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This paper is concerned with the ground surface vibration induced by the axisymmetric fluid-
borne wave motion in buried fluid-filled pipes. This wave has been exploited for water leak 
detection and, more recently, for the detection and location of buried pipes. Based on the 
model of wave propagation developed in recent work, this paper presents an analytical method 
for predicting the ground surface displacement resulting from the radiated elastic waves in the 
soil medium. It is shown that, for a sufficient large wavenumber-depth product, the radiated 
conical compressional and shear waves can be treated as plane waves incident upon the ground 
surface. Analytical expressions for the ground surface displacement are then given as the over-
all contributions from these incident waves and their reflections. Numerical simulations are 
further presented to predict the relative displacements normal and parallel to the ground sur-
face under two representative pipe-soil boundary conditions, representing “perfect bonding” 
and “imperfect bonding”. Theoretical predictions may help to explain some of the features 
observed in practice and hence offer a potential improvement over the current acoustic tech-
niques for leak detection and pipe location. 

 

1. Introduction 

The study of acoustic wave propagation in buried fluid-filled pipes has received much attention in 
the past decade. Earlier research has shown that at low frequencies (well below the pipe ring fre-
quency), the axisymmetric (n=0) fluid-borne (s=1) wave, which propagates at low frequencies in 
fluid-filled pipes, is often the main carrier of vibrational energy within piping systems [1, 2]. Pin-
nington and Briscoe [2] developed a theoretical model of axisymmetric wavenumbers in fluid-filled 
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pipes in vacuo. Muggleton et al. [3, 4] focused on the wavenumber predictions of axisymmeric waves 
in buried fluid-filled pipes, and conducted some experiments to validate the predictions for the s=1 
wave. This work was extended to consider the 3D effect of the soil on the wavenumber predictions 
under a lubricated contact condition [5]. More recently, based on the characteristic equation for the 
cylindrical tri-layer system, an improved model of axisymmetric waves has been developed by the 
present authors [6] in order to better understand wave propagation within buried fluid-filled pipes and 
the energy leakage into the surrounding soil. The theoretical model for the s=1 wavenumber predic-
tions have been validated by some experiments conducted on MDPE water pipes surrounded by an 
air, fluid and soil media. Based on the knowledge of the characteristics of the propagation s=1 wave, 
substantial research has been conducted by the present authors for water leak detection in buried 
plastic pipes [7-10] and for the detection and location of buried pipes [11]. Recent work has demon-
strated that measuring the ground vibration response resulting from intentionally exciting a pipe can 
be successful for detecting both cast iron and plastic water pipes in a variety of soils. However, to 
date, modelling work has been limited to calculating the phase velocity and attenuation of the s=1 
wave; whilst the expected behaviour at the ground surface can be inferred from this in general terms, 
no analytical model has previously existed for describing the ground surface response in detail.  

In this paper, a method is presented for predicting the ground surface displacement resulting from 
the s=1 wave motion in a buried fluid-filled pipe. For a sufficient large wavenumber-depth product, 
the radiated conical compressional and shear waves can be considered to be in the far field at the 
ground surface, and then each is treated as a plane wave incident upon it. A model of wave propaga-
tion developed in recent work is incorporated into the analytical method to predict the ground surface 
displacements due to the radiated elastic waves in the soil medium. Analytical solutions for the 
ground surface displacement are then given as the sum of the contributions from these incident waves 
and their reflections. Numerical results are presented for the prediction of the relative displacements 
at the ground surface under two pipe-soil boundary conditions, representing “imperfect bonding” and 
“perfect bonding”, for a PVC water pipe buried in sandy soil. The theoretical work with numerical 
analyses provide the basis for better understanding the “phase shift” phenomenon in practical meas-
urements [11] and predicting the ground surface vibration for pipe location using acoustic techniques.  

