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ABSTRACT 

Previously, a family of memory proportionate affine projec­

tion (MPAP) algorithms has been proposed by taking into ac­

count the "history " of the proportionate factors for sparse sys­

tem identification. This paper presents a low-complexity im­

plementation of this family of MPAP algorithms. Two most 

important ideas are used in the derivation of the fast algorith­

m. The first one is to update the auxiliary coefficient vector 

rather than the true coefficient vector. The second interesting 

idea is to calculate the error vector by using a recursive tech­

nique. Simulation results demonstrate the effectiveness of the 

fast algorithms. 

Index Terms- adaptive filtering, proportionate affine 

projection, sparse impulse response, fast implementation 

1. INTRODUCTION 

The impulse responses are sparse in nature in many appli­

cations such as network echo cancellation. The classical 

adaptive filters exhibit slow convergence rate in this scenari­

o. The proportionate-type algorithms have been proposed 

to speed up the convergence rate by assigning different step 

sizes to different coefficients. The proportionate adaptive 

algorithms were firstly developed based on the normalized 

least mean squares (NLMS) algorithm [1, 2, 3, 4]. By ex­

tending the proportionate idea to the affine projection (AP) 

algorithm straightforwardly, the proportionate AP (PAP) [5] 

and improved PAP (lPAP) [6] are proposed. Recently, Paleo­

logu et al. [7] proposed a memory IPAP (MIPAP) algorithm 

by taking into account the memory of the proportionate co­

efficients. Compared to the IPAP algorithm, the MIPAP 

algorithm not only speeds up the convergence rate, but also 

reduces the computational complexity. Subsequently, based 

on the memory idea in [7], the J.L-Iaw MIPAP (MMIPAP) [8] 

and individual-activation-factor memory PAP (IAF-MPAP) 

[9] algorithms were developed. The only difference of the 
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MIPAP, MMIPAP and IAF-MPAP algorithms is the calcula­

tion of the proportionate matrix, and thus they are called a 

family of memory-PAP (MPAP) algorithms. The robustness 

analysis of the NLMS with diagonal matrix step-size can be 

found in [10]. 

The complexity of the MPAP algorithms is still expensive, 

typically O(4LM) operations per sample (L, M being the 

projection order and filter length). An approximated MIPAP 

(AMIPAP) algorithm [11] is proposed to reduce the complexi­

ty of MIPAP by forcing the matrix to be inverted a symmetric 

one. However, the approximated method leads to degraded 

performance for highly colored signals. In [7], it states that 

"the fact that pi (n) has the time-shift property [like the data 

matrix X( n) ] could be a possible opportunity to establish a 

link with the fast APA." However, all the fast implementations 

of the MIPAP did not exploit this feature yet. In this paper, 

we develop a fast version of the MPAP-type algorithms by us­

ing the fast exact filtering approach in [12]. The error vector 

is computed by the auxiliary coefficient vector rather than the 

true weight vector. Simulation results verify the validity and 

performance advantage of the proposed fast algorithms. 

2. MPAP ALGORITHMS 

Consider the desired response d(n) arising from the linear 

model 

d(n) = w� x(n) + v(n) (1) 

where w 0 is the weight vector of the unknown system of 

a length M, x(n) = [x(n), x(n -1), ... , x(n -M + lW 
denotes the input signal vector, and v(n) is the system 

noise. The adaptive weight vector is defined by w(n) = 

[wo(n),wl(n), .. "wM_l(n)]T. To describe the family of 

MPAP algorithms, we define the input signal vector X(n), 

the desired signal vector d(n), the filtered-out vector y(n), 
and the error vector e(n) as follows: 

X(n) = [x(n), x(n -1), .. " x(n -L + 1)], (2) 

d(n) = [d(n), d(n -1), .. " d(n -L + lW, 
y(n) = [YO(n)'Yl(n), · .. ,YL-l(nW 

= XT(n)w(n -1), 

(3) 

(4) 
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e(n) = [eO(n),el(n), ... ,eL-l(nW 
= d(n) -y(n). (5) 

The update equation of the MPAP algorithms can be written 

as 
g(n) = [cO(n),c1(n), ... ,cL-1(nW 

= f-t[pT(n)X(n) + 5I]-le(n), 
w(n) = w(n -1) + P(n)g(n) 

