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Abstract—Previously, we proposed an improved multi-
band-structured subband adaptive filter (IMSAF) algorithm to
accelerate the convergence rate of the MSAF algorithm. When
the projection order and/or the number of subbands is increased,
the convergence rate of the IMSAF algorithm improves at the
cost of increased complexity. Thus, this paper proposes several
approaches to reduce the complexity of the IMSAF algorithm,
both in error vector calculation and matrix inversion operation.
Specifically, three approaches are developed to efficiently calculate
error vector. The first approach gives an approximate filtering,
whereas the other two approaches can provide a fast exact filtering
with or without update of the weight vector explicitly based on a
recursive scheme. The decorrelation property of IMSAF is deter-
mined, and two simplified variants are developed to reduce the
complexity as by-products, i.e., the simplified IMSAF (SIMSAF)
and pseudo IMSAF algorithms. Then, we discuss the problem of
solving a linear system of equations. The performance advantages,
limitations, and preferable applications of various methods are
analyzed and discussed. Computer simulations are conducted in
the context of system identification to determine the principle and
efficiency of the proposed fast algorithms.

Index Terms—Adaptive filtering, affine projection, decorrela-
tion, linear system of equations, low complexity.

I. INTRODUCTION

A DAPTIVE filters [1] are widely used in communication,
active noise control (ANC), and acoustic echo cancella-

tion (AEC), among others. In particular, subband adaptive filters
(SAF) [2] are commonly employed to improve the convergence
behavior. Unfortunately, the convergence rate of the traditional
SAF is reduced due to aliasing and band-edge effects [2]. To ad-
dress this problem, a multiband weight-control mechanism was
developed in [3]–[6] where the fullband weight vector is up-
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dated by subband signals. We also proposed an improved multi-
band-structured subband adaptive filter (IMSAF) algorithm re-
cently [7] to better handle the colored signal and long impulse
response. Interestingly, this algorithm can be regarded as a gen-
eralized form of the normalized least-mean-square (NLMS),
affine projection (AP) [8], and multiband-structured subband
adaptive filter (MSAF) algorithms [6].
Numerous fast adaptive algorithms have been reported in the

literature. The recursive least squares (RLS) algorithm displays
good convergence performance; however, the fast implementa-
tion of this algorithm remains too complex for long adaptive
filters. For example, the stabilized fast transversal filter (FTF)
algorithm [9] has a complexity of ( being the filter
length), but this algorithm suffers from numerical instability.
The lattice filters have improved numerical behavior and sta-
bility but they generally require operations per sample
[1]. The fast AP (FAP) algorithm [10], [11] requires
operations per sample ( being projection order), and many
variants of this algorithm were presented [12]–[20]. The com-
plexity of FAP is considerably lower than that of RLS-type al-
gorithms; however, its convergence is still slow for the colored
input signals. The complexity of the fast IMSAF algorithms pro-
posed in this manuscript is only slightly higher than that of FAP
but is significantly lower than that of RLS-type algorithms. Fur-
thermore, the IMSAF algorithm displays a faster convergence
rate than the FAP and NLMS algorithms do, as per the current
study findings. The fast IMSAF algorithms also exhibit good
numerical stability. Thus, the IMSAF algorithm is appealing for
application in various fields given its favorable properties.
The computational complexity of the IMSAF algorithm

mainly comes from three operations: i) error vector calculation,
ii) weight vector update, and iii) matrix inversion operation.
We attempt to present complete solutions to these problems
through this work. The main contributions of this study are
organized as follows:
1) Three fast filtering approaches are proposed to compute

error vector for different applications. The first one gives
an approximate filtering, whereas the second and third ap-
proaches can calculate the error vector precisely. These
ideas can also be generalized to a family of adaptive fil-
ters with the similar filtering and update structures.

