
Backward waves with double zero-group-velocity points
in a liquid-filled pipe

Hanyin Cui,a) Weijun Lin, Hailan Zhang, and Xiuming Wang
State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190,
People’s Republic of China

Jon Trevelyan
School of Engineering and Computing Sciences, Durham University, Durham DH1 3LE, United Kingdom

(Received 12 August 2015; revised 18 February 2016; accepted 2 March 2016; published online 17
March 2016)

Hollow cylinders often exhibit backward propagation modes whose group and phase velocities

have opposite directions, and these exhibit a minimum possible frequency at which the group ve-

locity vanishes at a nonzero wavenumber. These zero-group-velocity (ZGV) points are associ-

ated with resonant conditions in the medium. On the basis of ZGV resonances, a non-contact

and laser ultrasound technique has been developed to measure elastic constants of hollow pipes.

This paper provides a theoretical and numerical investigation of the influence of the contained

liquid on backward waves and associated ZGV modes, in order to explore whether this ZGV

technique is suitable for in-service non-destructive evaluations of liquid-filled pipes. Dispersion

spectra and excitation properties have been analyzed. It is found that the presence of the liquid

causes an increased number of backward modes and ZGVs which are highly excitable by a point

source. In addition, several guided modes twice undergo a change of sign in the slopes of their

dispersion curves, leading to two ZGV points. This phenomenon of double ZGVs in one back-

ward wave, which is caused by strong mode repulsions, has not been found in isotropic hollow

cylinders, but it can be observed in a fluid-filled thin-walled pipe.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4944046]
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I. INTRODUCTION

In the frequency-wavenumber (x� k) spectra, a dis-

persion curve of a guided wave may exhibit a portion of

negative slope, where the group and phase velocities are

directed in the opposite directions. This phenomenon is

termed “backward wave propagation”1–3 or “negative group

velocity.”4–7 A related phenomenon is the zero-group-

velocity (ZGV) point where the slope changes sign, that is,

the group velocity vanishes at a nonzero wavenumber.8,9

At these ZGV points, the acoustic energy of the correspond-

ing ZGV modes is trapped in the source area without any

transfer to the adjacent medium. The resulting resonance

is sensitive to local mechanical properties and dimensional

changes of isotropic and anisotropic materials.10–12

Recently, laser excitation and detection of such ZGV modes

has attracted considerable attention with the prospect of the

application of this phenomenon to measure elastic constants

and structural defects of thin plates,9,12–16 hollow cylin-

ders,13,17 solid transversely isotropic (TI) cylinder,18 and

supported thin film structures (i.e., multilayered plane

structures).19–21

Liquid-filled pipes used in the civil and energy indus-

tries need to be inspected regularly to certify their safety and

reliability.22 For hollow cylinders, a non-contact, laser ultra-

sonic technique based on ZGV Lamb modes has been

developed for non-destructive evaluation application.13,17

The objective of this work is to study the effect of a con-

tained liquid on backward waves and the associated ZGV

modes, and thereby to investigate whether this ZGV tech-

nique can be used for in-service inspection of liquid trans-

portation pipelines.

The existence of backward wave and ZGV points in

elastic plates and cylinders has been recognized for more

than one century. As early as 1904, Lamb23 first discussed

the possibility of backward wave propagation. In 1957,

Tolstoy and Usdin24 predicted the existence of the backward

mode S2b in a free isotropic plate with Poisson’s ratio of

0.25. The subscript b denotes backward wave. Mindlin8 and

Mindlin and Medick25 numerically plotted the complex

frequency-wavenumber spectra of Lamb waves in plates

having Poisson’s ratios less than, equal to, and greater than

the special case of � ¼ 1=3. In these x� k spectra, back-

ward propagation branches with negative slopes are clearly

identified in the vicinity of wavenumber k ¼ 0. Furthermore,

each backward branch possesses only one ZGV point that

has been observed at the saddle point with a horizontal

slope.

In addition, considerable experimental evidence of back-

ward waves and ZGV modes has been reported.1–5,9–19,21,26,27

For instance, Zemanek28 has made the observation of a ZGV

resonance of the low-order, longitudinal guided mode in a

free rod. Meitzler1 reported experimental observations of

stress pulses travelling in backward elastic-wave motions ina)Electronic mail: cuihanyin@mail.ioa.ac.cn
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cylinders and plates. Negishi4 and Negishi and Li29 reported

the “negative group velocity” phenomenon of Lamb waves in

S1 and A2 modes.

More recently, it has become possible to use computa-

tionally intensive numerical procedures to gain an improved

understanding of backward waves and ZGVs in various

waveguides. Most researchers have focused on the discus-

sions of isotropic plates, anisotropic plates, and multilayered

structures. For the case of an isotropic plate, in 1987,

Negishi30 revealed that the existence of backward wave

depends on Poisson’s ratio. In addition, in 2008, Prada

et al.14 numerically analyzed the existence conditions of

ZGV-Lamb modes as determined by the value of Poisson’s

ratio, and concluded that all Lamb modes, with the exception

of the three lowest ones, can exhibit ZGV modes. Moreover,

they found that, a strong repulsion between a pair of sym-

metric (or antisymmetric) Lamb modes having a different

parity in the vicinity of their cutoff frequencies may cause

the existence of a backward wave and the associated ZGV

point. In 2009, Prada et al.12 expanded their ZGV research

to anisotropic material and observed the so called S1-ZGV

and A2-ZGV modes of a silicon plate with cubic symmetry.

In 2012, Hussain and Ahmad31 reported the multiple ZGV

points of Lamb modes in an orthotropic plate (iodic acid).

For multilayered structures, Maznev and Every19,20 analyzed

the existence of backward propagating acoustic waves in

supported layers, and experimentally proved that the lowest

mode of a supported thin film structure could exhibit the

phenomenon of “negative group velocity” and double ZGV

points. Furthermore, in 2012, Kausel32 theoretically ana-

lyzed the number and location of ZGV modes in horizontally

layered media bounded by any arbitrary combination of

external boundaries, and concluded that the effective number

of ZGVs is small and decreases as Poisson’s ratio increases.

Guided elastic waves in cylindrical structures also ex-

hibit backward waves and ZGVs. Marston33 and Kaduchak

et al.34 discussed the effect of backward wave propagation

on the scattering of sound by shells. Ces et al.17 investigated

the ZGV resonances in a Zircaloy hollow cylinder by laser

based ultrasonic techniques, in order to deduce the elastic

constants. For elastic plates, backward Lamb waves depend

only on Poisson’s ratio;14 while, for hollow pipes, backward

waves also depend on the ratio of the inner to the outer

radius.35 Cui et al.35 numerically studied the influence of the

radius ratio on group velocities of backward waves in hollow

cylinders.

As reviewed in the above paragraphs, the existence con-

ditions and dispersion properties of backward waves and the

associated ZGVs in plates, hollow cylinders, and multilay-

ered structures have been extensively investigated. There are

also a lot of works about the propagation of guided waves in

liquid-filled pipes.22,36,37 However, it seems that the disper-

sion and excitation properties of backward waves and ZGVs

in liquid-filled pipes have not been reported.

In this paper, theoretical and numerical results for

liquid-filled pipes are presented with specific attention paid

to the excitation characteristics of ZGV modes. Dispersion

curves and amplitude spectra have been analyzed in order to

study the influence of the contained liquid on backward

waves and ZGVs in pipes with different ratios of the inner to

the outer radius. Moreover, it is shown that, in addition to

the backward modes with a single ZGV point, there are sev-

eral modes which possess two ZGV points. This phenom-

enon of multiple ZGVs has been reported only in three kinds

of waveguides, i.e., supported thin film structures,19 ortho-

tropic plates,31 and multilayered pipes.38 We introduce a

mode coupling effect to interpret the existence of the dou-

ble-ZGVs.

II. THEORY

A. Dispersion equation for axisymmetric modes

In this section, a brief review of the development of the

dispersion equation for axisymmetric modes with the cir-

cumferential number n¼ 0 in a liquid-filled pipe is summar-

ized.39–43 The considered model of interest is a circular pipe

filled with an inviscid liquid in the cylindrical coordinates

ðr; z; hÞ, where the z-axis is along the symmetric axis of the

pipe. The length of the pipe is assumed to be infinite, and the

internal and external radii of the pipe are denoted a and b,

respectively. The wall-thickness of the pipe is d ¼ b� a.