(6) 

(7) 

where f-t is the step size, 5 is a regularization parameter, and 

P(n) is computed as 

P(n) = [g(n -1). x(n), g(n -2) • x(n -1), 
... ,g(n-L).x(n-L+l)] (8) 

= [p(n), p(n -1), ... , p(n -L + 1)] 

with g(n) = [90(n), 91 (n), .. , 9M-1 (nW is the proportion­

ate vector, where the operator. denotes the Hadamard prod­

uct. The only difference of the three algorithms is the calcula­

tion of the proportionate matrix. In the MIPAP algorithm [7], 

91 (n) is calculated as follows 

1 -ex IWI(n)1 91(n) = 2M + (1 + ex ) M-1 (9) 

2 L IWi(n)1 + 0-
i=O 

where 0- is a small constant. In the MMIPAP algorithm [8], 

91 (n) is evaluated as 

F (IWI(n)l) = In(1 + f-tlog IWI(n)I), (10) 

3. FAST IMPLEMENTATION OF MPAP 

ALGORITHMS 

3.1. Fast adaption of the weight vector 

In this section, we will develop a fast method to update the 

weight vector by using the property that P( n) has the time­

shift structure. Expanding the matrix/vector multiplications 

in (7), the weight vector w(n) can be rewritten as: 

L-1 
w(n) = w(n -1) + L p(n -i)ci(n). (16) 

i=O 

Continuing to recursively expand (16) yields 

n-1 L-1 
w(n) = w(O) + L L p(n -j -i)ci(n -j). (17) 

j=O i=O 

Assuming that x( n) = 0 for n < 0, (17) can be rewritten as 

L-1 j 
w(n) = w(O) + L p(n -j) L ci(n -j + i) 

j=O i=O 
n-1 L-1 

+ L p(n -j) L Cj(n -j + i). 
j=L i=O 

(18) 

The weight vector w( n) can be alternatively rewritten as [12]: 

w(n) = w(n -1) + P(n)c.p(n) (19) 
1 -ex F (IWI(n)l) 91(n) = 2M + (1 + ex ) M-l (11) 

where 
2 L F(lwl(n)l)+0-

i=O 
where a value of f-tlog = 1000 is used. In the IAF-MPAP 

algorithm [9], 91 (n) is given by 

l(n) = 
{ 0.5Iwl(n)1 + 0.51'1(n -1), mod(n,M) = 0 

q ql(n -1), otherwise ' 
(12) 

I'l(n) = max(ql(n), IWI(n)I), (13) 

1'1 (n) 91 ( n) = -:-M:---1 -'--'-
L I'l(n) 
1=0 

(14) 

Note that the difference between the MPAP and traditional 

PAP algorithms is the calculation of the matrix P (n). For the 

traditional PAP algorithm, P(n) is computed as [6] 

n-l L-1 
w(n -1) = w(O) + L p(n -j) L Cj(n -j + i), (20) 

m 

j=L i=O 

with 'Pm(n) = L ci(n -m + i). Both w(n) and c.p(n) can 
i=O 

be recursively computed, respectively, 

c.p(n) = g(n) + [ cp(n
O_ 1) ] , (22) 

w(n) = w(n -1) + p(n -L + 1)'PL-1(n) (23) 

where cp( n) consists of the upper L -1 elements of c.p( n) . 

P(n) = [g(n -1). x(n), g(n -1). x(n -1), 
... , g(n -1) • x(n -L + 1)]. (15) 3.2. Fast exact filtering 

Calculation of P(n) by using (15) requires LM multiplica­

tions per sample while it only needs M multiplications per 

sample in (8) due to the time-shift property of P(n). In the 

MPAP algorithms, the matrices P(n) and X(n) both have the 

time-shift character which is the motivation behind the fast 

algorithms in the following. 
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In this section, we will present a fast exact filtering approach 

[12] based on the time-shift property of the matrix X(n). 
Substituting (7) into (4) yields 

y(n) = XT(n)w(n -1) 
= XT(n)[w(n -2) + P(n -l)g(n -1)] (24) 

