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Abstract—Processing marine-mammal signals for species 

classification and monitoring of endangered marine mammals 

are problems that have recently attracted attention in the 

scientific literature. Currently, the detection of signals of interest 

is typically accomplished through a combination of visual 

inspection of spectrograms and listening to the data. This paper 

presented an automatic identification algorithm for the Yangtze 

finless porpoise based on Hilbert Huang Transform and BP 

artificial neural network. The algorithm includes three steps: 

signal preprocessing, feature extraction and signal identification. 

In feature extraction stage of the algorithm, the algorithm 

extracts a 11-Dimension signal feature vector based on Hilbert 

Huang transform, Shannon entropy and Fourier transform. In 

the identification stage, the BP artificial neural network is 

trained by using the feature vector as input. At last, some 

experimental acoustic data files of finless porpoise are used to 

test the validity of the automatic identification algorithm. The 

identification rate of the algorithm proposed in this paper 

reaches 90% with highest false positive rate (<92 per hour) 

according to the human observation on the time-frequency 

spectrum. Because the Yangtze finless porpoise is one of the most 

critically endangered mammals in the world, so the presented 

method has great practical significance for protecting and 

monitoring the Yangtze finless porpoise in the wild. 

Index Terms—Finless Porpoise, Hilbert Huang Transform, 

Shannon Entropy, BP artificial neural network. 

I. INTRODUCTION 

In recent years, passive acoustic monitoring has proven to 

be one of the most effective methods for monitoring the 

presence and movement of marine mammals due to the fact 

that cetaceans are difficult to locate visually from the surface, 

but acoustic visible. The Yangtze finless porpoise is endemic to 

the middle and lower reaches of the Yangtze River and its two 

adjoining lakes, China. It is the only freshwater cetacean 

remaining in the Yangtze River following the presumed 

extinction of the baiji [1]. The threats to Finless porpoise 

include a collection of illegal fishing(electro-fishing and 

gillnets), pollution, transportation and water constructions. The 

population size has been declining, and the distribution ranges 

have been reduced sharply in the past thirty years [2]. Proper 

survey and management of their populations has therefore 

become necessary. In recent years, several Yangtze finless 

porpoise research surveys have been organized by the Chinese 

government. Traditional visual-based observation surveys are 

very tedious, labor intensive, have limited accuracy, and 

strongly depend on the weather condition. The finless 

porpoises produce echolocation click trains that make them 

acoustically visible day and night. Acoustic-based survey 

methods are expected to be indispensable for surveying finless 

porpoises who spend most of their time underwater [3]. So 

researchers began to use passive acoustic methods to study the 

finless porpoise in recent years. 

Satoko Kimura from National Research Institute of 

Fisheries Engineering, Japan, has used A-tag from a moving 

platform to estimate the density and abundance of the finless 

porpoises [4]. Kexiong Wang from Institute of Hydrobiology, 

the Chinese Academy of Sciences, China, has used fixed-

location acoustic arrays concurrent with visual observations to 

determine the detection capabilities of the acoustic system. The 

system can detect the presence of porpoises with a correct 

detection of 77.6% [5]. Songhai Li from Institute of 

Hydrobiology, China, has used A-tag to density of  the 

porpoise  in Yangtze river by fixed and mobile platform [6]. 

Results show these methods can detect the presence of finless 

porpoises. But A-tag only records the amplitude of the signal 

which is easy to cause error detections. 

With improving, more accessible and cheaper ocean 

technology, a large amount of data that can be collected and 

thus needs to be analyzed is increasing rapidly. Significant 

research has been done on the design and construction for 

automated detection of marine mammals. This paper proposed 

an automatic finless porpoise identification algorithm based on 

Hilbert Huang transform, Shannon Entropy and BP artificial 

neural network. This algorithm has a much higher assignment 

rate and can be used for monitoring of finless porpoise in the 

wild. 

II. DATA COLLECTION 

For the development and testing of the artificial intelligence 

algorithm, 6 days of  underwater recordings from  the Tongling 

River Dolphin National Reserve were used. In February 2006, 

the state council general office approved the Tongling River 

Dolphin Reserve promote to national nature reserve. There are 

about ten porpoises living in this reserve at present. So some 



finless porpoise passive acoustic experiments were conducted 

to research the echolocation of Yangtze finless porpoises in 

Tongling River Dolphin National Natural Reserve in Tongling 

(30.46 –30.05 N, 117.39 –117.55 E), Anhui Province, China. 

These recordings were taken for a long time. 

 

Fig. 1.  The Yangtze finless porpoise. 

