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Abstract: Direction of arrival (DOA) estimation is a basic and important problem in signal processing and has been widely
applied. Its research has been advanced by the recently developed methods based on Bayesian compressive sensing
(BCS). Among these methods, the ones combined with an off-grid (OG) model have been proved to be more accurate
than the on-grid ones. However, the conventional BCS-based methods have a disadvantage of the slow speed. In this
study, a high-efficiency iterative algorithm, based on the fast relevance vector machine and the OG model, is
developed. This new approach applies to both the single- and multiple-snapshot cases. Numerical simulations show
that the proposed method estimates DOAs more accurately than the ℓ1-penalisation method and computes more
efficiently than the conventional BCS-based methods. Finally, comparisons with state-of-the-art methods and Cramer–
Rao bound are also reported.
1 Introduction

Direction of arrival (DOA) estimation using sensor arrays is
important in radar, sonar, seismic systems, acoustic source
localisation, mobile communication etc. [1, 2]. The narrowband
far-field source case is assumed in this paper, and the direction
information is to be estimated. There are a lot of high-resolution
DOA estimation algorithms such as MUSIC [3, 4] and ESPRIT
[5]. However, most of these methods need a covariance matrix
estimate, and rely on different prerequisites, for example, high
signal-to-noise ratio (SNR) level, large number of snapshots and
estimate of source number. In many practical applications, only a
very small number of snapshots, even a single snapshot, are
available for DOA estimation. Therefore, it is necessary to design
estimators for the scenario of few snapshots (even one).
Fortunately, a number of effective methods have been proposed
for DOA estimation with low number of snapshots, for example,
iterative adaptive approach (IAA)-based algorithms [6–10] and
compressive sensing (CS)-based algorithms [10–12].

In [6], an IAA for amplitude and phase estimation (IAA-APES) has
been proposed. The IAA-APES algorithm is an iterative and
non-parametric algorithm that provides an accurate and
high-efficiency estimate under severe snapshot limitations. The
Bayesian information criterion [13] is used in conjunction with
IAA-APES to give sparse results, which are usually assumed in
DOA estimation. Furthermore, a parametric relaxation-based cyclic
approach (RELAX) [14, 15] has also been used in
IAA-APES&RELAX [6] to further improve the estimation accuracy.
Actually, IAA-APES&RELAX is a high-efficiency off-grid (OG)
spectral estimation algorithm. The comparisons between different
OG algorithms will be demonstrated in our numerical simulations.

Recently, DOA estimation techniques have been advanced by the
CS [16] methods. In the case of a single snapshot for DOA
estimation, ℓ1-penalisation is a favourable approach to the sparse
signal recovery, because it does not depend on the sample
covariance matrix and sources’ correlativity, and can accurately
estimate multiple DOAs only in a single snapshot [11].

In the CS field, sparse Bayesian learning (SBL)/inference (SBI)
with the relevance vector machine (RVM) [17] has been another
popular method for the sparse signal recovery. The concept of
Bayesian CS (BCS) has been proposed in [18]. In BCS, the CS
inversion problem is formulated from an SBL perspective. The
analysis of RVM [19, 20] has proved that the RVM provides a
tighter approximation to the ℓ0-norm sparsity than the ℓ1-norm.

The approach using BCS in DOA estimation has been presented in
[21], including single-snapshot BCS [18] and multiple-snapshot BCS
(MT-BCS) [22]. Some RVM-based DOA estimation methods are
also researched in [23–30]. In the case of multiple snapshots, the
SBL approach for the ℓ1-SVD model [11] has been proposed in
[31]. These methods all show the accurate and sparse results of the
DOA estimation problem. Nevertheless, only the conventional
RVM has been used in these articles, which is involved in
inverting a large matrix and consumes a large amount of
computation. Compared with the conventional RVM algorithm, the
fast RVM algorithm developed in [32, 33] can compute more
efficiently. Through adding, deleting and re-estimation candidate
basis functions in each iteration, the fast RVM can monotonically
maximise the marginal likelihood and choose basis functions smarter.