2. Radiation in the soil 
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Figure 1. Illustration of reflection of the radiated elastic waves induced by the axisymmetric mode 

in the Cartesian coordinate (x, y, z) system. c1, cr and cd denote the phase velocity of the s=1 wave, 
compressional and shear velocities in the soil respectively.  
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Whilst an infinite elastic medium is useful for gaining an understanding of the characteristics of 

wave propagation in the buried fluid-filled pipe, further development of the theory is necessary to 
determine the ground surface motion due to radiation in the soil. Recent investigation [6] has shown 
that the fluid-borne wave, in general, will leak shear waves for typical values of the shear velocity in 
the soil ( 1 rc c ), while may or may not leak compressional waves into the soil. For example, the 

compressional wave will radiate in some loose, sandy soils (where, in general, 1 dc c ), but will be 

less likely to radiate in clay soils (where, typically, 1 dc c ). A general model is developed when both 

elastic waves radiate throughout the analysis. 
For soil vibration, the compressional and shear wave potentials in the cylindrical coordinates (r, 

θ, x) have the form 1i( )
0H ( )e t k xr

m m dA k r    and 1i( )
0H ( )e t k xr

m m rB k r    respectively, where Am and 

Bm are potential coefficients, which are found to depend upon the pipe-soil boundary conditions, and 
thereby can be expressed in terms of the pipe wall displacements [6]; H0( ) is the Hankel function of 
the second kind and zero order representing an outgoing wave; r

dk  and r
rk , are the radial components 

of the compressional and shear wavenumbers, kd and kr, in the surrounding medium respectively, 
2 2 2

1( )r
d dk k k   and 2 2 2

1( )r
r rk k k  . For large arguments (i.e., wavenumber-depth products, kr) of 

the Hankel functions 1kr  , the Hankel functions can be approximated by the asymptotic expan-

sions, i( /2 /4)H ( ) 2 / krkr kre  
      for an integral  . These approximations are adopted to allow the 

radiated conical elastic waves to be treated as plane ways as they reach the ground surface. The cy-
lindrical coordinate system is then transformed into a Cartesian coordinate system more appropriate 
to the analysis of the plane waves. A similar approach was taken by Jette and Parker in [12].  

With reference to Fig. 1, the radiated elastic waves travelling over a depth d (note that the distance 
d is calculated from the pipe centre) can be treated as plane waves at the ground surface provided that 

1r
dk d   and 1r

rk d  . In addition, only excitation of the ground directly over the pipe is considered. 

Analytical description of the interaction of cylindrical or conical waves with a planar surface is com-
plex. For example, at a lateral distance from the pipe axis comparable to the pipe depth, an incident 
conical shear wave can excite surface waves of various kinds in addition to the reflected bulk waves 
[13, 14]. Directly over the pipe, which is the main region of interest for this study, surface waves do 
not develop, and only reflected elastic waves need to be considered.  

Provided this limitation is recalled, the resultant field can be considered to be independent of y; 
the vertical (z direction) and horizontal (x direction) soil displacements in the Cartesian coordinates 
can then be expressed in terms of two wave potentials by 

(1)  p p
xu

x z

  
 

 
; p p

zu
z x

  
 

 
  

where the compressional and shear potentials 1i( )e
r
dt k z k x

p p
     and 1i( )e

r
rt k z k x

p p
     respec-

tively; p  and p  are the potential amplitudes, with the subscript p denoting plane waves. To set 

up the relationship between the two coordinate systems, it is assumed that at the ground surface (z=d), 
the vertical and horizontal soil displacements given by Eq. (1) are equivalent to the corresponding 
soil displacements in the cylindrical coordinates (r=d). Adopting the far field asymptotic approxima-
tions for the Hankel functions gives 

(2)  i /42 / r
p dA k de   , i /4i 2 /r

p rB k de    
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When radiated waves are incident upon the ground surface, reflections occur as illustrated in 
Fig. 1. The potentials p  and p  can be expressed as overall contributions of the incident and re-

flected wave potentials by 

(3)  1i i i( )( e e )e
r r
d dk z k z t k x

p p p
      ; 1i i i( )( e e )e

r r
r rk z k z t k x

p p p
       

where p
  and p

  are the incident potential amplitudes; p
  and p

  are the reflected potential am-

plitudes. The normal and tangential stresses in the surrounding medium are given by 