2) We present the decorrelation property of the IMSAF algo-
rithm. This property provides new insight into the IMSAF
algorithm, i.e., the IMSAF employs two prewhitening
techniques to accelerate the convergence.
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Fig. 1. Block diagram of the IMSAF algorithm.

3) Two IMSAF variants, namely, the simplified IMSAF
(SIMSAF) and pseudo IMSAF algorithms, are presented
as by-products of the decorrelation property. The SIMSAF
algorithm converts the operation of a single matrix in-
version with size into the calculation of
inversions of the matrices with size ( and

being the number of subbands and projection order,
respectively). This procedure reduces the complexity
considerably. Meanwhile, the pseudo IMSAF algorithm
resembles a projection type gradient algorithm like NLMS
with the complexity .

Notations: Throughout this paper, we use uppercase and low-
ercase bold fonts to denote matrices and vectors, respectively,
e.g., and . The elements of the matrix and vector are denoted
as and . A th column of is denoted as . Super-
script denotes the transpose operator. and are the identity
and null matrices of appropriate size that can be deduced easily
from the text.

II. REVIEW OF THE IMSAF ALGORITHM

We consider data arising from the linear model

(1)

where is the weight
vector of an unknown system with length ,

denotes
the input signal vector, and is the system noise. The
derivations in this manuscript are based on the time-shift
structure in the input regression vectors. Nevertheless, we will
highlight which relations are structure independent and which
ones are not, which can be used to develop the fast algorithm
for arbitrary regression vectors [21]–[24].
Fig. 1 shows the block diagram of the IMSAF algorithm.

The desired signal and input signal are parti-
tioned into subband signals, and , by means
of analysis filters . The subband
input signals are filtered by the adaptive filter to gen-
erate the subband output signals . The subband signals

and are then decimated by a factor to gen-
erate and . Notations and represent
-fold decimation and interpolation. The fullband error

signal is finally obtained by interpolating and recom-
bining all the subband error signals using a synthesis
filter bank . Variables and
are used to indicate the original and decimated sequences.

denotes the th subband reference signal vector, and
is the fullband weight

vector of the adaptive filter.
To describe the IMSAF algorithm, we define the input signal

matrix , the desired signal vector , the estimated
signal vector , the a priori error signal vector , and
the a posteriori error signal vector as follows

(2)
(3)

(4)

(5)

(6)

where

(7)
(8)

(9)

(10)
(11)
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TABLE I
IMSAF ALGORITHM

We now seek by solving the constrained optimization
criterion:

(12)

The solution of this optimization problem is [7]

(13)

where is the step size and is the regularization parameter.
The weight vector update is performed for each input sam-
ples.
Table I describes the computational complexity of the IMSAF

algorithm in terms of the number of multiplications and ad-
ditions per sample. The parts related to signal decomposition
and synthesis are presented in Table I but are omitted in the
subsequent tables for simplicity. We assume that solving the
linear system of equations re-
quires multiplications and additions per sample, where

.
As per Table I, the complexity of the IMSAF algorithm in-

volves three operations: i) calculating the filtering output signal
vector , ii) updating the weight vector obtained with (13),
and iii) solving the linear system of equations. We present effi-
cient solutions to these three problems in the following sections.

III. EFFICIENT COMPUTATION OF WEIGHT VECTOR

Direct update of the weight vector according to (13) requires
operations per sample. Given the special structure of (13),

the weight vector can be expressed using an auxiliary coefficient
vector.
The vector can be divided into

, where is a vector
of size . Expanding the matrix/vector multiplications in
(13), can be rewritten as

(14)

Continuing to recursively expand (14) yields

(15)

Assuming that for , dividing the summation
pair in (15) into two groups yields

(16)

Using (16), can be alternatively expressed as

(17)

where

(18)

(19)

Interestingly, both and can be updated recursively.
From (18), it is noted that can be computed in a recursive
way:

(20)
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It is seen from (19) that can also be calculated recursively

(21)

where is a vector that consists the uppermost
elements of .
The derivation of fast adaptation strategy is not limited to

tapped-delay-line data structure, i.e., the arguments in this sec-
tion hold for arbitrary regression vectors.