The finless porpoise acoustic signals were recorded by an 

underwater acoustic signal acquisition system. The hydrophone 

is ResonTC-4013 which is a broadband hydrophone with 

usable frequency from 1Hz to 170kHz and the acquisition 

equipment is NI PXle-1071. The whole underwater acoustic 

recording system is able to record acoustic signals up to 200 

kHz. The highest frequency of finless porpoise can achieve 

nearly 160 kHz. So this system should be sufficient to receive 

and store the sound  signals produced by the finless porpoise. 

III. METHODS AND RESULTS 

This section describes the artificial intelligence 

identification algorithm in detail, then the experimental data 

was used to examine the effectiveness of the algorithm. The 

algorithm is divided into three steps: signal preprocessing, 

extraction feature and identification. The basic recognition 

architecture for the algorithm is shown in Fig.2. 
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Fig. 2.  Architecture of the system used to test the algorithm 

Sounds from the library are processed through step1-3 and 

result in recognition results, whereby its performance is 

evaluated by comparison with a truth result (generated by 

human observers). 

A-C will introduce some signal processing method for 

finless porpoise signal. D-G will show the algorithm and the 

results in detail. 

A. Characteristics in Frequency Domain 

As shown in Fig.3, the waveforms of finless porpoise 

signals have variable shapes. But these signals spans in the 

similar frequency range. Fig.4 shows the distribution in 

frequency domain of one finless porpoise signal. Although, the 

waveforms are totaly different in the time domain, they have 

the similar frequency distribution. So we choose the peak 

frequency fp and 3 dB bandwidth w3dB  as features for the 

finless porpoise signal. 

 

Fig. 3.  Some different waveforms of porpoise signal 
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Fig. 4.  The waveform and FT of a porpoise signal 

B. Hilbert Huang Transform and Hilbert Marginal Spectrum 

Hilbert-Huang Transformation (HHT) is a new time-

frequency method to decompose the signal into a physical 

meaning instantaneous signal based on instantaneous 

frequency. The method of HHT was first designed by Norden 

E Huang in 1998 making creative improvement for Fourier 

transform. It is a kind of method that can be applied to 

nonlinearity, non-stationary signal processing. Hilbert-Huang 

transform method consists of Empirical Mode Decomposition  

 (EMD) and Hilbert transform (HT). The EMD decomposition 

process: 

(1) Finding out all the local maximum points and minimum 

points of the signal x(t), fitting it as upper and lower envelope 

curve of the original data sequence, the average value of upper 

and lower envelope curve is the average envelope curve m1, the 

original data sequence minus m1, which can get a new data 



sequence h1 with removing the low frequency. The data 

sequence h1  is not stable, so repeating the above process at n 

times in order to make the value of average envelope curve 

tend to zero, and at this time, h1n is the first Intrinsic Mode 

Function (IMF) (c1) which represents the highest frequency 

component in the signal data. 

 (2) x(t) minus c1, which can get a new data sequence 

without the high frequency components, repeating process (1) 

can get a new sequence of cn and the undecomposable 

sequence of rn which represents the average value or trend 

value. So the original sequence x(t) can be considered as the 

sum of IMF component and a residual. 
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After decomposed, signals get many combinations of IMF, 

Hilbert transforming each IMF component so that 

instantaneous frequency of each IMF component is given. 

Integrating all the components of the instantaneous spectrum to 

get the Hilbert spectrum. Transforming each IMF after getting 

IMF component , setting it to y(t): 
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A combination of x(t) and y(t) is the analysis signal z(t) 

which is shown with polar coordinates:  

 ( ) ( ) * ( )z t x t j y t   ( 3 ) 

Furthermore: 
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Definition of instantaneous frequency: 
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w(t) is the single value function of time through (5), that is 

to say, a certain time corresponds with relevant frequency, each 

IMF and calculating amplitude spectrum of relevant analytic 

function and instantaneous frequency, thus the original signal 

can be expressed as follow: 
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Based on the Hilbert spectrum H(w,t), through the integral 

of time, the Hilbert marginal spectrum can be defined as (7): 
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The Hilbert marginal spectrum shows each frequency range, 

which represent all accumulative amplitude in statistics. 

Instantaneous amplitude and instantaneous frequency can 

be obtained after doing Hilbert transform to every IMF 

component. Frequency wi(t) and amplitude ai(t) is a function of 

time, which can constitute a time-frequency graph of three-

dimensional that consists of amplitude, frequency and time. 

This graph is called Hilbert amplitude spectrum H(w,t) [7]. 

Because Hilbert Huang Transform has clear physical meaning. 