Although the existing CS or BCS-based methods have shown their
outstanding performance in DOA estimation, there are still more or
less deviations when the actual DOAs are not on the sampling grid.
Not to be constrained on the sampling grid, OG methods for DOA
estimation are proposed in [34]. There are also some further
discussion about the OG method in [35–38]. In [31], an SBL
method based on the OG model for DOA estimation has been
proposed. This method is referred as OG-SBI. It can obtain a more
accurate estimation not restricted by the fixed sampling grid
(on-grid model) and an excellent sparsity as BCS.

Nevertheless, the OG-SBI algorithm is realised by the
conventional RVM, there is no advantage in computational
efficiency. In this paper, we propose a fast RVM algorithm using
the OG adjustment for both single- and MT DOA estimation. The
proposed algorithm has the advantages of both the accurate
estimation by OG model and the high-efficiency computation by
fast RVM. We refer to the proposed algorithm in this paper as OG
fast RVM (OG-FastRVM). Some state-of-the-art single-snapshot
algorithms and subspace-based algorithms are taken as
comparisons in numerical simulations. Through numerical
simulations, we show that OG-FastRVM has a smaller root mean
square error (RMSE) in comparison with the ℓ1-penalisation on a
fixed grid. The simulations also demonstrate the advantages of
OG-FastRVM compared with the state-of-the-art OG algorithms,
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for example, OG-SBI and IAA-APES&RELAX. In addition, the
estimation accuracy of the MT version of OG-FastRVM
(MT-OG-FastRVM) improves with the increase of the number of
snapshots.

The rest of this paper is organised as follows. Section 2 introduces
the sparse representation for the DOA estimation model. Section 3
studies the SBI of the real-valued model for DOA estimation and
the origination of fast RVM algorithm. Section 4 introduces the
proposed OG-FastRVM algorithm and its MT version. Section 5
presents our numerical simulations. Section 6 concludes this paper.
2 Sparse representation for the DOA estimation
model

In this paper, we consider K far-field narrowband signals sk(t), k = 1,
…, K, impinging on a uniform linear array (ULA) of M
omnidirectional sensors. The signal directions are θk, k = 1, …, K.
The observation model can be presented as

y(t) = A(u)s(t)+ n(t), (1)

where y(t) = [y1(t), . . . , yM (t)]
T, s(t) = [s1(t), . . . , sK (t)]

T, θ =
[θ1, …, θK]

T and n(t) = [n1(t), . . . , nM (t)]
T. Precisely, ym(t) and

nm(t), m = 1, …, M, are the output and noise of mth sensor at
time t, respectively. The matrix A(u) is the so-called array
manifold matrix, which is composed of the K steering vectors
a(uk ), k = 1, . . . , K.

Here, we formulate the DOA estimation problem as a sparse
representation problem. The single-snapshot formulation in this
section parallels the ones in [11, 12], where it was presented as the
application of the ℓ1-norm penalisation algorithm. The
single-snapshot case is first considered and to be extended to the
multi-snapshot one in Section 4.2. To handle this problem as a
sparse representation problem, we introduce an overcomplete
representation A in terms of N DOAs of interest. Let
ũ = {̃u1, . . . , ũN} be a fixed sampling grid which covers all the
DOAs of the K actual signals. The number of potential DOAs N
denotes the grid number and typically satisfies N ≫M . K.