IV. FAST FILTERING APPROACHES

In this section, we present three schemes to significantly re-
duce the complexity of the filtering step.

A. Fast Approximate Filtering
Since the structure of the IMSAF algorithm is similar to that

of the AP algorithm, our first attempt towards the complexity re-
duction of the IMSAF algorithm is to apply the idea in FAP [10],
[11] to the IMSAF algorithm and derive an efficient method for
the error vector calculation. This fast approximate filtering ap-
proach is named as “FAF.”
Taking (10) and (11) into account, one has

(22)

where consists of the upper elements of
. Using (6), one has

(23)

Using (4) and (5), can be rewritten as

(24)

By substituting (24) into (23) and using (13), we get1

(25)

As long as is significantly smaller than the eigenvalues of
, the following approximation can be de-

rived:

(26)

Substituting (26) into (25), and can be
related as follows

(27)

Substituting (27) into (22) yields

(28)

where consists of the upper elements of
.

1It can also be directly obtained from the constraint condition in (12).

The first element of can be computed by applying
the auxiliary coefficient vector strategy discussed in Section III.
Using (17), we obtain

(29)

where . We define the correlation
element

(30)

By employing (30), we can write as

(31)

The matrix can be written in the following block matrix
form

(32)

where . Using (30), we can express
as

(33)

Equation (33) indicates the lower block of
can be determined by copying the upper
block of . Using (31) and (33), the up-

dating of and requires only the calculation of
. The correlation element can be

recursively computed as

(34)

Consequently, updating of and requires
multiplications and additions in total.

The FAF approach is presented in Table II. The complexity
of this scheme is reduced significantly because filtering and up-
dating require only operations, unlike the op-
erations needed for direct implementation. In the special case
wherein , the proposed approach is reduced to the FAP
algorithm [10], [11].
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TABLE II
FAST APPROXIMATE FILTERING

Note that (28) is only an approximate implementation of (10)
under the condition that is significantly small. If the eigen-
values of are “large”, one usually does not need regular-
ization parameter. This fast filtering scheme can be useful in
this case. In some applications, however, regularization is nec-
essary. For example, the regularization parameter is (
is the variance of the input signal ) when the signal-to-noise
ratio (SNR) is 0 dB and [25]. Thus, the approximation
in (26) does not hold again. If (28) is used to calculate the error
vector, then the performance does not exactly match that of the
original IMSAF algorithm [12]. Moreover, Appendix A shows
that given the same regularization parameter, the FAF approach
can achieves lower steady-state misalignment. Simulation re-
sults indicate that by making adjustment , the FAF approach
and the standard IMSAF can exhibit similar convergence per-
formance. Nevertheless, it is desirable to derive a fast, yet exact
filtering algorithm. We will do that in the next two subsections.

B. Fast Exact Filtering With Weight Vector Calculation
In the first approach, only the first component of each sub-

band error vector is exactly calculated, and the others are ap-
proximated. Motivated by the idea presented in [19], we pro-
pose a new fast filtering approach in which all the error vector
components can be calculated exactly.
Substituting (13) into (4), can be rewritten as

(35)

where and .
Using (2), can be rewritten as

(36)

where

(37)

When (9) is considered, can be expressed as

(38)

TABLE III
FAST EXACT FILTERING WITH WEIGHT VECTOR CALCULATION

where

(39)

The last elements of can be obtained directly from
. To update , we need only compute that

requires multiplications and additions.
In (35), updating necessitates the calculation of ,

which can also be expressed in the following block matrix form:

(40)

where ,
. Using (30), we can express as

(41)

In addition, we must update . By means of (41) and (33),
most elements of and can be taken from

. Updating and requires only the compu-
tation of . This process requires a total of

multiplications and additions.
This approach provides an exact implementation of (4) and

prevents any numerical instability. The proposed fast filtering
technique reduces the filtering complexity from oper-
ations, as in the original IMSAF algorithm, to operations
per sample. This approach is summarized in Table III. For con-
venience, the approach is known as “FEF1”. The fast exact AP
algorithm [19] is a special case of the proposed approach at

.