= z(n) + G(n)g(n -1) 



where G(n) = XT(n)P(n -1), and z(n) = XT(n)w(n-
2). Taking (4) into account, z(n) can be rewritten as 

z(n) = XT(n)w(n -2) 
(25) = [zo(n), yo(n -1), ... , YL-2(n -lW 

where 

zo(n) = xT(n)w(n -2). (26) 

Having expressed w(n) in a special way in (19), we can use 

the auxiliary coefficient vector w(n) instead of w(n) to cal­

culate zo(n). Substituting (19) into (26), we obtain 

zo(n) = xT(n)w(n -2) 
= xT(n)[w(n -3) + P(n -2)<p(n -2)] (27) 

= xT(n)w(n -3) + rT(n)<p(n -2) 

where r(n) = pT(n - 2)x(n). Note that (27) is the ex­
act calculation of zo(n) without any assumption. Defining 
p�(n) = pT(n)x(n -m) and p;;'p(n) = xT(n)p(n -m) , 

the matrices R(n), G(n), and r(n) can be written as 

R(n) = pT(n)X(n) [ pgx(n) 
p�p(n) 

p�;l(n) 

p�x(n) 
pgx(n - 1) 

p�p(n) 
p;:p(n - 1) 

r(n) = pT(n -2)x(n) 

p�;l(n) 1 
p�;2(n - 1) 

pgx(n - L + 1) 
(28) 

p�p(n) 1 
p�;l(n - 1) 

p;'p(n - L + 1) 
(29) 

= [p�p(n), p�p(n)(n), ... , p�:l (nW. (30) 

From (28)-(30) it is noted that the update of R(n), G(n), and 

r( n) only need to calculate 2L+ 1 elements. Note that p� (n) 
and p';p (n) cannot be updated by a recursive technique in [12] 

because the vector p( n) does not hold the time-shift structure 

as x(n). Update of the three matrices needs (2L + I)M mul­

tiplications and (2L + I)M additions per sample. 

Note that the matrix R(n) has the time-shift property but 

it is not symmetric because p�(n) =1= p;;'p(n). In [11], an 

approximation is used to force the matrix R(n) a symmetric 

one. Although this approximation leads to important compu­

tational saving, the convergence performance is also degrad­

ed. Thus, the approximation method is not used in this paper. 

3.3. Calculation of g( n) 

The proposed fast filtering method uses w(n) rather than 

w(n) to calculate the filtered-out vector y(n). Therefore, 

the true weight vector w(n) is not available in the proposed 

method. However, the calculation of g(n) requires w(n). 
If the weight vector w(n) is computed by using (19), the 
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complexity is LM multiplications per sample and no com­

plexity reduction is obtained. To address this problem, we 

can periodically update w(n) and g(n) every L samples: 

if mod(n,L)=O 
calculate w(n) 
calculate g(n) 

else 
g(n) = g(n -1) 

end 

by using 
by using 

(19) 
(9) -(14) 

(31) 

Thus, calculation of g(n) only needs M multiplications per 
sample. Simulation in the following confirms that this simpli­

fy cannot lead to significant performance lost. 

3.4. Computational complexity 

In fact, the MPAP algorithms have the same asymptotic 

computational complexity. To simplify the presentation, 

we just list the computational complexity of the improved 

proportionate-type AP algorithms in Table 1, i.e., the IPAP, 

MIPAP, AMI PAP and the proposed fast MIPAP algorithm­

s. We use Pm indicate the multiplications associated with 

solving the linear systems of equations in (6). Note that the 

MIPAP algorithm achieves major complexity saving com­

pared to the IPAP algorithm thanks to the recursive imple­

mentation of the "proportionate history." The fast MIPAP 

saves (2L -4)M multiplications per sample than the original 

MIPAP algorithm. In practical applications such as echo can­

cellation, L is between 2 and 10 and L « M, so the obtained 

gain (2L -4)M with respect to the value of Pm is still high. 

The complexity reduction is significant especially for system 

with a very long impulse response. 