Without loss of generality, let ũ be a uniform grid, the grid

interval r = ũn − ũn−1 = p/N .
We denote the matrix A composed of N potential steering vectors:

A = [a(̃u1), a(̃u2), . . . , a(̃uN )].
The observed single-snapshot signal is expressed as

y = Ax+ n, (2)

where x is the signal vector. For n = 1, …, N, x has K non-zero
elements

xnk = sk (t), k = 1, . . . , K;
xn = 0, otherwise,

(3)

with nk∈ {1, …, N}. Assuming ũnk , k = 1, . . . , K belongs to the
set of the K DOAs θk, k = 1, …, K, and we will discuss the biased
assumption in Section 4 in which an OG method will be used to
offset the bias. Therefore, the problem turns to be CS inversion
problem for recovering the vector x due to the sparsity of N ≫K.
A typical means of solving such a problem is via an ℓ1-regularised
formulation [11, 39]

argmin
x

{||y− Ax||22 + l||x||1}, (4)

where the parameter l controls the relative weight applied to the
Euclidian error and the signal sparsity. Instead, the constrained
version of the aforementioned problem is shown as follows:

min ||x||1
s.t. ||y− Ax||22 ≤ e,

(5)
2

where e is a user specified parameter, it should be chosen high
enough so that the probability of ||n||22 ≥ e is small. The problem
in (5) can be efficiently solved in the framework of second-order
cone [11].
3 Sparse Bayesian inference

To deal with the complex data model (4) via the BCS approach [21],
(2) is rewritten as

<{y}
ℑ{y}

[ ]
= <{A} −ℑ{A}

ℑ{A} <{A}
[ ] <{x}

ℑ{x}
[ ]

+ <{n}
ℑ{n}

[ ]
, (6)

where<{·} and ℑ{·} denote the real and imaginary parts, respectively.
Therefore, the complex problem is turned into a real-valued form in
order that we can deal with it through the BCS method and further
the fast RVM algorithm. The compact form of (6) is shown as follows:

ỹ = Ã̃x+ ñ. (7)

Under an assumption of circular-symmetric Gaussian noise [40], we
have the Gaussian likelihood model of (7)

p(̃y|̃x, s2) = (2ps2)−N/2 exp − 1

2s2
||̃y− Ã̃x||2

{ }
. (8)

The aforementioned discussion converted the conventional CS
inversion problem into a maximum a posteriori approximation to a
Bayesian linear regression, while the sparsity of x̃ is limited by a
Laplace sparseness prior. Since the Laplace prior is not conjugate to
the Gaussian likelihood [18], a more flexible prior model needs to
be invoked. This issue has been referred in RVM [17]. In the RVM,
a hierarchical prior on x̃ has been proposed, which allows
convenient conjugate-exponential analysis. The subsequent
theoretical analysis for RVM [19, 20] has proved that the RVM
provides a tighter approximation to the ℓ0-norm sparsity than the
ℓ1-norm. The two-stage hierarchical prior on x̃ is

p(̃x|a) =
∏N
i=1

N(wi|0, a−1
i ),

p(a|a, b) =
∏N
i=1

G(ai|a, b),
(9)

where α is the vector of N hyperparameters, each αi indicates the
precision of a Gaussian density associated with x̃i.

On the basis of the combination of (8) and (9), given ỹ, our
objective is to evaluate x̃ and σ−2(α0): namely, maximising the
posterior density function

p(̃x, a, a0 |̃y) = p(̃x|̃y, a, a0)p(a, a0 |̃y). (10)

According to Bayes’ rule, (10) turns to be

max [ p(̃x|̃y, a, a0)] · [ p(̃y|a, a0)p(a)p(a0)]
{ }

. (11)

Given the hyperparameters α and α0, by maximising the first term of
(11), the mean and covariance of x̃ from the posterior expression are
evident [17, 18]

m̃ =a0SÃ
Tỹ,

S =(a0Ã
TÃ+L)−1,

(12)

where Λ = diag(α1, α2, …, αN). For the second term of (11), fixing
m̃ and Σ, the logarithm marginal likelihood for α and α0, L(a, a0)
IET Radar Sonar Navig., pp. 1–8
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Fig. 1 OG-FastRVM
can be expressed as follows [18]:

L(a, a0) = − 1

2
[M log 2p+ log |C| + ỹTC−1ỹ], (13)

with C = a−1
0 I + ÃL−1ÃT. The conventional method employs the

estimates for α and α0 to solve the following partial differential
equations [17]