C. Fast Exact Filtering Without Weight Vector Calculation
The second approach is appealing because it facilitates exact

filtering. However, the calculation of requires the explicit
update of that needs operations per sample,
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TABLE IV
FAST EXACT FILTERING WITHOUT WEIGHT VECTOR CALCULATION

which contributes the most to the algorithm complexity. How-
ever, the weight vector calculation is not a primary concern in
many applications. By exploiting the special structure of the
matrix , it is sufficient to calculate the error vector exactly
even if is not available in every sampling period.
Given the special expression of in (17), can

be calculated using the auxiliary coefficient vector rather
than . Substituting (17) into (39) yields

(42)

where

(43)

The first elements of are calculated while updating
matrix . Consequently, calculation requires only
the computation of by using (34).
This fast filtering approach uses the auxiliary coefficient

vector in place of to calculate the filtering out
vector . Update of needs operations while cal-
culation of requires only operations per sample. This
fast exact filtering algorithm, named “FEF2,” is summarized in
Table IV.
This fast filtering approach is only marginally more complex

than the first one; however, the former calculates the error signal
vector exactly. In fact, the third fast exact filtering approach can
be applied as a general framework to many adaptive filtering
algorithms that have the similar filtering and update structures
in (4) and (13); see [26] and [27] for more details.

We should stress that almost all of the relations in this sec-
tion hold irrespective of structure, with the exception of the cal-
culation of correlation element in (30) based on the time-shift
structure. This finding indicates that it is possible to derive fast
filtering approaches for situations in which successive regres-
sors are not time-shifted versions of one another.

V. DECORRELATION PROPERTY OF IMSAF

A. Design of the SIMSAF Algorithm
The computational savings attributed to fast filtering ap-

proaches can be increased by calculating matrix inversion
efficiently. In this section, we analyze the structure of the
correlation matrix and propose a simplified version of
the IMSAF algorithm.
The cross-correlation function of two arbitrary sub-

band signals and can be formulated as [2]

(44)

where and are the magnitude responses of
the analysis filters, is their phase dif-
ference, and is the power spectrum of the input signal.
Assuming ergodicity, can be approximated with the
time average . As per
(44), if the magnitude responses of the analysis filters do not
overlap significantly, then the cross-correlation is neg-
ligible compared to the autocorrelation . In other words,
the elements of
are much smaller than its diagonal elements

. Therefore, can be neglected in comparison
with . However, the subband signal still displays high
autocorrelation for highly colored signals. Therefore, the off-di-
agonal elements of cannot be neglected in comparison
with its diagonal elements [7].
At this point, we present numerical results to understand the

nature of . The input signals are an AR(1) process with
coefficients and an AR(10) process with coefficients
(5.3217, , 7.0933, , 2.5805, , 0.3747,
2.2628, , , 1.1053) [2]. The latter is a speech-
like signal and exhibits a large spectral dynamic range. The
power spectra of these signals are plotted in Figs. 2(a) and 2(b),
respectively. Cosine modulated filter banks [28] are used for the
subband structure. Figs. 2(c) and 2(d) provide the pictorial rep-
resentations of for AR(1) and AR(10) signals, where we
choose , and each element
is normalized by the corresponding leading diagonal element

. The elements of are considerably smaller
than those of ; thus, the former can be neglected.
Thus, can be simplified to

(45)
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Fig. 2. (a) Power spectral of the AR(1) process. (b) Power spectral of the
AR(10) process. Pictorial representation of the matrix for (c) AR(1)
input and (d) AR(10) input.