The longitudinal bulk velocity and density of the liquid are

denoted Vf and q1, while the longitudinal and shear bulk

velocities and density of the solid pipe are denoted VL;VT ;
and q2, respectively.

In the frequency-wavenumber ðx� kÞ domain, in the

absence of body forces, the displacement potential function

of the compressional wave in the liquid contained in the cyl-

inder can be expressed as44

/1 ¼ A1I0ða1rÞ; (1)

where the (exponential) propagative term, expðikz� ixtÞ, is

omitted for convenience in the scalar and the vector poten-

tials (fluid and solid). Displacement potential functions of

the compressional (P), shear vertical (SV), and shear hori-

zontal (SH) waves in the pipe are44

/2 ¼ A2I0ða2rÞ þ B2K0ða2rÞ;
w2 ¼ C2I0ðb2rÞ þ D2K0ðb2rÞ;
v2 ¼ 0; (2)

where I0ðxÞ and K0ðxÞ are modified Bessel functions of the

first and second kind, and A1;A2;B2;C2;D2 are the unknown

coefficients to be determined by consideration of the bound-

ary conditions. The other parameters in Eqs. (1) and (2) are

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

f

q
; a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

L

q
; b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

T

q
;

(3)

where wavenumbers of longitudinal and shear bulk waves in

the liquid and pipe are

kf ¼ x=Vf ; kL ¼ x=VL; kT ¼ x=VT ; (4)

and the wavenumber of the guided wave propagating along

the z-axis is
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k ¼ x=V; (5)

where x is the angular frequency, and V is the phase velocity

of the guided wave.

The modified Bessel functions I0ðxÞ and K0ðxÞ in the dis-

placement potentials (1) and (2) are replaced by the unmodi-

fied Bessel functions J0ðixÞ and Y0ðixÞ when the argument

x is purely imaginary. This choice of Bessel functions leads to

a more stable solution of the dispersion equation.45,46 Two

functions P0ðxÞ and Q0ðxÞ are employed in the rest of the der-

ivation to represent Bessel functions, which are

P0ðxÞ ¼
I0ðxÞ; for real x

J0ðixÞ; for imaginary x;

(

Q0ðxÞ ¼
K0ðxÞ; for real x

Y0ðixÞ; for imaginary x:

(
(6)

The liquid-solid interface conditions are that the radial

displacement and normal stress components at the boundary

are continuous, and the shear stress components are zero at

the interface. That is, the boundary conditions at r¼ a are

ur;1jr¼a ¼ ur;2jr¼a;

rrr;1jr¼a ¼ rrr;2jr¼a;

rrz;2jr¼a ¼ 0: (7)

It is further assumed that the pipe is surrounded by a vac-

uum. Thus, on the outer surface of the pipe is traction free,

i.e., the boundary conditions at r¼ b can be written as

rrr;2jr¼b ¼ rrz;2jr¼b ¼ 0: (8)

The Helmholtz decomposition is applied. The displace-

ment and stress components in the liquid and the pipe can be

obtained by substituting the displacement potentials (1) and

(2) into the constitutive equations, respectively. Then, appli-

cation of the boundary conditions (7) and (8) yields five ho-

mogeneous equations with five unknown coefficients. The

determinant of the matrix expressing these equations must

vanish for a nontrivial solution to exist. This produces the

dispersion equation in the form of

D¼

M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

0 M32 M33 M34 M35

0 M42 M43 M44 M45

0 M52 M53 M54 M55

�������������

�������������
¼ jMijðVf ;q1;VL;VT ;q2;x;kÞj ¼ 0 ði; j¼ 1;2; :::;5Þ;

(9)

where the matrix elements are given in the Appendix. The

bisection technique46 has been used to numerically solve the

transcendental Eq. (9) to yield the real roots of the dispersion

equation (i.e., phase velocities of non-leaky guided modes).

The bisection technique is good at robustly finding the real

branches of the dispersion equation without initial-guess of

the root. And it is stable when two roots are in close proxim-

ity.46 However, it converges slower compared to Newton-

Raphson or Muller zero-finding algorithm.47 For large radius

pipes (i.e., the large fd problem), it is recommended using

Newton-Raphson method or Muller zero-finding algorithm.

B. Mode coupling

The dispersion Eq. (9) of axisymmetric guided modes in

the liquid-filled pipe can be expressed as the superposition

of two terms,

D ¼ M11

M22 M32 M42 M52

M23 M33 M43 M53

M24 M34 M44 M54

M25 M35 M45 M55

��������

��������

�M21

M12 M32 M42 M52

M13 M33 M43 M53

M14 M34 M44 M54

M15 M35 M45 M55

��������

��������
; (10)

where the matrix element M21 ¼ �q1a2x2P0ða1aÞ=q2V2
T : If

the value of the second term of Eq. (10) is much smaller

than that of the first term, the dispersion equation can be sim-

plified. For instance, when the ratio of the density of the liq-

uid to that of the pipe is small enough (i.e., q1=q2 ! 0), the

element M21 and the second term both tend to zero. In this

case, the dispersion Eq. (10) can be simplified as

D � M11

M22 M32 M42 M52

M23 M33 M43 M53

M24 M34 M44 M54

M25 M35 M45 M55

��������

��������
: (11)

This simplification shows that guided modes in the liquid-

filled pipe can be viewed as the outcome of mode coupling

between two groups of guided modes propagating in two mod-

els, respectively. These two models are two parts of the liquid-

filled pipe, i.e., one model is the hypothetical liquid-cylinder

with a rigid wall at r¼ a, and the other is the hollow pipe in

vacuum. The reason for this conclusion is explained below.

For the hypothetical liquid-cylinder of radius a with a

rigid wall at r¼ a, the boundary condition is that the radial

component of velocity must vanish at the wall.48 The disper-

sion equation of axisymmetric guided modes in this model is48

DlðVf ;x; kÞ ¼ M11 ¼ 0: (12)

For a hollow pipe of inner and external radii a and b,

respectively, in vacuum, the boundary conditions are that all

the stress components are equal to zero on the inner and

outer surfaces of the pipe. The dispersion equation of axi-

symmetric guided modes can be written as49

DpðVL;VT ;x; kÞ ¼

M22 M32 M42 M52

M23 M33 M43 M53

M24 M34 M44 M54

M25 M35 M45 M55

��������

��������
¼ 0: (13)

Hence, the simplified dispersion Eq. (11) of guided modes in

a liquid-filled pipe can be expressed as the product of two
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dispersion Eqs. (12) and (13) governing guided modes in the

liquid cylinder and in the hollow pipe, respectively. That is,

D � DlðVf ;x; kÞ � DpðVL;VT ;x; kÞ: (14)

This decoupling means that guided modes in the liquid-filled

pipe can be decoupled into guided modes propagating in the

liquid and in the pipe, respectively.

This mode-coupling concept is helpful for understand-

ing the existence and dispersion properties of backward

waves and ZGV modes in a liquid-filled pipe. First, in a hy-

pothetical liquid cylinder, only compressional waves exist.

Since there is no repulsion between two compressional

waves, neither a backward wave nor a ZGV mode exists in

a liquid cylinder. Hence, all the guided modes are forward

propagating modes in a liquid cylinder. Second, in a hollow

pipe, it has been known that the strong repulsion between

two neighboring compressional and shear waves may gen-

erate a backward wave which possesses only one ZGV

point at the lowest frequency of the backward wave.35 The

existence condition and dispersion properties of backward

waves and ZGVs are determined by the value of Poisson’s

ratio and the ratio of the inner to the outer radius of the hol-

low pipe.13,17,35 Moreover, all the longitudinal modes, with

the exception of the lowest one, can exhibit backward

waves and ZGVs.35 For further information on the proper-

ties of backward waves and ZGVs in a hollow pipe, the

reader is referred to existing literature.13,17,33–35 In Sec.