∂L
∂ai

⇒ anew
i = gi

m̃2
i

, i [ {1, 2, . . . , N}

∂L
∂a0

⇒ 1

anew
0

=s2 = ||̃y− Ãm̃||2
M −∑

i gi

(14)

where gi: = 1− αiΣii, with Σii the ith diagonal element of Σ in (12).
Noting that the combination of (12) and (14) implies an iterative

algorithm, that is, calculating {m̃, S} for the given {α, α0}, vice
versa. When the iteration reaches a convergence criterion, we can
get the estimation of sparse signals as

x̂ = m, (15)

whose K largest terms are {̂xi1 , . . . , x̂iK }. Here,

m̃ = [<{m}Tℑ{m}T]T. Therefore, the corresponding K underlying
DOAs are {̃ui1 , . . . , ũiK }.

However, solving the matrix inversion in (12) consumes a large
amount of computation, especially in the case of a large dimension
N: namely, a dense sampling grid [18]. The numerical experiment
in [31] has shown this drawback. For computing more efficiently,
the fast RVM algorithm has been developed in [32, 33], and
applied in BCS [18] and pattern synthesis [41]. The original idea
of the fast RVM algorithm is extracting the part affected by αi
from L(a; a0), given α0

L(a; a0) = L(a−i; a0) + ℓ(ai; a0), (16)

where L(a−i; a0) is the marginal likelihood with αi (and thus x̃ and
ãi) removed from the model. Therefore, the terms in αi can be
independently dealt with, thereby we can sequentially add and
delete the candidate basis function (one column of Ã) or
re-estimate the value of αi [32, 33]. The criterion of which the
adding, deleting or re-estimating branch should be chosen is
maximising the increment DL of the marginal likelihood
L(a; a0). The details are appended in Algorithms 3, 4 and 6
(Figs. 1a, 12 and 14).

The fast RVM algorithm enables an efficiently sequential addition
and deletion of candidate basis function (columns of Ã) to
monotonically maximise the marginal likelihood L(a;a0).
Compared with the original iteration presented in (12) and (14),
the fast RVM sequentially adds (or deletes) candidate basis
function to the procedure until all K relevant sparse basis functions
have been included. The weights associated with whose basis
functions are non-zero. Therefore, the computational load of the
algorithm is more related to K than N. Especially, when the
underlying signal is indeed sparse (K≪N ), the fast RVM is more
efficient than the original version.

In Algorithms 1–6 (Figs. 1, 10–14), we will show the
implementation details of the fast RVM algorithm with the OG
adjustment technique embedded in it. Algorithm 1 (Fig. 1) in
Section 4 is the overall structure of the proposed algorithm and
Algorithm 2–6 (Figs. 10–14) in the Appendix are the details.
4 OG-FastRVM algorithm

4.1 Theoretical formulation

An assumption has been considered in the aforementioned
formulation that the underlying DOAs θk, k = 1, …, K should
IET Radar Sonar Navig., pp. 1–8
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locate just on the sampling grids ũ = {̃u1, . . . , ũN}. However,
there is always more or less bias between the actual θk and the
nearest sampling grid point ũnk .

Considering an actual DOA uk � {̃u1, . . . , ũN}, the nearest
DOA sampling is ũnk , nk [ {1, . . . , N}. Compared with the

direct expression a(uk ) ≃ a(̃unk ), the more accurate linear
approximation can be formulated

a(uk ) ≃ a(̃unk )+ b(̃unk )(uk − ũnk ), (17)

with b(̃unk ) = da(̃unk )/d̃unk = a′ (̃unk ). On the basis of this
consideration, the single-snapshot observation model in (2) is
re-presented as [31, 34]

y = [A+ Bdiag(b)]x+ n

= F(b)x+ n,
(18)

where B = [b(̃u1), . . . , b(̃uN )], β = [β1, …, βN]
T and Φ(β) = [f1,

…, wN]. If there is a target direction θk located near ũnk , the
corresponding bnk

should get a value ∈ [−(1/2)r, (1/2)r], with r
as the grid interval. Otherwise, βn = 0. To get a more accurate
estimation without depending on the sampling grid density, β
needs to be estimated.