(4)  
2 2 2

2 2
2 p p p

zx m x z x z

  
 

   
       

; 
2 2 2

2 2
( 2 ) 2p p p

zz m m m mz x x z

  
    

  
   

   
 

where ρm, λm and µm are the density and Lamé coefficients of the surrounding soil.  
The potential amplitudes of the reflected waves can be determined from the boundary conditions 

at the ground surface, where both normal and tangential stresses vanish. Substituting Eqs. (3) into (4) 
and setting 0zx   and 0zz   at z=d gives 

(5)  p p

p p

 

 

    
          

R  

where the elements Rij are given by 

(6)  2i
11 11e

r
dk dR C  ; i( )

12 12e
r r
d rk k dR C   ; i( )

21 21e
r r
d rk k dR C   ; 2i

22 11e
r
rk dR C   

where 

22 2 2
1 1

11 22 2 2
1 1

4 ( )

4 ( )

r r r
d r r

r r r
d r r

k k k k k
C

k k k k k

   
   

; 
2 2

1 1

12 22 2 2
1 1

4 ( )

4 ( )

r r
r r

r r r
d r r

k k k k
C

k k k k k

  
   

; 
2 2

1 1

21 22 2 2
1 1

4 ( )

4 ( )

r r
d r

r r r
d r r

k k k k
C

k k k k k

   
   

. 

Combining Eqs. (1-3) and (5) results in the soil displacements at the ground surface in terms of 
the constants A and B by 

(7)  1

i i1/2 3/21
11 21 1 11 12

1 i( )i /4

i i1/2 1/21
11 21 11 12 1

1

i 1 ( ) e 1 + ( ) e
2

e e

i 1 ( ) e 1+ + ( ) e

r r
d r

r r
d r

r
k d k dr rr

d rr
rx t k x

r
r k d k dr rd

d rr
d

k k
C C k k C C k

k ku A

u Bd k k
C C k C C k k

k k





 



 

    
       

                         
    

 

where the constants A and B can be determined from the boundary conditions at the pipe-soil inter-
face. The details have been discussed in [6], and therefore not repeated here.  

3. Numerical results and discussions 

This section presents some numerical results of the ground surface displacements relative to the 
pipe wall displacements induced by the s=1 wave motion in a water-filled PVC pipe (of diameter 
169mm and thickness 11mm) buried in sandy soil (d=1.0845m). The real and imaginary parts of the 
wavenumber are also plotted to show the dispersive nature of the s=1 wave. Losses within the pipe 
wall are included (with a loss factor 0.065) and the surrounding medium is assumed to be lossless. 
Material properties of the pipe, soil and fluid are shown in Table 1. The frequency range of interest 
is up to 1kHz, since signals are heavily attenuated at higher frequencies in plastic pipes [6].  
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Table 1. Material properties for theoretical predictions  

(ρ-density; cl, cd-longitudinal velocity; cr-shear velocity) 

Material PVC Soil Water 
ρ (kg/m3) 2000 2000 1000 
cl, cd (m/s) 1725 200 1500 

cr (m/s) - 100 0 
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Figure 2. Dispersion curves for the s=1 wave in a PVC water pipe buried in sandy soil: (a) real part 
of the wavenumber; (b) attenuation. The results are non-dimensionalised by the pipe radius a.  

 
It can be seen from Fig. 2(a) that the difference in the real part of the wavenumber (relating to the 

phase velocity) between two boundary conditions is marginal in sandy soil. A slight decrease of the 
real part of the wavenumber for “perfect bonding” is due to the increase of the pipe wall stiffness 
caused by the presence of shear at the pipe-soil interface. Fig. 2(b) shows that the attenuation in-
creases under “perfect bonding” compared with “imperfect bonding”, more details of which can be 
found in [6]. This confirms that the presence of shear at the pipe-soil interface increases the attenua-
tion due to the added radiation damping effect, except at very low frequencies when losses within the 
pipe wall dominate. The calculated phase velocity of the s=1 wave is greater than both the compres-
sional and shear velocities in the soil. Therefore both elastic waves will radiate in the sandy soil 
considered.  