As shown in Fig.5, the frequency changing process of the 

finless porpoise signal can be seen clearly. 
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Fig. 5.  The Hilbert spectrum of finless porpoise signal 
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Fig. 6.  The Hilbert marginal spectrum of finless porpoise signal 

C. HHT marginal spectrum entropy 

Information (Shannon) entropy measures the amount of 

information in a signal which represents the uncertainty of the 

signal. The greater Shannon entropy represents that the signal 

has more information and greater uncertainty. At discrete 

frequency point f(k△f), (7) gives the definition of the Hilbert 

Huang Transform spectrum entropy. k is the number of discrete 

points in the analysis frequency  band. 

According to the definition of the Shannon entropy, (8) is 

the definition Hilbert Huang Transform marginal spectrum 

entropy. 
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Where pk=h(k)/ ∑ h(k), which is the k th frequency 

corresponding to the probability of the amplitude. Then the 

value of the entropy will be normalized to 0-1. The 



normalization equation is HHE=HHE/lnN, where N is the 

length of sequence h(k). As the Hilbert Huang Transform 

marginal spectrum entropy has perfect recognition ability for 

different complexity signals, it will be selected as a feature for 

identifying finless porpoise signal [8]. 

D. Signal Preprocessing 

Step 1 incorporates signal segmentation and signal filtering. 

The goal of this step is to identify areas of high energy. A wide 

range of segmentation approaches exist. Signal of interest have 

energy between 70 kHz-160 kHz. Noise conditions can change 

dramatically throughout the course of the monitoring period. 

Filtering the original signal is a good way to remove the low 

frequency noise. The filtered signal segmentation will be used 

to extract the feature vector. 

E. Feature Extraction 

The algorithm will extract a 11-D signal feature vector 

based on Hilbert marginal spectrum, Fourier transform and 

Shannon Entropy. In the identification step, the finless porpoise 

signals can be detected by the trained BP artificial neural 

network using the extracted feature vector as input. Detailed 

descriptions are as follows: 

As shown in the Fig.5, there are strong interference noise 

below 40kHz. In the Hilbert spectrum of finless porpoise signal, 

the frequency band ranges from 20 kHz to 160 kHz, mainly 

concentrated in the 100 kHz to 160 kHz. The Hilbert marginal 

spectrum ranging from 40 kHz to 160 kHz is divided into eight 

frequency band equally. Every frequency bandwidth is 20 kHz. 

The energy of every frequency band Ei,,i=1,2,…8 would be 

calculated. The total energy is E=∑Ei. Normalized energy of 

every frequency band is ei=Ei/E, i=1,2,…8. The normalized 

energy sequence [e1, e2, e3, e4, e5, e6, e7, e8] will be defined as 

an eight dimensional feature vector which is extracted from 

Hilbert marginal spectrum. Peak frequency f p, 3-dB bandwidth 

w3dB, 8-D Hilbert marginal spectrum feature vector and Hilbert 

marginal spectrum entropy constitute a 11-D feature vector 

F=[e1, e2, e3, e4, e5, e6, e7, e8, f p, w3dB, HHE]. The 11-D feature 

vector F is defined as the recognition feature of the finless 

porpoise sounds. 

F. The BP Artificial Neural Network Identification 

The artificial neural network is an application of a 

mathematical model of information processing which is similar 

to the structure of the brain synaptic connections. It is the 

abstraction, simplification and simulation of the human brain, 

reflecting the basic characteristics of the human brain. Neural 

network is also a computational model, consisted by the 

weighted connections between the large numbers of neurons 

and each other. Each neuron represents a specific activation 

function, and the connection between two neurons represents a 

weighted value of the connection signal, which is equivalent to 

the memory of the neural network. The output of the neural 

network connected to the network, the weight values and 

excitation functions. 

BP neural network usually consists of the input layer, 

output layer and hidden layer. According to Kplmogorov 

theorem, only one hidden layer of three-layer BP network can 

achieve the approximation of arbitrary functions. Each layer 

consists of a number of nodes, each node represents a neuron. 

There are connections between the upper nodes and lower 

nodes, with no contacts between the same layer of nodes. As a 

BP neural model structure of R input, each input has been 

given certain weights, which form the input of the neuron 

transfer function through sum with deviation [9]. 

A standard back propagation artificial neural network is 

used in the analysis. Deciding on the best architecture is a 

difficult problem in neural network technology. Regularization 

implies that many different configurations exist that vary in 

complexity, where each provide an acceptalbe performance 

level. When the neural network model structure is determined, 

it is time to learn and train. Trainng the neural network 

organizes a series of random weigths to achieve a minimum 

error condition. However, one could train the neural network 

using identical architectures, but resulting in different weight 

tables that meet similar error conditions. Furthermore, 

optimization could be done on the configuration of the 

architecture. In prior work, optimization procedures have often 

been used to determine a liminted set of parameters. However, 

these consisted of smaller data sets. Other research presents a 

system approach to optimizeing parameters for the neural 

network. For this study, the amonut of data is significant and a 

limited optimization is performed. Training the neural network 

used the Levenberg-Marquardt back-propagation algorithm. 