III A, the coupling effect between the forward propagating

waves in a liquid cylinder and the backward propagating

waves in a hollow pipe is analyzed to study the generation

of backward waves and ZGVs in a liquid-filled pipe.

C. Point source excitation

A point source is introduced in order to simulate the ex-

citation of guided modes in the liquid-filled pipe system. We

apply a spherically symmetric excitation source acting at the

origin of the cylindrical coordinates, so that only longitudi-

nal modes are excited. In the frequency-wavenumber do-

main, the displacement potential of the compressional wave

excited by the point source is50

/ r;x; kð Þ ¼ X xð Þ
4p2q1x2

K0 a1rð Þ ¼ S xð ÞK0 a1rð Þ; (15)

where X(x) is the point source function. SðxÞ is introduced

to simplify the expressions,

S xð Þ ¼ X xð Þ
4p2q1x2

: (16)

D. Displacement component expressions

As is shown in the above section, suppose the acous-

tic point-source at the origin of the coordinates, the com-

pressional displacement potential function in the liquid

is50

/1 ¼ A1P0ða1rÞ þ SðxÞK0ða1rÞ: (17)

Substituting Eqs. (2) and (17) into Eqs. (7) and (8), yields a

system of linear non-homogeneous equations, i.e.,

M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

0 M32 M33 M34 M35

0 M42 M43 M44 M45

0 M52 M53 M54 M55

2
66664

3
77775 �

A1=a
A2=a

�ib2C2=a
B2=a

�ib2D2=a

2
66664

3
77775¼

H1

H2

0

0

0

2
66664

3
77775;

(18)

where elements H1 ¼ SðxÞf½dK0ða1rÞ�=drg; H2

¼ �f½SðxÞq1a2x2K0ða1rÞ�=l2g; and the other matrix ele-

ments M11; :::;M55 are listed in the Appendix.

The linear system (18) has a unique solution if and only

if the determinant of the coefficient matrix of the left hand

side of Eq. (18) is nontrivial, i.e., D 6¼ 0. In this case, by

applying Cramer’s rule, the coefficients used in the expres-

sions for displacement potentials are found to be

A1 ¼
D1a

D
; A2 ¼

D2a

D
; C2 ¼

aD3

ib2D
;

B2 ¼
D4a

D
; D2 ¼

aD5

ib2D
; (19)

where D is the secular equation, and Dl (l¼ 1,2,3,4,5) denote

the determinants of the matrices obtained by replacing the

lth column with the column ðH1;H2; 0; 0; 0ÞT on the right

hand side of Eq. (18).

Since the displacement potentials and their coefficient

Eq. (19) are determined, by using the displacement potential

equation51

U ¼ r/þr�r� ðwezÞ; (20)

the solutions of the displacement components in the fre-

quency domain is obtained. For instance, it can be shown

that radial and axial displacement components ur;1; uz;1 in

the inner liquid are

ur;1 r; z;xð Þ

¼
ðþ1
�1

a1a
P00 a1rð ÞD1þ S xð ÞK00 a1rð ÞD

D

� �
exp ikzð Þdk;

(21)

uz;1 r; z;xð Þ

¼
ðþ1
�1
�ika

P0 a1rð ÞD1þ S xð ÞK0 a1rð ÞD
D

� �
exp ikzð Þdk;

(22)

and the radial and axial displacement components, ur;2; uz;2,

in the pipe are

ur;2 r; z;xð Þ ¼
ðþ1
�1

TI;r þ TK;r½ � exp ikzð Þdk;

TI;r ¼ a2aP00 a2rð Þ
D2

D
þ kaP00 b2rð ÞD3

D
;

TK;r ¼ a2aQ00 a2rð Þ
D4

D
þ kaQ00 b2rð ÞD5

D
; (23)
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uz;2 r; z;xð Þ ¼
ðþ1
�1
�i TI;z þ TK;z½ � exp ikzð Þdk;

TI;z ¼ kaP0 a2rð Þ
D2

D
þ b2aP0 b2rð ÞD3

D
;

TK;z ¼ kaQ0 a2rð Þ
D4

D
þ b2aQ0 b2rð ÞD5

D
; (24)

where P00ðxÞ and Q00ðxÞ are the first derivative of the modified

(or unmodified) Bessel functions of the first and second kind

of order n¼ 0, respectively, which can be determined by

using the recurrence relations. For longitudinal modes with

n¼ 0, the circumferential displacement component uh ¼
u sin nh is equal to zero.

Taking the radial displacement component ur;1 for

example, the complex variable Cauchy’s integral formula

can be applied to evaluate the integral over the wavenumber

k in Eq. (21).50 As shown in Fig. 1, in the complex plane, a

closed contour of integration is constructed. It consists of the

�1 to þ1 integration path on the real axis, the vertical

branch cuts from infinite to each of the branch points

kL; kT ; kf , and the semicircular arc of infinite radius in the

upper half of the complex k plane. The branch points corre-

spond to wavenumbers of longitudinal and shear bulk waves

in the liquid and the pipe. Since an acoustic source distrib-

utes only in a finite range, the semicircular arc of infinite ra-

dius is trivial to the integral.50 Hence, the integral in Eq. (21)

can be evaluated as the sum of the contributions due to the

branch cuts and the poles. Note that the complex poles in the

contour, if there exist, are ignored as only the propagating

modes are taken into account in this case.

The displacement components of the guided modes can

then be evaluated as 2pi times the sum of the residues of the

enclosed poles.52 The integrand of Eq. (21) can be written as

Ap k;xð Þ ¼ N k;xð Þ
D k;xð Þ : (25)

In Eq. (25), Nðk;xÞ ¼ ½P00ða1rÞD1 þ SðxÞK00ða1rÞD�aa1: The

poles of the integrand of Eq. (21) correspond to the roots of the

dispersion Eq. (9). The denominator and numerator of Eq. (25)

are both analytic functions, so the residues of the poles could

be computed using the alternative residue formula50

Residues ¼ N k;xð Þ
@D k;xð Þ=@k

����
k¼kp

; (26)

where kp is the pth (p¼ 1,2,3,…) order root of the dispersion

Eq. (9).

Finally, the displacement field in the inner liquid and the

pipe due to the contribution of axisymmetric guided modes is

ur;1 ¼ 2pi
X

p

a1aP00 a1rð ÞD1

@D=@k

����
k¼kp

; (27)

uz;1 ¼ 2p
X

p

kaP0 a1rð ÞD1

@D=@k

����
k¼kp

; (28)

ur;2 ¼ 2pi
X

p

a a2P00 a2rð ÞD2 þ kP00 b2rð ÞD3 þ a2Q00 a2rð ÞD4 þ kQ00 b2rð ÞD5

� �
@D=@k

����
k¼kp

; (29)

uz;2 ¼ 2p
X

p

a kP0 a2rð ÞD2 þ b2P0 b2rð ÞD3 þ kQ0 a2rð ÞD4 þ b2Q0 b2rð ÞD5

� �
@D=@k

����
k¼kp

: (30)

III. NUMERICAL RESULTS AND ANALYSES

A. Dispersion spectra and mode coupling

As discussed in Sec. II B, the coupling between two

groups of axisymmetric guided modes propagating in the

liquid cylinder and hollow pipe, respectively, yields longitu-

dinal modes in the liquid-filled pipe. The effect of mode cou-

pling can be clearly observed from the dispersion spectra.

Dispersion Eqs. (9), (12), and (13) are numerically calcu-

lated, in order to obtain all the real roots which correspond

to propagating modes. These roots are then traced as a set of

dispersion curves, e.g., curves in Fig. 2(a). Our numerical

results correlate well with the reference solutions found in

Sinha et al.37 Moreover, using the model from Berliner and

Solecki,39,40 which can be applied for isotropic and TI cylin-

ders, to calculate the theoretical dispersion curves obtained

in this paper, leads to similar results. Same observation can

be obtained using the Disperse software.53

In order to provide an illustrative example, we consider

a steel pipe filled with water. The longitudinal bulk velocity

and density of water are taken to be Vf ¼ 1500 m/s and q1

¼ 1000 kg/m3; for the steel pipe, the longitudinal, shear bulkFIG. 1. The contour of integration in Eq. (21).
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velocities, and density are VL ¼ 5900 m/s, VT ¼ 3200 m/s,

and q2 ¼ 7900 kg/m3, and its internal and external radii are

a¼ 8 mm and b¼ 10 mm. The density ratio is q1=q2 ¼ 0:13.