The ground surface displacement are evaluated in term of the amplification factor, which is defined 
as the ratio of the displacement amplitudes at the ground surface and the pipe wall in the same direc-
tion. For the buried PVC pipe considered in this analysis, it is found that the two Hankel function 
arguments satisfy 1r

dk d   above 34Hz and 1r
rk d   above 17Hz. Fig. 3(a) shows the magnitude of 

the vertical amplification factor. It can be seen that the ground surface displacement is amplified 
below 200Hz under “imperfect bonding” conditions. It decreases gradually with frequency and ap-
proaches 0.5 at higher frequencies. The unwrapped phase of the vertical amplification factor de-
creases linearly with frequencies, as illustrated in Fig. 3(b), with no abrupt changes. For “perfect 
bonding”, it can be observed from Fig. 3(a) that the magnitude of the amplification factor also de-
creases with frequency with some fluctuations, which are distinctive at lower frequencies. The mag-
nitude reaches the minimum value (approximately zero). In this case, although the unwrapped phase 
decreases linearly for the most part, an additional phase jump of around π occurs at 145Hz. At this 
point, the cause of this behaviour is not completely clear but it could result from the inference of 
incident and reflected radiated waves at the ground surface as also suggested by Jette and Parker [12].  
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The magnitude and phase of the horizontal amplification factor are plotted in Figs. 4(a) and (b) 
respectively. Comparison of the magnitudes of the amplification factor shows different trends under 
both boundary conditions. For “imperfect bonding”, the magnitude fluctuates between 0 and 0.6 sep-
arated by approximately 190Hz due to the interaction of the incident and reflected radiated waves. 
Correspondingly, although the unwrapped phase generally decreases linearly with frequency, addi-
tional phase shifts occur at the frequencies when the magnitude approaches a local minimum (ap-
proximately zero), as shown in Figs. 4(b). When the shear stress is accounted for at the interface 
(“perfect bonding”), a similar trend is observed in the magnitude and phase of the vertical amplifica-
tion factor compared to the horizontal factor. Here however, fluctuations in the magnitude are more 
obvious at higher frequencies as illustrated in Figs. 4(a) rather than at lower frequencies for the ver-
tical displacements. The magnitude reaches approximately zero and phase shifts occur at 810Hz.  
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Figure 3. The vertical amplification factor: (a) magnitude; (b) unwrapped phase. The additional 

phase shifts are marked by the red arrow for “perfect bonding”.  
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Figure 4. The horizontal amplification factor: (a) magnitude; (b) phase. The additional phase 

shifts are marked by the blue arrows for “imperfect bonding” and the red arrow for “perfect bond-
ing”.  

4. Conclusions 

Based on a model of axisymmetric wave propagation developed previously, the ground surface 
displacements due to waves radiating from a buried fluid-filled pipe has been studied in this paper. 
Above a certain frequency (i.e., for a sufficient large wavenumber-depth product), the radiated coni-
cal compressional and shear waves can be treated as the far-field planes waves at the ground surface, 
whereby the relative displacements at the ground surface can be determined. Numerical examples 
have been presented to predict the ground vibration displacements under two boundary conditions at 
the pipe-soil interface. Theoretical predictions have shown that, although a general decrease with 
frequency in the magnitude of the displacement amplification factors is observed, fluctuations also 
occur. The unwrapped phase of the amplitude factors generally decreases linearly but additional phase 
jumps are seen. These phase shifts occur at the local minima (approximately zero) of the amplitude 
factor magnitudes. It seems likely that these phenomena occur as a result of inference between the 
incident and reflected radiated waves but this has not been confirmed definitively in this study. Future 
work will address this issue more thoroughly. On a practical note, when attempting to remotely de-
termine the run of a buried pipe using the pipe excitation method described in [11], examination of 
the fluctuations in the magnitude of the ground surface response may provide the additional infor-
mation required to estimate the pipe’s depth. 
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