Using (45) and the fact that the inverse of a block diagonal
matrix is composed of the inverse of each block, (13) can be
rewritten as

(46)

One advantage of the simplification above lies in the com-
plexity reduction. The IMSAF algorithm in (13) must imple-
ment a matrix inversion with size . By contrast,
the SIMSAF algorithm in (46) involves inversions of
the matrices with size . For a direct implementa-
tion, the complexity of the former is , whereas
that of the latter is . We assume that calculation of

needs multiplications and additions per sample. The
sole difference between the IMSAF and SIMSAF algorithms
lies in the calculation of . Thus, the fast filtering ap-
proaches presented in Section IV can also be applied to the
SIMSAF algorithm without any modification.

B. Decorrelation Property of the IMSAF Algorithm
Moreover, we can obtain an intuitive interpretation of the

IMSAF algorithm according to (46) [29]. In the special case
wherein and , Appendix B proves that the weight
update (46) can be written as

(47)

where

(48)
(49)
(50)

Interestingly, (47) provides new insight into the IMSAF algo-
rithm. The IMSAF algorithm with step size runs with

a decorrelated direction subband vector rather than with
the original input vector . As a consequence, the IMSAF
algorithm uses two prewhitening techniques to accelerate the
convergence. First, the input signal is filtered by the
analysis filters to obtain the subband signals that have
flatter spectrum [2]. Second, each of the subband signal
is prewhitened by a decorrelation filter before this
signal is incorporated into the adaptive filtering algorithm. If
the number of subbands and projection order are properly
chosen, then is a vector whose elements are estimates of a
white random process. When an process is decomposed
into subbands, the th subband signal can be modeled by
an AR process with less order [30]. Thus, the projection order
needed by the IMSAF algorithm can be less than that required
by the AP algorithm to achieve the same convergence rate.

C. Pseudo IMSAF Algorithm
The IMSAF variant in (47) is interesting in that this form re-

sembles a projection-type gradient algorithm, such as NLMS.
Introducing a step size can enhance flexibility
and facilitate a tradeoff between the convergence speed and
steady-state misalignment. Given , the weight vector update
(47) becomes

(51)

where a regularization factor is also used to assist in handling
the numerical instability. When the step size , the IMSAF
property is not satisfied again in (51). Thus, the result is known
as the pseudo IMSAF algorithm. As per (89) in Appendix B,
we note that and thus (51) can be
reformulated into

(52)

The update equation of the pseudo AP (PAP) algorithm in [31]
is thus a special case of (51), whereas the update equation of
another PAP algorithm in [32] is a special case of (52). The up-
date (51) and (52) are indeed equal; therefore, the two variants of
PAP algorithm in [31] and [32] are also mathematically equiv-
alent. This phenomenon has not been reported previously.
The pseudo IMSAF algorithm in either (51) or (52) remains

too complex for implementation. Themajor contributor to this is
(48) because calculation of requires multiplica-
tions. In practice, the estimates of the linear predictor coefficient

can be treated as time-invariant values in a short period
of time (the speech signal is stationary for the duration for ap-
proximately 10 ms). We can then approximate through
a tapped-delay line, i.e.,

The top elements of can be computed
as:

(53)
where

Using this approxima-
tion, update of requires multiplications. Thus, the
total complexity is significantly reduced. The pseudo IMSAF
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TABLE V
PSEUDO IMSAF ALGORITHM

TABLE VI
CG ALGORITHM

algorithm is summarized in Table VI. The matrix and
the vector can be updated by using (30). The linear
system (50) is similar to the normal equation in the SIMSAF
algorithm; therefore, both equations can be solved with the
same method. For simplicity, an exact solution of (50) is used
in the simulation.
The computational cost of the pseudo IMSAF algorithm is

only slightly more complex than that of the MSAF algorithm.
As per the simulation, however, the convergence speed of
the former is higher than that of the latter. Hence, the pseudo
IMSAF algorithm can serve as a feasible solution for consumer
devices that typically possess limited resources.