Dispersion spectra of longitudinal modes in the liquid cylin-

der, in the hollow pipe, and in the liquid-filled pipe are

presented in the three parts of Fig. 2(a), respectively.

This paper follows the mode classification by Meitzler54

and Marston.33 For instance, as labeled in Fig. 2, the longitu-

dinal modes which are forward propagating in the liquid

cylinder, pipe, and liquid-filled pipe are denoted as L(0,m)l,

L(0,m)p, and L(0,m)lp, respectively; where L represents the

axisymmetric longitudinal mode with circumferential order

n¼ 0, the mode order m ¼ 1; 2; 3; :::, and the subscripts l, p,

and pl identify three models. The fundamental modes

(i.e., those propagating at zero frequency) are given the

value by m¼ 1, and the higher order modes are numbered

consecutively.

As shown in Fig. 2(a), in the dimensionless frequency

range xd=VT < 8, 27 longitudinal modes L(0,m)pl

(m¼ 1,2,…,27) in the liquid-filled pipe can be decoupled

into 22 modes L(0,m)l (m¼ 1,2,…,22) in the liquid cylinder

and 5 modes L(0,m)p (m¼ 1,2,…,5) in the hollow pipe. The

dotted lines in Fig. 2 denote the portions of spectra repre-

senting backward waves. In the middle of Fig. 2(a), there is

one backward wave in the hollow pipe, while in the right of

Fig. 2(a), there are three backward waves in the liquid-filled

pipe. Each exists in a narrow frequency range.

For clarity, in Figs. 2(b) and 2(c), we present a zoomed

view of the relevant portion of the spectra, showing disper-

sion curves in the dimensionless frequency range 5:25

� xd=VT � 6:5 and in the Gazis normalized wavenumber

range kd=2p � 0:4, where d ¼ b� a is the wall thickness of

the pipe. These graphs illustrate the effects of coupling

between backward and forward modes. Two sets of disper-

sion curves of guided modes propagating in the liquid

cylinder and hollow pipe, respectively, are plotted together

in Fig. 2(c), and dispersion curves in the liquid-filled pipe

are drawn in Fig. 2(b) for comparisons. The dotted lines rep-

resent backward modes, and the green dots denote ZGV

points. The ZGV frequencies correspond to the points where

the slopes of dispersion curves are zero (i.e., zero group-ve-

locity) and the wavenumbers k are non-zero. They often

appear in the vicinity of k¼ 0. And they can be estimated

from dispersion spectra or group velocity dispersion curves.

The backward mode propagating in the hollow pipe,

L(0,5)b,p, is classified as part of the L(0,5)p mode and is

indeed connected to the L(0,5)p mode through a small imagi-

nary loop in the complex wavenumber space.1,33 The sub-

script b denotes backward wave. Backward modes

propagating in the liquid-filled pipe are denoted as L(0,19)b,pl,

L(0,20)b,pl, and L(0,21)b,pl, respectively. In the real wavenum-

ber plane, the backward L(0,19)b,pl mode is connected with

the forward L(0,19)pl mode by the ZGV1 point. In this paper,

only the propagating modes with real wavenumbers are con-

sidered. It will be interesting to study the purely imaginary

loops of dispersion spectra, e.g., by applying the Newton-

Raphson method to find imaginary roots of the dispersion

Eq. (9). The aim is to clearly understand how the modes are

coupled and how to classify a backward mode with a proper

FIG. 2. (Color online) (a) Dispersion spectra of the three groups of axisym-

metric longitudinal modes in the water cylinder, in the hollow pipe, and in

the steel pipe filled with water, respectively, in the dimensionless frequency

range xd=VT < 8. In the dimensionless frequency range 5:25 � xd=VT

� 6:5 and in the Gazis normalized wavenumber range kd=2p � 0:4, disper-

sion curves of longitudinal modes in the water-filled pipe are presented in

(b), and two sets of dispersion curves of modes in the water cylinder and in

the hollow pipe, respectively, are given in (c). The internal and external radii

of the pipe are a¼ 8 mm and b¼ 10 mm. The vertical and horizontal axes

are dimensionless frequency xd=VT and wavenumber kd=2p, where x is the

angular frequency, d and VT are the thickness and the shear bulk velocity of

the pipe, and k is the wavenumber. Solid lines in (a) and (b) denote forward

propagating modes. In (c), the dashed and solid lines represent forward

propagating modes in the water cylinder and in the hollow pipe, respec-

tively. Dotted lines in the three figures denote backward propagating modes,

and the green dots denote the ZGV points.
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mode order m. Furthermore, the evanescent branches of dis-

persion spectra could be studied, e.g., by using the Muller

method to calculate complex roots of the Eq. (9), to mark the

ZGV points.

For a hollow cylinder, at cutoff frequencies (i.e., the

wavenumber k¼ 0), guided modes decoupled into pure com-

pressional P modes and pure transverse S modes. For the

wavenumber k 6¼ 0, the coupling between compressional P
and transverse S type vibrations, which is caused by the

boundary conditions, causes repulsions between neighboring

dispersion curves of a given symmetry (i.e., the same cir-

cumferential number n).35,55 The repulsion prevents the

neighboring dispersion curves from intersecting at k 6¼ 0.

The strength of repulsion is related to the frequency separa-

tion at k¼ 0 between two neighboring modes. The rule is

that the smaller the frequency separation at k¼ 0, the stron-

ger the repulsion becomes.14,35 In the vicinity of k¼ 0, the

strong repulsion between a pair of adjacent P and S waves

may yield a backward wave which possesses only one ZGV

point.14,35 For instance, as shown in Fig. 2(c), in the steel

pipe, L(0,5)b,p is a backward propagating branch which is

caused by the strong coupling between the P and S waves,

i.e., L(0,4)p and L(0,5)p modes. In the complex wavenumber

spectra, the upper threshold of the backward L(0,5)b,p mode

and the lower threshold of the forward L(0,5)p mode are con-

nected by a loop for which the wavenumber k is purely

imaginary.1 The dispersion curve of L(0,5)b,p starts from its

dimensionless cutoff frequency of 5.806 at which the wave-

number k¼ 0 and the group velocity Vg ¼ 0. The dispersion

curve proceeds with a negative slope as k increases; and it

ends at the ZGV point at 5.411 at which the Gazis normal-

ized wavenumber kd=2p � 0:27 and Vg ¼ 0.

In a liquid cylinder, there will be neither a backward

wave nor a ZGV point since only P waves exist. For exam-

ple, as shown in Fig. 2(c), slopes of the three dispersion

curves are always positive, i.e., L(0,16)l, L(0,17)l, and

L(0,18)l modes in the water cylinder are forward modes.

The coupling effect can be observed. Dispersion spectra

in Figs. 2(b) and 2(c) are similar. The visible difference is

that there are two intersections between the two sets of

curves at points C1 and C2 in Fig. 2(c), while there is no

intersection but small gaps next to the near cross-over points

in Fig. 2(b). Far from the intersection points, the contribution

of the second term of the dispersion Eq. (10) is relatively

small compared to that of the first term. That is, the

decoupled dispersion Eq. (14) is available, which means that

the effects of coupling are weak. However, in the vicinity of

an intersection point, the contribution of the second term

could not be ignored; in this case, the strong coupling

applies.

The strong coupling between two sets of modes in the

liquid cylinder and in the hollow pipe, respectively, causes

repulsions between neighboring dispersion curves of modes

that prevent them from intersecting. There are two types of

intersections in Fig. 2(c). One type is that two forward

modes intersect at the point C1; and the other type is that the

intersection between the forward and backward modes at

point C2. For the first type, considering the intersection

between L(0,18)l and L(0,5)p at point C1 in Fig. 2(c), the

strong coupling causes a gap between L(0,22)pl and

L(0,23)pl in Fig. 2(b). These modes are still two forward

modes which dispersion curves have positive slopes.