The trainer execjuted several times, using fewer than 1000 

epochs, runnng in bach data mode. Hyperbolic tangent was 

used for the activation function for hidden layer. Biases were 

used along with linear activation for output layer. Final 

recognition is deduced from the output layer, using linear 

activation[1]. 
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Fig. 7.  The structure of BP neural network 

Because the feature vector is a 11-D vector, so the input 

layer consists of 11 nodes. There are 15 nodes in the hidden 

layer, and output layer has two node which is the recognition 

result. 

G. Results 

This section describes the detailed time-frequency 

distribution of finless porpoise signal. These low frequency 

components based on Hilbert Huang transform ranging from 

20 kHz to 60 kHz are first observed, which not appear in the 



Fourier transform. These frequency distribution characteristics 

based on HHT are used for identifying finless porpoise signal. 

The identification performance of the algorithm can be 

evaluated by comparing the auto identification results with the 

observed results from human operators. 100 groups of finless 

porpoise signal are used to train the automation identification 

algorithm. After training, some experimental acoustic data files 

are used to test the validity of the automatic identification 

algorithm. Even it is detected by the low signal to noise ratio 

data files, finless porpoise signals can be detected. The correct 

identification probability of the algorithm proposed in this 

paper reaches 90% with highest false positive rate (<92 per 

hour), according to the human observation on the time-

frequency spectrum. So the experimental results show that the 

presented artificial intelligence identification algorithm can 

accurately and quickly recognize finless porpoise acoustic 

signals. 

IV. DISCUSSION AND FUTURE WORKS 

A. Discussion 

After decades of development, artificial intelligence 

technology has been relatively mature and has been applied to 

all aspects of signal processing. The passive recognition is one 

of the difficult problems in the filed of underwater signal 

processing. The application of artifical intelligence technology 

will promote the development of underwater acoustic 

technology. 

In recent years, passive acoustic is becoming a frequently 

used tool in monitoring marine mammal surveys for study of 

behavior, migration monitoring [10]. Passive acoustic methods 

for Yangtze finless porpoise monitoring and detection have a 

variety of advantages compared to traditional visual methods. 

(1).Passive acoustic methods can be undertaken without 

consideration of daylight and weather conditions.  

(2). Passive acoustic monitoring can detect porpoises with a 

much higher detection rate, resulting in a higher detection 

probability [11]. This is ideal for the Yangtze finless porpoises 

since their group sizes are generally relatively small and the 

overall densities have declined. Acoustic detections were 

suggested to be a desirable independent observation method for 

population surveys of Yangtze porpoise [12]. 

(3) Results from acoustic monitoring methods can be 

replicated with the use of the equipments calibrated in the same 

way. Whereas, visual survey results can be highly variable as 

they are dependent on experience of observers, weather 

condition, and many other parameters [13]. 

B. Improvements  

This paper proposed an effective artificial intelligence 

identification algorithm of finless porpoise signal for the first 

time. The new method combines Hilbert marginal spectrum, 

Shannon Entropy and Fourier transform to extract finless 

porpoise. The identification result indicates that the 11-D 

recognition feature vector F can well indicate the finless 

porpoise signal and the recognition system based on BP 

artificial neural network can accurately identify the finless 

porpoise signal. 

Researchers have mainly focused on the fundamental high 

frequency from Fourier transform, and the usage of low 

frequency components from time-frequency spectrum has not 

been fully examined. In this paper the low frequency 

components based on HHT are used for identifying finless 

porpoise. The Shannon entropy is also used for identifying 

finless porpoise signal. 

The passive acoustic system and the recognition algorithm 

in this paper can be used for long-term monitoring finless 

porpoise in fixed location and surveying finless porpoise in a 

mobile method. The new automatic recognition method of 

finless porpoise has great practical significance for surveying 

and protecting the Yangtze finless porpoise in the wild . 

C. Future Works 

(1).The present status of the algorithm permits an offline 

analysis. Adaptation of the algorithm for real-time application 

will make it indispensable for survey of finless porpoise 

populations in coastal regions. 

(2).More Yangtze finless porpoise data will be studied in 

the near future. It is very meaningful to understand the acoustic 

signals emitted from finless porpoises. If we understand the 

meaning of finless porpoise signal, we will be able to 

understand the behavior of the finless porpoise, and be able to 

talk to finless porpoises. That will be much more useful for 

protecting the endangered species. The understanding of the 

acoustic signal will help us develop better sonar equipment. 
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