VI. SOLUTION TO THE LINEAR SYSTEMS OF EQUATIONS

A. Problem Description
At this point, the remaining problem involves solving the

linear system of equations:

(54)

where is a symmetric positive definite matrix, and is a
vector. In the IMSAF algorithm, , ,
and . In the SIMSAF algorithm, ,

, and . Many methods have been pro-
posed to solve this problem [33]. For simplicity, however, we
focus only on the linear system of equations in the SIMSAF al-
gorithm in the following sections. Those results can easily be
extended to the IMSAF algorithm.

B. Solutions
1) Exact Solution: Since is sym-

metric, the matrix factorization [17], [33] can be used
to provide an exact solution of (54). The matrix can be
uniquely factored into

(55)

where is a diagonal matrix, and is a unit lower triangular
matrix. We can then use the forward and backward substitutions
to solve . Interested readers may
refer to [17] for more details. This scheme needs

multiplications/additions, as well as divisions.
2) Levinson Recursion: For most applications, , the

following relation holds

(56)

Thus, the elements on each diagonal of can be ap-
proximated as equal, i.e.,

(57)
Since is simplified as a Toeplitz matrix, the Levinson
recursion [33] can be used to solve the linear system with

multiplications, additions, and divisions. This
approach only gives an approximate solution because the actual
matrix is not strictly Toeplitz.
Solving the normal (54) is equivalent to minimizing the

quadratic function [33]:

(58)

Several iterative algorithms have been proposed to solve the
linear system of equations based on (58). Specifically, we are
interested in low-complexity and robust line search methods,
e.g., the dichotomous coordinate descent (DCD) and conjugate
gradient (CG) algorithms.
3) CG Algorithm: The CG method [34], [35] is an iterative

method that minimizes the quadratic cost function (58). This
method has been adopted to solve the linear equations in the
FAP and RLS algorithms [17], [36]. In this study, we would like
to use the CG method to calculate
and in (13) and (46), respectively.
This algorithm converges quickly; however, its complexity
is expensive especially for a large number of iterations .
Table VI describes the CG algorithm.
4) DCD Algorithm: A new, inexact line search method, i.e.,

the DCD algorithm [36]–[38], has also been proposed to solve
the linear system of equations. In this algorithm, the step-size
can take on one of predefined values corresponding to bi-
nary representation of elements of within an amplitude range
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TABLE VII
DCD ALGORITHM [36]

. The algorithm starts the iterative search from the most
significant bit (MSB) of elements in . As the MSB is updated,
the algorithm proceeds to the next significant bit. Parameter
denotes the maximum number of “successful” iterations. The
DCD algorithm requires no multiplication, no division, and no
square root operations, which is preferable for implementations
on hardware platforms, e.g., FPGA and ASIC. The DCD algo-
rithm is outlined in Table VII.
In the following sections, we use SIMSAF-FEF2-DCD to

denote that the FEF2 approach has been adopted to calculate
error vector while the DCD method has been employed to solve
the linear system of equations. Incorporating DCD iterations
into the FEF1 and FEF2 approaches produces the SIMSAF-
FEF1-DCD and SIMSAF-FEF2-DCD algorithms, respectively.
The performance levels of both algorithms are identical; the sole
difference between the two algorithms lies in structural com-
plexity. In the SIMSAF-FEF1-DCD algorithm, weight updates
are incorporated into the DCD iterations without explicit mul-
tiplication [19]. The number of multiplication operations re-
quired by the SIMSAF-FEF1-DCD algorithm is thus signifi-
cantly reduced. However, the number of the addition procedures
needed for weight vector adaptation remains large and increases
with . The SIMSAF-FEF2-DCD algorithm performs more

multiplication operations than the SIMSAF-FEF1-DCD al-
gorithm but saves addition procedures. Thus, the
total operations of the SIMSAF-FEF2-DCD algorithm are con-
siderably reduced. Each algorithm may have its own merit de-
pending on the implementation platform used, such as DSP,
FPGA, and ARM [37].