We are interested in the second type that is the intersec-

tion between backward and forward modes. Next to the

intersection point C2 in Fig. 2(c), the strong coupling

between the forward L(0,16)l and backward L(0,5)b,p modes

causes a strong repulsion, which yields a gap between the

L(0,19)b,pl and L(0,20)b,pl modes. These modes are two

backward modes with negative slopes. Besides, though there

is no intersection between the backward L(0,5)b,p and for-

ward L(0,17)l modes, the effect of repulsion on the forward

L(0,17)l mode is still strong enough to produce the origina-

tion of another new backward mode L(0,21)b,pl in the liquid-

filled pipe.

As shown in Fig. 2(b), dispersion spectra of the three

backward modes L(0,19)b,pl, L(0,20)b,pl, and L(0,21)b,pl all

start from the vertical axis (k¼ 0), and end at ZGV points

ZGV1, ZGV2, and ZGV3 at dimensionless frequencies 5.427,

5.663, and 6.002, respectively. In the hollow pipe, the ZGV

point of the L(0,5)b,p mode appear at 5.411. Clearly, the

repulsions among L(0,5)b,p, L(0,16)l, and L(0,17)l modes

also cause shifts of frequencies at which ZGV points appear.

In general, the major influences of the water contained

in this thin-walled pipe with its radius ratio a/b¼ 0.8 are (i)

the increased number of backward modes and ZGV points,

and (ii) shifts of frequencies corresponding to ZGV points.

Furthermore, the water also changes the group velocity dis-

persion spectrum and the frequency range of existence of a

backward mode in the pipe.

B. Influence of the pipe’s radius ratio

According to Cui et al.,35 in a hollow pipe, the existence

and dispersion property of a backward mode depends not

only on Poisson’s ratio, but also on the ratio of the inner to

the outer radius. In a liquid-filled pipe, this radius ratio also

affects the number and distributions of backward waves and

ZGV points.

In this section, the dispersion properties of backward

waves and ZGVs in pipes of different radius ratios a/b are

considered. The material properties of water and steel pipes

are the same as those of the example in Sec. III A. The exter-

nal radius is fixed as b¼ 10 mm, and a/b varies from 0.1 to

0.98. Dispersion spectra of longitudinal modes propagating

in the water cylinders, hollow steel pipes, and water-filled

pipes with a/b¼ 0.4, 0.5, and 0.9, respectively, are displayed

in Fig. 3. Only modes in the dimensionless frequency range

5:25 � xd=VT � 6:5 are given in Fig. 3, in order to focus on

the illustration of the influence of a/b.

As shown in Fig. 3, the influence of contained water on

the backward modes and ZGVs in a thin-walled pipe with a

large a/b is demonstrably greater than that in a thick-walled

pipe with a small a/b. As illustrated in Fig. 3(a), for the

thick-walled pipe with a/b¼ 0.4, there is one backward

mode L(0,5)b,p and one associated ZGV point at xd=VT

¼ 5.565. As shown in Fig. 3(b), in the water-filled pipe, there

is also only one backward mode L(0,7)b,pl which possesses

one ZGV point at 5.594. Though the L(0,7)b,pl mode in the
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liquid-filled pipe has a different mode order (i.e., m¼ 7)

from that of the L(0,5)b,p mode in the hollow pipe (i.e.,

m¼ 5), these two modes have similar dispersion properties

(e.g., similar cutoff frequencies and similar frequency ranges

in which the two modes exist). In this thick-walled pipe, the

contained water does not change the number of the backward

mode and ZGV point exhibiting in the fixed frequency range

chosen; while it does cause a shift of the frequency corre-

sponding to the ZGV point, which is xd=VT ¼ 0.029. In the

case of a/b¼ 0.5 as in Fig. 3(d), the inclusion of the water

generates two backward modes L(0,8)b,pl and L(0,9)b,pl and

two associated ZGVs. For a/b¼ 0.9, as shown in Fig. 3(f),

the inclusion of the water causes the generation of seven

backward modes L(0,m)b,pl (m¼ 37, 40,…,43) and eight

ZGVs. Here, the backward mode L(0,37)b,pl has two ZGV

points, ZGV1 and ZGV2. At these two ZGV points, the

L(0,37)b,pl mode has zero group velocity but non-trivial

wave-numbers. This interesting phenomenon of double-

ZGVs in a single mode is discussed further below.

Mode coupling can be used to explain why the con-

tained liquid has a major impact on ZGVs in a thin-walled

pipe. The coupling strength (i.e., repulsion force) is propor-

tional to the frequency gap between the cutoff and ZGV

frequencies of dispersion curves for the liquid column and

the hollow cylinder, respectively. In the dimensionless fre-

quency range xd=VT � 8, cutoff frequencies of longitudinal

modes in water columns with radii a¼ 1, 2,…, 9, and

9.5 mm, respectively, and ZGV frequencies of backward

modes L(0,5)b,p in hollow steel cylinders with the same

external radius b¼ 10 mm and varied inner radii a¼ 1,

2,…, 9, and 9.5 mm, respectively, are plotted in Fig. 4. As

shown in Figs. 3(a), 3(c), 3(e), and 4, in the fixed frequency

range chosen, the number of longitudinal modes L(0,m)l in

the water cylinder sharply rises with increasing a/b. More

intersection points arise and the spacing between the disper-

sion curves of backward L(0,5)b,p and forward L(0,m)l

modes is reduced. The coupling is strong when a backward

mode in the hollow pipe and a forward mode in the liquid

cylinder have a narrow frequency-separation, and the strong-

est coupling corresponds to the case of intersection. The

effect of strong coupling is the repulsion, which may gener-

ate backward modes and ZGVs. With increasing a/b, the

repulsion becomes stronger, so that more backward modes

and even more ZGV points appear in the liquid-filled pipe.

Generally, for a thick-walled pipe, the contained water

has only a mild effect on the number of backward modes

FIG. 3. (Color online) Dispersion

spectra of longitudinal modes in the

water cylinders with radius a¼ 4, 5,

and 9 mm and in the hollow steel pipes

with ratios of internal to external ra-

dius (a) a/b¼ 0.4, (c) a/b¼ 0.5, and (e)

a/b¼ 0.9; and those in the water-filled

pipes with (b) a/b¼ 0.4, (d) a/b¼ 0.5,

and (f) a/b¼ 0.9. In (a), (c), and (e),

dashed and solid lines represent for-

ward propagating modes in the water

cylinders and in the hollow pipes,

respectively; and dotted lines denote

backward modes. In (b), (d), and (f),

solid and dotted lines represent for-

ward and backward modes, respec-

tively. The ZGV points are marked by

green dots.
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and ZGVs. While in the case of a thin-walled pipe, the pres-

ence of water can significantly increase the number of back-

ward modes and ZGVs, and notably, it may cause the

phenomenon of double-ZGVs in a single backward mode.

C. Backward wave with double ZGVs

In a hollow pipe, one backward mode possesses only

one ZGV at the lowest frequency of the mode. However, in a

pipe filled with liquid, under certain conditions, e.g., if the

radius ratio a/b of the pipe approaches unity, some backward

modes possess double ZGVs. For example, in the water-

filled pipe with a=b ¼ 0:9 in Fig. 3(f), the slope of the dis-

persion curve of the backward mode L(0,37)b,pl changes its

sign twice at points ZGV1 and ZGV2.

In fact, it is found that the phenomenon of double ZGVs

is not rare. For example, in the water-filled pipe with

a=b ¼ 0:95, the strong repulsion between the backward

mode L(0,5)b,p in the hollow pipe and the 12 forward modes

L(0,66)l,…, L(0,77)l in the water cylinder generates 12 back-

ward modes and 15 ZGVs. The first three backward modes

L(0,72)b,pl, L(0,73)b,pl, and L(0,74)b,pl are the double-ZGVs

type, as illustrated in Fig. 5. All the other 9 higher order

backward modes L(0,75)b,pl,…, L(0,83)b,pl belong to the

single-ZGV type. Figures 5(a) and 5(b), respectively, show

dispersion spectra and group velocity dispersion curves of

the three double-ZGVs backward modes, and the six ZGV

points, ZGV1… ZGV6. Dotted lines in Fig. 5 represent back-

ward waves. The group velocity is calculated using the rela-

tion with phase velocity, as Vg ¼ V½1� ðx=VÞðdV=dxÞ��1:
As illustrated in Fig. 5(b), each backward mode exists in a

narrow frequency range which is bordered by two ZGV

points, and it has negative group velocities.