Following the definition in (6), the real-valued model of (18) is:

ỹ = F̃(b)̃x+ ñ. (19)

Then the processed dimensions M and N turn to be 2M and 2N. The
observation model used in the fast RVM algorithm is real-valued.
When we deal with a basis function f̃i, if the adjustment factor is
estimated, the conjugate basis function f̃i+N (or f̃i−N ) will be
affected. Therefore, the OG method used in [31] is not available
here. In this section, a modified OG method aimed to the fast
RVM algorithm will be proposed.

When β = [β1, …, βN]
T is estimated, it is evident that we need to

estimate only bnk
, k [ {1, . . . , K} associated with the K sampling

grids ũnk which are closest to the signal DOAs {θ1, …, θK}. In
practical calculation, the basis function set {fi}, where we choose
3



the estimation index i, should satisfy

fi [ {fm| argm {mm [ the maximum K entries of m}},

for the real-valued form

f̃i [ {f̃m| argm {m̃m [ the maximum 2K entries of m̃}}. (20)

In one iteration, if the algorithm [detailed in Algorithm 1 (Fig. 1)]
runs into the re-estimating branch for m̃i (thus ãi) and the
condition (20) is satisfied, we will estimate βi. We estimate β only
in the re-estimate branch, and only a single βi = βi + j0 is estimated
(due to the representation for only the deviation, βi is real-valued).
Therefore, the change of Φ caused by β is associated with only
the column fi. Similar to that, the change of F̃ happens at the ith

column DfR
i

DfI
i

[ ]
and the (N + i)th column −DfI

i

DfR
i

[ ]
. Here, ( · )R

and ( · )I denote the real and imaginary parts, respectively.
According to the index i, the relationship between the

corresponding vectors is

fi = ai + bibi,
Fig. 2 Single sample DOA estimation using FastRVM and OG-FastRVM
as#a Overall

b Detail illustrations: SNR = 20dB, K = 5, Δθmin = 4.64°, 20 trials
In (b), dot and cross represent OG-FastRVM and FastRVM, respectively, and the
dashed-line represents the actual position of DOAs

4

with the real-valued form

fR
i −fI

i

fI
i fR

i

[ ]
= aRi −aIi

aIi aRi

[ ]
+ <(bibi) −ℑ(bibi)

ℑ(bibi) <(bibi)

[ ]
.

= aRi −aIi
aIi aRi

[ ]
+ bRi −bIi

bIi bRi

[ ]
bi 0

0 bi

[ ]
.

(21)

Our target is to calculate the β in order to minimise the deviation
between the observation and the model in (18). The target function is

argmin
b

||y− [A+ B diag(b)]x||22. (22)

Here, we simplify it as follows:

||y− [A+ Bdiag(b)]x||22
≃||y− [A+ Bdiag(b)]m||22

= ||(y− Am)− bibimi||22

= (̃y− Ãm̃)− bRi −bIi
bIi bRi

[ ]
bi 0

0 bi

[ ]
mR
i

mI
i

[ ]∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
2

2

≃ ||(̃y− Am)− biBmi||22
= ||n− biBmi||22,

(23)

where mi = [m̃i, m̃i+N ]
T = [mR

i , m
I
i]
T and m = [m̃i1

, . . . , m̃i2K
]

[{i1, …, i2K} satisfy (20)]. Furthermore

||n− biBmi||22 = (n− biBmi)
T(n− biBmi)

= b2
i m

T
i B

T
Bmi − 2bin

TBmi + nTn. (24)