C. Computational Complexity

By combining different filtering schemes and matrix in-
version methods, we can derive several implementations of
the IMSAF algorithm. Table VIII compares the complexity
of several fast versions of the IMSAF algorithm with respect
to the number of additions and multiplications per sample.
Table IX presents the complexity of various matrix inversion
operations. The approach is applied to in the original
IMSAF and SIMSAF algorithms in order to provide a bench-
mark.
Table X shows an example of the computational load com-

parison of several variants. The parameters are

. Compared to the original IMSAF algo-
rithms, the SIMSAF-FE1- and SIMSAF-FE2-
algorithms save approximately 52% and 81% of computation,
respectively. The complexity reduction is attributed to both of
the fast filtering approaches and simplified matrix inversion
operations. The complexity of filtering and updating in the
FEF1 and FEF2 approaches is only 63% and 22% of that in the
original IMSAF algorithm, respectively. Note that solving a
linear system of equations with size 64 64 using the
approach in the IMSAF algorithm needs 6476 operations per
sample. By contrast, the SIMSAF algorithm needs to solve
only eight linear systems of equations with size 8 8 that only
requires 203 operations per sample. When the projection order
is small , the complexity reduction of the Levinson

recursion is limited compared to the approach. In appli-
cations such as AEC, the projection order is often set between 2
to 10 [17]; thus, the use of the approach is encouraged
for practical applications. The DCD approach does not need
multiplication and division, which is preferable for hardware
implementations. When the number of iterations is large,
the complexity of the CG method is quite expensive. Fortu-
nately, a small number of iterations can give good result [36].
Moreover, the complexities of the FAF and FEF2 approaches
are similar; however, the latter can provide an exact filtering.
The pseudo IMSAF is the least complex of all fast versions of
IMSAF.

VII. SIMULATION RESULTS
Computer simulations are conducted to evaluate the perfor-

mance of the proposed fast algorithms in the context of system
identification. The impulse response is generated according
to , where is a zero-
mean white noise sequence and is the envelope decay rate.
The sampling rate is 8 kHz. The AR(10) process depicted in
Fig. 2 is adopted as input signal for Examples 1, 2, 4, 5, 6 and
7. A white noise is added to the echo signal, with different SNR
levels. The convergence performance is evaluated in terms of
the mean-square error (MSE) or normalized misalignment, de-
fined as . The results are ob-
tained by averaging over 100 Monte Carlo trials for AR process
and white noise input but just once for other input signals.
In the following simulations, the exact filtering approaches

are adopted to calculate the error vector in all examples except
for Example 1. Since FEF1 and FEF2 both provide the exact fil-
tering, we do not indicate which approach is used. For example,
“IMSAF-DCD” indicates that the DCD algorithm is used to
solve the linear system of equations while either FEF1 or FEF2
can be employed to compute the error vector.

A. Example 1: Effect of the Regularization Parameter on the
Performance of the IMSAF-FAF

Fig. 3 compares the convergence performance of the
IMSAF-FAF using different regularization parameters . An
exact solution of the matrix inversion is applied in this example.
In Fig. 3(a), the input signal is white noise with
and the SNR is 10 dB. When , the performance of
the IMSAF-FAF and original IMSAF algorithms are indistin-
guishable. However, when a large regularization parameter
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TABLE VIII
COMPLEXITY OF THE FAST IMSAF ALGORITHMS