In practice, most pipelines that are transmitting liquid are

designed to have large inner radii and relatively thin thick-

nesses for reasons of cost. The existence of backward modes

with double-ZGVs is common. In order to provide an illustra-

tion, we consider a typical oil pipeline of internal and external

radii 482 and 508 mm, respectively. The longitudinal bulk ve-

locity and density of the oil are 1290 m/s and 800 kg/m3; and

the longitudinal and shear bulk velocities, and density of the

stainless steel pipe are 5980 m/s, 3300 m/s, and 7800 kg/m3,

respectively. From numerical results, it is found that the

strong coupling between the backward mode L(0,5)b,p in the

hollow steel pipe and the 13 forward propagating longitudinal

modes in the oil cylinder produces 13 backward modes and

17 ZGV points in the oil pipe. Moreover, the first four back-

ward modes belong to the double-ZGVs type.

D. Influence of the density ratio

In this section, the influence of the density ratio q1=q2

on the coupling strength is investigated. Considering the

thin-walled steel pipe with a=b ¼ 0:9 as an illustration, ma-

terial properties of the pipe and the fluid are the same as

those in Fig. 3(f), and the only variable is the fluid density.

The steel density is q2 ¼ 7900 kg/m3, and the fluid density

q1 varies from 10 to 11 000 kg/m3, i.e., the density ratio

q1=q2 changes from 0.0013 to 1.39. Dispersion spectra of

longitudinal modes in fluid columns with different q1, in the

hollow pipe, and in fluid-filled pipes with different density

FIG. 5. (Color online) (a) Dispersion spectra and (b) group velocity disper-

sion curves of the three backward modes in the steel pipe filled with water.

Each backward mode has two ZGV points. The inner and outer radii of the

pipe are a¼ 9.5 mm and b¼ 10 mm. The dotted and solid lines represent

backward and forward modes, respectively. The green dots denote ZGV

points.

FIG. 4. (Color online) In the dimensionless frequency range xd=VT � 8,

cutoff frequencies of longitudinal modes in the water columns with radii

being a¼ 1, 2,…, 9, and 9.5 mm, respectively, are denoted by black dots.

And ZGV frequencies of the backward modes L(0,5)b,p in hollow steel pipes

with the same outer radius b¼ 10 mm and inner radii being a¼ 1, 2,…, 9,

and 9.5 mm, respectively, are denoted by red triangles.
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ratios q1=q2 are numerically simulated, respectively. Typical

results are given in Fig. 6.

For a fluid column, the secular Eq. (12), i.e.,

DlðVf ;x; kÞ ¼ 0; is the function of the fluid velocity Vf . It is

irrelevant to the fluid density q1, if Vf is assumed to be inde-

pendent of q1. Hence, in the range xd=VT � 8, forward

modes L(0,m)l (m¼ 1,2,.,48) for fluid columns of different

densities correspond to the same dispersion spectra, as pre-

sented in Fig. 6(a). Similarly, for a hollow cylinder, the secu-

lar Eq. (13) DpðVL;VT ;x; kÞ ¼ 0, that is the function of bulk

velocities VT and VL, is independent of the cylinder density

q2. Dispersion spectra of the forward modes L(0,m)p

(m¼ 1,2,…,5) and the backward mode L(0,5)b,p are given in

Fig. 6(b). The slopes of the two straight lines in Fig. 6(b) are

equal to 2p and 2pVL=VT , respectively.

For a fluid-filled cylinder, the density ratio q1=q2 does

not affect the first term of the secular Eq. (10), i.e., the

decoupling term that is the product of two secular equations

Dl and Dp. However, it does affect the second term (the

coupling term), as it appears in the matrix element

M21 ¼ �q1a2x2P0ða1aÞ=q2V2
T : For instance, dispersion

spectra of L(0,m)pl (m¼ 1,2,…,53) modes corresponding to

q1=q2 ¼ 0.013, 0.253, and 1.14 are given in Figs. 6(c), 6(d),

and 6(e), respectively. Slopes of three straight lines (dashed

lines) in Figs. 6(c)–6(e) are 2pVf =VT , 2p, and 2pVP=VT .

Here, VP ¼ 2VT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

T=V2
L

p
� 5377 m/s is the plate veloc-

ity. In Fig. 6(c), for the small density ratio q1=q2 ¼ 0.013,

the coupling strength is weak. The contribution of the guided

modes propagating in the hypothetical fluid column can be

almost perfectly separated from those propagating in the

solid cylinder. In Fig. 6(d), for q1=q2 ¼ 0.253, the coupling

strength is stronger than that in Fig. 6(c). The decoupling

model provided in this paper is still available. That is, if the

small gaps between neighboring dispersion curves of

L(0,m)pl in Fig. 6(d) are linking together, dispersion curves

of L(0,m)p in Fig. 6(b) can be observed. In Fig. 6(e), for

q1=q2 ¼ 1.14, the coupling strength is strong, and the decou-

pling model is not available.

The coupling strength, which is related to the density

ratio, clearly affects the number and distribution of backward

modes in fluid-filled pipes, as shown in Figs. 6(c), 6(d),

and 6(e). For clarity, we present a zoomed view of the rele-

vant portion of the spectra, shown dispersion curves in

the dimensionless frequency range 5:25 � xd=VT � 6:5
and in the dimensionless wavenumber range kd=2p � 0:4.

Dispersion spectra corresponding to q1 ¼ 10, 100, 200, 500,

2000, and 9000 kg/m3 are given in Figs. 7(a)–7(f), respec-

tively. Numbers of backward modes, backward modes with

double-ZGVs, and ZGV points corresponding to different

densities q1 in the range 5:25 � xd=VT � 6:5 are listed in

Table I.

In Fig. 7(a), for q1=q2 � 0.0013, the coupling strength

is quite weak. This weak coupling between the backward

mode L(0,5)b,p and the forward modes L(0,34)l, L(0,35)l,

and L(0,36)l generates four backward modes L(0,m)b,pl

(m¼ 37,…,40) and six ZGV points. The L(0,37)b,pl and

L(0,38)b,pl exhibit two ZGV frequencies on the same branch.

The frequency-gaps between the neighboring backward

modes are quite small. If we ignore these small gaps and link

the four backward modes, the linked dispersion curve almost

coincides with the dispersion curve of the L(0,5)b,p mode in

Fig. 3(e).

In Fig. 7(b), for q1=q2 � 0.013, the coupling strength is

relatively stronger than that in Fig. 7(a). Four backward modes

L(0,m)b,pl (m¼ 37,…,40) and 6 ZGV points are generated,

and the gaps between neighboring backward modes are rela-

tively larger. The repulsion between two forward modes

L(0,5)p and L(0,39)l produces the backward mode L(0,43)b,pl

and the associated ZGV, i.e., the point z7 in Fig. 7(b).

The coupling strength (repulsion) becomes stronger

with increasing density ratio. As shown in Figs. 7(c) and

7(d), the strong repulsion generates more backward modes

and ZGV points. However, as listed in Table I, numbers of

backward modes and ZGVs do not monotonically increase

with increasing q1=q2.

The transition from two ZGV points to one ZGV point

on the same branch can be observed with increasing q1=q2.

In Figs. 7(a)–7(d), L(0,37)b,pl and L(0,38) b,pl exhibit double-

ZGVs. In Fig. 7(e), for q1=q2 � 0.253, only L(0,37)b,pl

exhibits two ZGV frequencies. In Fig. 7(f), for q1=q2� 1.14,

FIG. 6. (Color online) Dispersion

spectra of longitudinal modes (a) in the

fluid column, (b) in the hollow steel

pipe, (c) in the fluid-filled pipes with

fluid densities being 100 kg/m3, (d)

2000 kg/m3, and (e) 9000 kg/m3,

respectively. Dotted lines denote back-

ward modes.
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none of the six backward modes L(0,m)b,pl (m¼ 38,…,43)

exhibits two ZGVs. The reason is that the larger the density

ratio q1=q2, the stronger the coupling strength (i.e., repulsion

force). For example, in Fig. 7(e), if the repulsion between

L(0,39)b,pl and L(0,38)b,pl is strong enough, it leads to the

transition from two ZGVs to one ZGV on the lower branch

(i.e., the L(0,38)b,pl mode). Moreover, the strong repulsion

could cause the disappearance of a backward mode. For

example, the L(0,37)b,pl in Fig. 7(e) is a backward mode,

while the L(0,37)pl in Fig. 7(f) is a forward mode.