Therefore, (22) is approximately equivalent to

bi = argmin

bi[ −
1

2
r,
1

2
r

[ ] {b2
i m

T
i B

T
Bmi − 2bin

TBmi}, (25)
Fig. 3 Time consumptions of four methods: M = 24, K = 5
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thus

bi =
nTBmi

mT
i B

T
Bmi

= (̃y− Am)
T
Bmi

mT
i B

T
Bmi

, bi [ − 1

2
r,

1

2
r

[ ]
0, otherwise

⎧⎪⎨⎪⎩ (26)

The Algorithm 1 (Fig. 1) is the overall structure of the OG fast RVM
(OG-FastRVM) algorithm. The details are shown in Appendix.
4.2 Extend to the MT model

Considering a MT model of T snapshots, the signal model of (7)
turns into

ỹt = Ã̃xt + ñt , t = 1, . . . , T . (27)

Different from the single-snapshot BCS algorithm, MT-BCS [22]
exploits the correlation of the noise strength of multiple snapshots.
The MT version of the marginal likelihood (13), or equivalently,
its logarithm is expressed as follows:

LMT (a, a0) =
∑T
t=1

log p(̃yt|a, a0)

=
∑T
t=1

log

∫
p(̃yt |̃xt, a0)p(̃xt|a) d̃xt

=− 1

2

∑T
t=1

2M log 2p+ log |CMT | + ỹtC
−1
MT ỹt

[ ]
,

(28)

where CMT = a−1
0 I + ÃL−1ÃT. The following procedures resemble

the OG-FastRVM algorithm. Thus, the estimated sparse signal
Fig. 4 RMSEs of ℓ1-penalisation, OG-SBI, FastRVM, OG-FastRVM and IAA-AP

a r = 2°

b r = 1°

c r = 0.5°, K = 2, Δθ = 15°, M = 8, 200 trials
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vector m̃MT is calculated as follows

m̃MT = 1

T

∑T
t=1

0(0Ã
T
Ã+L)

−1
Ã
T
ỹt

[ ]
. (29)

Considering the condition of multiple snapshots, the OG parameters
βt corresponding to different snapshots is determined by

bt = argmin
bt

||yt − [A+ B diag(bt)]mMT ||22. (30)

Therefore, the K potential values of DOAs is

ûm = 1

T

∑T
t=1

(̃um + bt,m)

s.t. mm [ {the maximum K entries of mMT}.

(31)

It should be noted that m̃MTW[<{mMT}
Tℑ{mMT}

T]T and
ỹtW[<{yt}Tℑ{yt}T]T.
5 Numerical simulations

5.1 Single-snapshot OG-FastRVM

In this section, a few numerical simulations are presented to show the
performance of the proposed OG-FastRVM method. Compared with
the state-of-the-art methods for single-snapshot DOA estimation, its
advantages and drawbacks will be pointed out. An ULA with
half-wavelength inter-element spacing is considered. The origin is
set at the midpoint of the ULA. A uniform sampling grid { − 90°,
− 90° + r, …, 90°− r, 90°} is adopted with r the DOA sampling
interval. In this section, we use only the single-snapshot model in
the simulations. We take ℓ1-penalisation [11], OG-SBI [31] and
IAA-APES&RELAX [6] as three representative methods for single
snapshot, and as comparisons with our proposed method.
ℓ1-penalisation is an on-grid method, whereas OG-SBI and
IAA-APES&RELAX are two OG methods.
ES&RELAX versus SNR for various r

5



Fig. 5 RMSEs of OG-FastRVM and MT-OG-FastRVM against SNR: K = 2,
M = 8, 200 trials

Fig. 6 MT-OG-FastRVM’s RMSE and CRB against different numbers of
snapshots: K = 2, M = 8, 200 trials

Fig. 8 RMSEs of different algorithms for DOA estimation and CRB against
SNR: T = 20, K = 2, M = 8, 200 trials