Table 1. Complexity of improved proportionate-type AP al­

gorithms 

Algorithm 

IPAP [6] 

MIPAP [7] 

AMIPAP [11] 

Fast MIPAP 

Number of multiplications per sample 

(U + 3L + I)M + Pm 
(4L + I)M + Pm 
(3L + 2)M + L + Pm 
(2L + 5 + 1/ L) M + U + Pm 

4. SIMULATION RESULTS 

Computer simulations are performed in the context of net­

work echo cancellation to examine the proposed fast algo­

rithms. The sampling rate is 8 kHz. The first impulse re­

sponse from ITU-T 0.168 Recommendation is padded with 

zeros in order to have M = 512 coefficients. An abrupt 

change of the echo path was introduced at the middle of the 

iterations, by shifting the impulse response to the right by 10 

samples. An independent white noise signal is added to the 



(a) 

Fig. 1. Misalignment perfonnance of MPAP algorithms and 

their fast versions with L = 4 and JL = 0.5. Input signal is an 

AR(1) process. (a) MIPAP. (b) MMIPAP. (c) IAF-MPAP. 

_ 10 
<g 0 --MMIPAP 

�=;� � � -30L---------------__ ������-������� 

_ 10 

o 0.5 1 1.5 2 2.5 3 
(c) 

<g 0 --IAF-MPAP 

�=�� � � -30 L _______________ ��������_������� 
o 0.5 1 1.5 2 2.5 3 

Times (s) 

Fig. 2. Misalignment perfonnance of MPAP algorithms and 

their fast versions with L = 4 and JL = 0.5. Input signal is 

CSS. (a) MIPAP. (b) MMIPAP. (c) IAF-MPAP. 

microphone signal, with 30-dB signal-to-noise ratio (SNR). 

The input signals are an AR process, the composite source 

signal (CSS), or a speech signal. The performance is eval­

uated in tenns of mean square deviation (MSD) defined as 

10l0glO [Ilwo -w(n)1 12 /llwoI12] . The results are obtained 

by averaging over 50 Monte Carlo trials. The regularization 

parameter is OAP = 200"� for the AP algorithm. The parame­

ters used for the MPAP algorithms are set as follows: MIPAP 

( a = 0, 0" = 10-6, 0 = OAP(1 -a)/2M); MMIPAP ( 

a = 0, 0" = 10-6, 0 = OAP(1 -a)/2M); IAF-MPAP ( 

ql(O) = O.01/M, 0 = oAP/M). 
Fig. 1 compares the misalignment perfonnance of the MI­

PAP, MMIPAP, IAF-MPAP algorithms and their correspond­

ing fast versions for AR(1) input with coefficients (1, -0.9). 

The projection order is L = 4 and the step size is set to 

JL = 0.5. Fig. 2 uses the same set of parameters as Fig. 1 

except that the CSS is used as input. It can be observed from 
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Fig. 3. Misalignment perfonnance of the AP, IPAP, MIPAP, 

AMIPAP, and the proposed fast MIPAP algorithms with L = 

8 and JL = 0.5. (a) AR(2) input. (b) Speech signal as input. 

Fig. 1 and Fig. 2 that the proposed fast algorithms achieve 

almost the same perfonnance with their standard ones. Thus, 

computing the proportionate vector every L samples cannot 

degrade the performance significantly. 

In Fig. 3, we compare the performance of the proposed 

fast MIPAP with that of the AP, IPAP, MIPAP, and AMIPAP 

algorithms for L = 8 and JL = 0.5. In Fig. 3(a), the input 

signal is AR(2) input with coefficients (1, -0.1, -0.8) while in 

Fig. 3(b) the input is a speech signal. It is noted that the AMI­

PAP algorithm has poor convergence perfonnance due to the 

approximation on the matrix R(n), while the perfonnance of 

the proposed fast MIPAP is comparable to that of the origi­

nal MIPAP. This example demonstrates the robustness of the 

proposed fast algorithm. 

5. CONCLUSION 

This paper has presented a low-complexity implementation of 

a family of MPAP algorithms based on the time-shift property 

of the matrices X( n) and P(n). The proposed fast algorithms 

are the fast exact implementation of the original MPAP algo­

rithms except that the proportionate vector of the fast versions 

is updated every L samples. Typically, the proposed fast al­

gorithms saves about (2L -4)M multiplications per sample 

than their original counterparts. The complexity reduction 

becomes more apparent when the projection order is large. 

Simulation results confinn the convergence perfonnance of 

the proposed methods is comparable to that of the original 

algorithm. 
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