Particularly, the strong coupling between a forward

mode in the hollow cylinder and a forward mode in the hy-

pothetical fluid column could also produce a backward

mode. For instance, we present a zoomed view of the rele-

vant portion of the spectra in Fig. 6, shown dispersion curves

in the dimensionless frequency range 3:14 � xd=VT � 3:16

and in the dimensionless wavenumber range kd=2p � 0:05.

Dispersion curves of the forward mode L(0,19)l in the fluid

column and the forward mode L(0,3)p in the hollow cylinder

are given in Fig. 8(a). Spectra corresponding to q1 ¼ 10,

100, 9000, and 11 000 kg/m3 are given in Figs. 8(b)–8(e),

respectively.

In Fig. 8(a), two forward modes L(0,19)l and L(0,3)p

have similar cutoff frequencies and an intersection point in

the vicinity of k¼ 0. In Fig. 8(b), for q1=q2 � 0:0013, the

FIG. 7. (Color online) Dispersion

spectra of longitudinal modes in fluid-

filled pipes of fluid densities q1 ¼ 10,

100, 200, 500, 2000, and 9000 kg/m3

are given in (a) to (f), respectively. For

instance, the number 36 denotes

L(0,36)pl, and the number 37b denotes

L(0,37)b,pl. The ZGV points are

marked by green dots. The dashed and

solid lines represent backward and for-

ward modes, respectively.

TABLE I. Numbers of backward modes (BW), ZGV points, and backward

modes with D-ZGV in fluid-filled pipes of different fluid densities q1.

Density q1 (kg/m3) BW D-ZGV ZGV

10 4 2 6

50 4 2 6

100 5 2 7

200 6 2 8

500 7 2 9

1000 7 1 8

1500 7 1 8

2000 7 1 8

9000 6 0 6

11 000 6 0 6
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weak coupling generates a small gap between curves of two

forward modes L(0,22)pl and L(0,23)pl. In Figs. 8(c) and

8(d), with increasing density ratio q1=q2, the coupling

strength (repulsion force) is stronger, the gap becomes wider,

while the separation of two cutoff frequencies of L(0,22)pl

and L(0,23)pl becomes narrower. In Fig. 8(e), for q1=q2

� 1.39, the strong repulsion generates a backward propagat-

ing region in the lower branch, i.e., the backward mode

L(0,22)b,pl.

E. Excitation intensity properties

It is assumed that an axisymmetric point source model

is placed at the origin of the cylindrical coordinate system of

a liquid-filled pipe, and only axisymmetric longitudinal

modes (n¼ 0) are excited. Amplitude spectra of longitudinal

modes, including backward and forward modes, excited by

the point source are numerically calculated using Eqs.

(27)–(30). The objective is to explore the excitation proper-

ties of backward waves and ZGV modes.

Typical results of amplitude spectra of backward modes

with single-ZGV and double-ZGVs are presented in Figs. 9

and 10, respectively. The solid and dotted lines present

amplitudes of forward and backward modes, respectively.

Verification of numerical results is achieved by checking

that, at the liquid-solid interface r¼ a, the radial displace-

ment components in the liquid are equal to that in the pipe,

i.e., the continuous boundary condition ur;1jr¼a ¼ ur;2jr¼a is

satisfied.

We use the complex contour integration and residue

method to evaluate the excitation of waveguide modes. This

method is widely used in geophysical prospecting in cased

holes which can be modeled as fluid-filled cylinders.37,50

And it can provide conceptual tools in the isolation of the

contribution of specific modes of wave propagation to the

composite waveform. Other methods, for example, the

method from Auld56 (modal analysis), which is commonly

used for analyses of excitation of guided modes in plates,57

leads to similar results presented in this paper. For a hypo-

thetical fluid column, it can be theoretically proved that the

complex contour integration method and the Auld’s method

produce the same expressions of displacement compo-

nents.58 For a liquid-filled pipe, it will be interesting to theo-

retically prove that the two methods lead to the similar

solutions.

1. Single ZGV point in one backward mode

In the water-filled pipe with a/b¼ 0.8, as shown in Fig.

2(b), slopes of dispersion curves of the three backward

modes L(0,19)b,pl, L(0,20)b,pl, and L(0,21)b,pl only change

their signs for once, that is, each mode has a single ZGV

point at ZGV1, ZGV2, and ZGV3, respectively.

Absolute values of the axial and radial displacement

components of guided modes in the water-filled pipe are

denoted uz and ur, respectively. The components uz and ur of

the three backward and 24 forward modes excited by the

point source, with the radial distance r¼ a¼ 8 mm (i.e., at

the water-pipe interface), are shown in Figs. 9(a) and 9(b), as

functions of frequency in the range 5:4 � xd=VT � 6:1.

For each of the three backward modes, the amplitudes

of uz and ur are seen to increase dramatically as the ZGV fre-

quency is approached, which implies a highly excitable con-

dition at ZGV1, ZGV2, and ZGV3 (i.e., ZGV resonances).

The other significant feature in Fig. 9(b) is that amplitudes

of ur for backward modes also rise sharply as their own cut-

off frequencies, i.e., fcut1, fcut2, and fcut3, are approached,

respectively (i.e., thickness resonances). While this feature is

not present in Fig. 9(a). In fact, the component uz1 of each of

backward or forward modes needs to be zero at the cutoff

frequency. The reason is that, at a mode’s cutoff frequency,

the wavenumber is zero (k¼ 0), and this appears in the nu-

merator in the Eq. (28) for the calculation of uz1. This rela-

tion has been used to verify our numerical results.

In Fig. 9, ZGV resonances at ZGV frequencies and

thickness resonances at cutoff frequencies are favorably gen-

erated. This can be explained theoretically. For example, the

denominator in the Eq. (27), which is the expression of the

radial displacement component in the fluid ur,1, is @D=@k. It

can be expressed as @D=@k ¼ ð@D=@xÞð@x=@kÞ; where

@x=@k is the group velocity. For each mode, at its cutoff fre-

quency and ZGV frequencies (if exist), its group velocity

FIG. 8. (Color online) Dispersion

spectra of the L(0,19)l mode in the liq-

uid column and the L(0,3)p mode in

the hollow cylinder with radius ratio

a/b¼ 0.9 (a). Dispersion spectra of the

L(0,22)pl and L(0,23)pl modes in fluid-

filled pipes with density ratios (b)

q1=q2 � 0.0013, (c) q1=q2 � 0.013,

(d) q1=q2 � 1.14, and (e) q1=q2

� 1.39, respectively.
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Vg ¼ @x=@k is equal to zero, and the denominator is equal

to zero. Hence, theoretically, amplitudes of ur,1 are infinite at

cutoff and ZGV frequencies, as shown in Fig. 9(b), which

corresponds to thickness and ZGV resonances, respectively.

Similar derivations apply to the expression of ur,2 in the

Eq. (29).

As shown in Fig. 9(c), the dominant mode highly excita-

ble by an axisymmetric point source is the L(0,1)pl mode,

which is equivalent to A0 mode in plates. However, if the ex-

citation frequency is relatively high, as shown in Figs. 9(a)

and 9(b), the amplitudes of ur and uz for each of the three

backward modes in the frequency range in which they exist

are orders of magnitude larger than those of the other for-

ward modes. This implies that, in certain frequency ranges,

the backward modes are highly excitable by a point source

in a liquid-filled pipe.