Fig. 9 RMSEs of different algorithms for DOA estimation and CRB against
SNR: T = 100, K = 2, M= 8, 200 trials
First, the performances of both FastRVM and OG-
FastRVM algorithms are illustrated in Fig. 2. We have done 20
experiments in Fig. 2, and the DOAs of five signals in each
experiment are [−73.7°, −30.32°, −25.68°, −2°, 43.4°]. In this
simulation, the SNR is 20 dB. Fig. 2a shows the overview of 20
Fig. 7 RMSEs of different algorithms for DOA estimation and CRB against
SNR: T = 10, K = 2, M = 8, 200 trials

6

experiments for the estimation of five DOAs. The amplitudes and
directions of the simulation signals denoted by circle are shown in
Fig. 2a, and Fig. 2b shows some details of Fig. 2a. It is evident
that OG-FastRVM can get a more accurate estimation than
FastRVM without the OG technique.

Fig. 3 shows the computational efficiencies of the four
single-snapshot algorithms, which are ℓ1-penalisation, OG-SBI,
IAA-APES&RELAX and OG-FastRVM (All numerical
experiments are carried out in MATLAB v.8.3.0 on a personal
computer with a 2.67 GHz central processing unit and a Windows
Fig. 10 Initialisation of fast RVM
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Fig. 12 Re-estimate parameters for fast RVM

Fig. 14 Deleting a basis fi for fast RVM

Fig. 11 Adding a new basis ji for fast RVM

Fig. 13 Calculate the adjustment factor βi
7 system.). When the sampling grid is sparse, OG-SBI has a more
efficient computation than ℓ1-penalisation; when the sampling grid
is dense, OG-SBI is slower than ℓ1-penalisation. This issue has
been pointed out in [31]. Theoretically, in the single-snapshot
scenario, the computational complexities of ℓ1-penalisation [11],
OG-SBI [31] and IAA-APES&RELAX [6] are O(N 3), O(MN2)
and O(M2N ), respectively. The fast RVM algorithm has a
computational complexity of O(K2N ). The complexity of the OG
adjustment in OG-FastRVM is negligible compared with that of
FastRVM. Actually, our numerical experiments in Fig. 3 have
confirmed the theoretical computational complexities of different
algorithms. Precisely, the computational efficiencies of
IAA-APES&RELAX and OG-FastRVM outperform the ones of
ℓ1-penalisation and OG-SBI, no matter how dense the sampling
grid is. Under the assumption of truly sparse signals
(N ≫M . K), the complexities mainly depend on N, thus the
computational efficiency of the OG-FastRVM algorithm
approximates that of IAA-APES&RELAX.

In Fig. 4, we compare OG-FastRVM with ℓ1-penalisation,
OG-SBI and IAA-APES&RELAX in terms of RMSE. In this
experiment, we consider an ULA with M = 8 array elements and
half-wavelength inter-element spacing. The scanning grid interval
r is set to 2°, 1° and 0.5°, and the SNR is from 0 to 40 dB. In each
trial, the directions of K = 2 sources are [−30.3°,−15.3°]. For each
point in Fig. 4, the RMSE is calculated based on R = 200trials:

RMSE =
��������������������������������
(1/KR)

∑K
k=1

∑R
i=1 (uk − ûik )

2
√

, where the superscript
( · )i means the ith trial. It should be noted that the RMSEs of the
on-grid methods (ℓ1-penalisation and FastRVM) have a lower
bound when the SNR is higher. This is because that the best DOA
estimates which the on-grid methods can obtain are the grid points
closest to the true DOAs. In all conditions of SNR, OG-FastRVM
has more accurate DOA estimates than ℓ1-penalisation and
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FastRVM. The OG-FastRVM algorithm has a smaller RMSE than
the lower bound caused by the fixed scanning grid. The other two
OG methods, OG-SBI and IAA-APES&RELAX can also break
through the grid interval limitation and have the similar
performances. In most cases of these experiments, OG-FastRVM has
a smaller RMSE than the other algorithms. From Figs. 3 and 4, we
can observe that IAA-APES&RELAX and our proposed
OG-FastRVM method have the advantages of both computational
efficiency and RMSE in comparison with the other state-of-the-art
single-snapshot methods. From Fig. 4, it can be observed that the
RMSEs of OG-FastRVM with different values of r do not keep
decreasing with the increasing SNR. It might be that when the SNR
is higher, the adjustment factor βi, i = 1, …, N cannot have an
adequate value, because it depends on n in (26). Our possible future
research tracks might include the further investigation for the
influence by the OG technique to DOA estimation. However, in
most cases of this numerical simulation, OG-FastRVM has the
advantages of both computational complexity and estimation accuracy.
5.2 MT OG-FastRVM

