance of Δϕ = 0.5◦. However,
due to the insufficient of the resolution, the algorithm cannot

Fig. 8. ATI of different DOA estimation approaches. (a) The DS approach.
(b) The MVDR approach. (c) The rank-1 MUSIC approach.

Fig. 9. Lane detection results of the DS + NPA approach and the MVDR+
PARZEN approach in the simulated environment. (a) The DS + NPA approach.
(b) The MVDR + PARZEN approach.

distinguish lane 3 and lane 4. Instead, the farthest two lanes
are incorrectly detected as one lane, with the center as the
average of them. Fig. 9(b) gives the lane detection result of the
MVDR + PARZEN approach. The four detected lane centers
are −7.5◦, 6.5◦, 22.5◦, and 28.0◦, respectively, which are in the
error tolerance of the true lane centers. The result of the MUSIC
+ PARZEN approach is shown in Fig. 6(b), and the same lane
centers are detected as the MVDR + PARZEN approach.

B. Real-World Experiment

The simulated experiment shows that the array scheme no. 1
in Table III, which has the lowest cost, is adequate for basic traf-
fic monitoring. However, the array scheme no. 5 is used in the
real-world experiment, in order to leave us enough resolution
margins for algorithm and array topology optimization. In real-
world experiment, the environmental parameters are almost the
same as Fig. 1, except that the road is six-lane bidirectional
highway, and the microphone array is mounted at the height
of 5.5 m, as shown in Fig. 10. Sound signals were collected
via a National Instruments (NI) PXIe system with three PIXe
4499 sound and vibration data acquisition cards (48 channels in
total). The sampling rate of 32 kHz was used, meanwhile, the
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Fig. 10. Real-world experimental environment. This photograph was taken in
the microphone array installation procedure.

Fig. 11. ATIs generated from real data. The signal length is 10 seconds, and
the same time window is used for all images. (a) The DS approach. (b) The
MVDR approach. (c) The rank-1 MUSIC approach.

developed prototype system was also deployed in the NI system
for real-time traffic monitoring.

Fig. 11 shows the ATI examples of the three compared DOA
estimation algorithms. The working frequency band of 6.5 to
7 kHz was used. Comparing the practical ATIs in Fig. 11 with
the simulated results in Fig. 8 we can find that, the visualiza-
tions are consistent for both the DS and the MUSIC approaches.
However, for the MVDR approach, the visualized vehicle spots
from the real data are much thicker than the simulation, which
means that the algorithm resolution degrades a lot. We deduce
that the reason is the lack of the vertical beamformer: In the
MVDR approach, DOA spectrum is calculated from the general
form of the correlation matrix in (4), the special topology of the
cross array cannot be utilized. Without the help of the vertical
beamformer in (14), sounds outside the lane detection cross sec-
tion cannot be attenuated before MVDR. Thus, the enormous
diffuse noise in the real highway environment will degrade
the algorithm performance [31], which can be understood as
using an array with finite degree of freedom to attenuate infinite
number of interferences.

The lane detection result of the proposed MUSIC +
PARZEN approach is shown in Fig. 12. We can see from

Fig. 12. The lane detection procedure in real-world experiment. (a) 50 vehicles
(3 minutes). (b) 100 vehicles (5 minutes). (c) 150 vehicles (7 minutes).
(d) (45 minutes).

Fig. 12 that after about 150 vehicles passed by, the resulted
vehicle azimuth pdf almost converges to the structure of four
peaks, i.e., four lanes are detected. According to the highway
configuration and the detected vehicle traveling directions, it
can be inferred that lane 1, 2, and 3 (blue, green, and yellow) are
the three up-road lanes, and lane 4 (pink) is a down-road lane
(or lanes, because of the phenomenon in Fig. 9(a)). We deduce
that there may be several reasons why only four of six lanes are
detected. First, the array resolution may still not high enough.
Second, sound energy from the farthest two lanes may be too
small to be detected. Third, the sound field may be jammed by
the sound barrier at the opposite side of the road, as shown in
Fig. 10. However, since the three up-road lanes are successfully
detected, the proposed system is adequate for one-side traffic
monitoring in the environment of Fig. 10.

In the developed prototype system, four types of traffic
quality measuring indices are derived, including vehicle count,
lane occupancy, vehicle speed, and vehicle type (large vs.
small). Real-world experiments have also been conducted to
compare the traffic monitoring accuracy between the audio
based approach and the video based ground truth. Please see
[30] for the detailed description.
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VI. CONCLUSION AND FUTURE WORK

Lane detection is the first step of multi-lane traffic monitor-
ing. This paper has proposed an acoustic based lane detection
approach, which can automatically detect lane positions and
widths from the vehicle emitting sounds. Compared with other
traffic monitoring techniques, acoustic based feature is robust
against light and weather variations, which is helpful for robust
traffic monitoring. In addition, acoustic sensor (microphone) is
relatively inexpensive than other traffic monitoring sensors like
camera and radar.

In order to perform acoustic based traffic monitoring, a
microphone array is designed according to a typical Chinese
highway configuration. The adopted array topology is based
on the cross array structure, which is suitable to form different
vehicle detection zones via beamforming algorithms. The cross
correlation matrix from the horizontal and the vertical subarrays
in the selected working frequency band is calculated for the
following lane detection and vehicle monitoring operations.

The proposed lane detection approach comprises of two
steps: First, forming a lane detection cross section, and detect-
ing the azimuths of passing vehicles; second, utilizing azimuth
statistics to find lane centers and widths. In the first step, with
the help of the vertical beamformer, the single sound source
assumption can be applied to the resulted array data. So that
the MUSIC based sound source DOA estimation algorithm
is simplified to its rank-1 version for vehicle detection. The
new algorithm doesn’t need to perform EVD, so that it has
lower computational complexity. In the second step, vehicle
azimuth pdf is estimated by the proposed Parzen window
based technique via an online updating manner. Since vehicle
usually travels along lanes and seldom crosses lane boundaries,
the positions of lane centers and boundaries can be revealed
from the peak and valley patterns of the estimated pdf. Both
simulated and real-word experiments are conducted on a traffic
monitoring prototype system developed in Java, and the effi-
ciency of the proposed approach is shown from the resulted ATI
and vehicle azimuth pdf comparisons.

In future work, we will mainly focus on the acoustic based
lane-wise traffic monitoring approaches, e.g., how to construct
high resolution coarse detection zones according to the detected
lanes. In addition, the way to derive and improve different
traffic quality measuring indices will also be investigated.
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