2. Double ZGV points in one backward mode

We close by considering the excitation properties of a

backward mode with double ZGVs, and the water-filled pipe

with a/b¼ 0.95 is used for illustration. As displayed in

Fig. 5, each of the three backward modes L(0,72)b,pl,

L(0,73)b,pl, and L(0,74)b,pl possesses two ZGV points at the

locations marked ZGV1…ZGV6 in the figure. Amplitude

spectra of the axial and radial displacement components uz

and ur in the frequency range 5:4 � xd=VT � 6:1 are given

in Figs. 10(a) and 10(b), respectively.

In the frequency range 5:4 � xd=VT � 6:1, the ampli-

tudes for the other forward modes studied are orders of magni-

tude lower than those of the backward modes with double

ZGVs, implying an excitable condition for these backward

modes. In addition, for each of the three backward modes, the

FIG. 9. (Color online) In the water-filled pipe with radius ratio a/b¼ 0.8,

amplitude spectra of the axial and radial displacement components, uz and

ur, of guided modes on the liquid-solid interface in the frequency range

5:4 � xd=VT � 6:1 are given in (a) and (b), respectively. Spectra of ur in

the range xd=VT � 6:1 are given in (c). Each backward mode has a single

ZGV point. The dotted and solid lines denote backward and forward modes,

respectively.

FIG. 10. (Color online) In the water-filled pipe with radius ratio a/b¼ 0.95,

amplitude spectra of the axial and radial displacement components of guided

modes, i.e., uz on the external interface r¼ b¼ 10 mm and ur on the internal

interface r¼ a¼ 9.5 mm, are given in (a) and (b), respectively. Each back-

ward mode has two ZGV points. The dotted and solid lines denote backward

and forward modes, respectively.
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amplitudes of uz and ur both increase dramatically as the fre-

quency approaches the upper and lower bounds of the fre-

quency range in which the mode exists, i.e., the two ZGV

frequencies. It means that, at the ZGV frequencies, all these

backward modes are highly excitable (i.e., ZGV resonances).

As shown in Fig. 10(b), peaks of amplitudes of ur are also

exhibited at the cutoff frequencies of the backward modes

(i.e., thickness resonances). Moreover, as discussed in Sec.

III C, the water containment in this thin-walled pipe causes

three backward modes with double ZGVs and nine backward

modes with single ZGV. From numerical results, the other

nine backward modes with single ZGV, L(0,75)b,pl,…,

L(0,83)b,pl, and the associated nine ZGV modes are also excit-

able. Thus, it is possible to excite 15 ZGV resonances using

the point source in this thin-walled pipe filled with water.

Generally, for a thin-walled pipe, the inclusion of water

can dramatically affect the backward modes. It may cause

two types of backward modes with single- or double-ZGV

points, greatly increasing the number of ZGV modes. From

the analyses of excitation properties, it is concluded that all

the ZGVs are highly excitable by the point source, and those

ZGV frequencies are usually shifted from the original ZGV

frequency in the hollow pipe. That is, it is expected that a

number of ZGV resonances will exhibit near the original

ZGV frequency. This group of ZGV resonances could

increase the intensity of the ZGV signal.

IV. CONCLUSIONS

Generally, for a thick-walled pipe, contained liquid only

mildly affects the number of backward waves and ZGV

modes. However in the case of a thin-walled pipe, the pres-

ence of contained liquid leads to an increased number of

backward propagating waves and ZGV modes.

Mode coupling can be used to explain the effect of intro-

ducing the liquid. The increased number of backward waves

and ZGVs are caused by strong coupling between a backward

mode in the hollow pipe and several forward modes in the

liquid cylinder. In the dimensionless frequency-wavenumber

plane, the strength of repulsion (i.e., coupling) is related to

the frequency separation between two dispersion curves of a

pair of longitudinal modes propagating, respectively, in the

liquid cylinder and in the hollow pipe. The general rule is

that the smaller the frequency separation, the stronger the

repulsion becomes. The strongest repulsion corresponds to

the case of intersection of the dispersion curves for two

modes. If the repulsion between a backward mode in the hol-

low pipe and a forward mode in the liquid cylinder is suffi-

ciently strong, it could produce two backward modes in the

liquid-filled pipe, and each of the two backward modes may

possess one or two ZGV points.

In a liquid-filled pipe, a backward mode may have two

ZGV points. This type of backward mode is often found in a

thin-walled pipe having a radius ratio a/b approaching unity.

In practical projects, most oil pipelines have a relatively thin-

wall compared to the inner and outer radii. Hence, the

double-ZGV type of backward mode could be expected to be

common. From the excitation analysis, it is concluded that

backward modes and ZGVs are highly excitable by a point

source which is placed centrally in the liquid-filled pipe. This

implies that the ZGV technique has the potential to be applied

for in-service inspection of pipelines which are carrying liquid.

In this paper, we have limited our study to longitudinal

modes. In practice, if a point source is not perfectly centered

(or the circular cylinder is not perfect), then all the mode

families, axisymmetric modes longitudinal L(0,m) and tor-

sional T(0,m), and non-axisymmetric flexural modes F(n,m)

(n¼ 1,2,… and m¼ 1,2,…) are excited. And a high number

of F(n,m) modes also exhibit backward branches and ZGV

points.18 According to Ibanescu et al.,55 in a circular wave-

guide with constant cross-section, there is no interaction

between a longitudinal mode and a flexural mode. And due

to the continuous rotational symmetry of a fluid-filled pipe,

longitudinal and flexural modes are uncoupled for any wave-

number k.55 Hence, the backward branches of longitudinal

modes are not relevant to those of flexural modes. The analy-

ses of mode coupling and excitation of longitudinal back-

ward modes in a fluid-filled cylinder could be extended for

analyzing properties of ZGV resonances of flexural modes.

Moreover, this peculiar coupling effect of double ZGV

points could be also observed both in a viscous liquid and a

fluid-filled cylinder immersed in fluid.
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APPENDIX: MATRIX ELEMENTS OF DISPERSION
EQUATION

The dispersion equation of axisymmetric guided waves

in a pipe filled with liquid is found by setting to zero the de-

terminant of a 5� 5 coefficient matrix, i.e., Eq. (9). The ma-

trix elements are listed using the following notation:

v1 ¼ a1a; w1 ¼ a2a; w2 ¼ a2b; x1 ¼ b2a;

x2 ¼ b2b; Y1 ¼ ka; Y2 ¼ kb;

M11 ¼ v1P00ðv1Þ;
M12 ¼ w1P00ðw1Þ;
M13 ¼ Y1P00ðx1Þ;
M14 ¼ w1Q00ðw1Þ;
M15 ¼ Y1Q00ðx1Þ;

M21 ¼ �q1a2x2P0ðv1Þ=q2V2
T ;

M22 ¼ ð2Y2
1 � a2x2=V2

TÞP0ðw1Þ � 2w1P00ðw1Þ;
M23 ¼ 2Y1½x1P0ðx1Þ � P00ðx1Þ�;
M24 ¼ ð2Y2

1 � a2x2=V2
TÞQ0ðw1Þ � 2w1Q00ðw1Þ;

M25 ¼ 2Y1½x1Q0ðx1Þ � Q00ðx1Þ�;
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M31 ¼ 0;

M32 ¼ 2w1Y1P00ðw1Þ;
M33 ¼ ðY2

1 þ x2
1ÞP00ðx1Þ;

M34 ¼ 2w1Y1Q00ðw1Þ;
M35 ¼ ðY2

1 þ x2
1ÞQ00ðx1Þ;

M41 ¼ 0;

M42 ¼ ð2Y2
2 � b2x2=V2

TÞP0ðw2Þ � 2w2P00ðw2Þ;
M43 ¼ 2Y2½x2P0ðx2Þ � P00ðx2Þ�;
M44 ¼ ð2Y2

2 � b2x2=V2
TÞQ0ðw2Þ � 2w2Q00ðw2Þ;

M45 ¼ 2Y2½x2Q0ðx2Þ � Q00ðx2Þ�;

M51 ¼ 0;

M52 ¼ 2w2Y2P00ðw2Þ;
M53 ¼ ðY2

2 þ x2
2ÞP00ðx2Þ;

M54 ¼ 2w2Y2Q00ðw2Þ;
M55 ¼ ðY2

2 þ x2
2ÞQ00ðx2Þ:
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