Dealing with multiple snapshots, we have developed the multi-task
(MT) implementation of the OG-FastRVM estimator. In this
section, the performances of MT-OG-FastRVM are compared with
the ones of OG-FastRVM and other classical DOA estimation
methods against varying SNRs and snapshot numbers. The
theoretical part refers to Section 4.2.

Fig. 5 shows the RMSE values of OG-FastRVM and
MT-OG-FastRVM versus varying SNRs, with an array of M = 8
elements. The performance of MT-OG-FastRVM with variant
snapshot numbers has also been illustrated. As it can be observed,
the MT-OG-FastRVM method outperforms the single-snapshot
FastRVM and OG-FastRVM methods. With the increase of the
number of snapshots (T = 10, 20 and 100), the RMSE
performance of MT-OG-FastRVM improves.

These conclusions are further confirmed by the results in Fig. 6
concerned with different SNRs (SNR =−20, −10, 0 and 10 dB).
Moreover, the Cramer–Rao bounds (CRBs) [2, 4] of different
SNRs versus variant snapshot numbers are added in Fig. 6 for
comparison. It can be observed that the larger the number of
snapshots, the lower is the RMSE of the MT-OG-FastRVM
method. When the SNR is larger than a specific value, the RMSE
approaches the CRB, and the following simulations show the details.

The final numerical simulation is concerned with a comparative
assessment of MT-OG-FastRVM and the state-of-the-art
algorithms such as MUSIC, Root-MUSIC, ESPRIT and
IAA-APES&RELAX. The CRB is also added in these
7



comparisons. Figs. 7–9 plot the RMSEs averaged over 200 trials for
each point and show the different performances with variant
snapshot numbers (T = 10, 20 and 100). It can be seen that the
RMSE of MT-OG-FastRVM follows closely those of other
estimators and, except for very low SNR, meets the CRB.
Especially for a small number of snapshots (T = 10),
IAA-APES&RELAX and our proposed MT-OG-FastRVM
algorithm outperform the others.
6 Conclusion

In this paper, an algorithm termed OG-FastRVM has been proposed
to estimating the DOAs from a single snapshot. The proposed
algorithm is based on the fast RVM, and utilises the OG technique
in each iteration. The results of numerical simulations have
illustrated that the proposed approach outperforms the standard
ℓ1-penalisation algorithm. Furthermore, OG-FastRVM computes
more efficiently than both ℓ1-penalisation and OG-SBI.

Furthermore, the MT-OG-FastRVM has also been realised by the
combination of OG-FastRVM and MT-BCS. The DOA estimation
performance of this MT method exceeds the single-snapshot
(OG-) FastRVM. Precisely, with the increase of the number of
snapshots, the RMSE decreases. Finally, we compare the
MT-OG-FastRVM method with the state-of-the-art ones.
Especially with a small number of snapshots, the proposed method
provides more accurate estimates than the other compared methods.
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9 Appendix

The fast RVM algorithm proposed in [33] is customised to deal with
the OG model for DOA estimation. The details are presented in
Algorithms 2–6 (Figs. 10–14) (The number of the basis functions
at step t of the OG-FastRVM is denoted as Nt. i∈ {1, …, N}
indexes the new single basis function not existing in the current
basis. j∈ {1, …, Nt} indexes the single basis function and
associated parameters that already exist in the current basis.). Here,
for simplification, F̃, ỹ, m̃, ã and σ−2 are represented as Φ, y, μ, α
and α0, respectively.
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