TABLE IX
COMPLEXITY OF SEVERAL MATRIX INVERSION ALGORITHMS

TABLE X
COMPLEXITY COMPARISON OF SEVERAL FAST IMSAF ALGORITHMS

is employed, IMSAF-FAF performance deviates
from that of the original IMSAF algorithm and the former
achieves smaller misalignment. Because the input signal is
white noise, the matrix has four equal eigen-
values . The regularization parameter (that is
0.005) is much smaller than , but (that
is 2.0) is larger than . The simulation results agree
with the analysis in Appendix A. However, the IMSAF-FAF
with displays the same convergence performance
as the standard IMSAF with . In Fig. 3(b), we
use the AR(10) process as input and the SNR is 30 dB. The
IMSAF-FAF with exhibits almost the same con-
vergence performance as the standard IMSAF with .
Extensive simulation were carried out and it is found that by
tuning the regularization parameter, the convergence perfor-
mance of IMSAF-FAF and standard IMSAF algorithms can be
similar. This finding indicates that the IMSAF-FAF algorithm
can be used in a real-time system, although this algorithm is not
an exact implementation of the original IMSAF. Furthermore,

Fig. 3. Learning curves for the IMSAF-FAF and original IMSAF algorithms;
. (a) White noise as input, .

(b) AR(10) as input, .

as the regularization parameter increases, the IMSAF and
IMSAF-FAF can achieve smaller steady-state misalignment at
the cost of slower convergence rate. Thus, the regularization
parameter can play a role similar to that of the step size. If a
variable regularization parameter is adopted, the algorithms
can achieve both faster convergence and smaller steady-state
misalignment.

B. Example 2: Comparison of the IMSAF and SIMSAF
Algorithms
We now evaluate the performance of the SIMSAF. In fact,

the performance difference between the SIMSAF and IMSAF
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Fig. 4. Comparison of the IMSAF and SIMSAF algorithms with different
length of the analysis filters; , and

. (a) Learning curves for the IMSAF and SIMSAF algorithms
with . (b) Euclidean norm of the difference of impulse
responses from the IMSAF and SIMSAF algorithms.

Fig. 5. Comparison of the IMSAF and SIMSAF algorithms;
, and . (a) CSS. (b) Speech signal. Learning

curves for the IMSAF and SIMSAF algorithms: (c) CSS as input, (d) speech as
input. (e) and (f) are the Euclidean norm of the difference of impulse responses
from the IMSAF and SIMSAF algorithms in (c) and (d).

depends mainly on the design quality of the analysis filters. If
the analysis filter banks are “ideal”, the SIMSAF and IMSAF
should exhibit the same behavior. Fig. 4 shows the convergence
performance of the IMSAF and SIMSAF algorithms with dif-
ferent length of the analysis filters. The parameters are

. The length of the analysis
filters is set to , 64 and 128. The learning curves of
the IMSAF and SIMSAF algorithms for the AR(10) process
input are shown in Fig. 4(a). We also present the Euclidean
norm of the difference of impulse responses in Fig. 4(b), defined
as ,
where and are the weight vectors of
the IMSAF and SIMSAF algorithms, respectively. These two

Fig. 6. Learning curves of the IMSAF, Pseudo IMSAF, PAP and MSAF algo-
rithms with AR(8) as input; and . (a)

; (b) .

algorithms differed significantly when . However,
is very small and the convergence performance of the SIMSAF
algorithm is very close to that of the IMSAF algorithm when

and .
We also carried out experiments with the composite source

signal (CSS) [39] and speech as input signals. The parame-
ters are , and

. The simulation results are displayed in Fig. 5.
Once more, we see that the IMSAF and SIMSAF algorithms
have almost the same performance. The length of analysis fil-
ters is enough to get good result. This verifies that
the simplification in (45) does not deteriorate the system per-
formance significantly if the analysis filter banks are properly
designed.

C. Example 3: Comparison of the Pseudo IMSAF and IMSAF
Algorithms
In this example, a simulation is conducted to evaluate the per-

formance of pseudo IMSAF. The IMSAF, PAP, andMSAF algo-
rithms are also included in the comparison. The input signal is an

process taken from [31]. The parameters are
and . Fig. 6(a) presents the learning curves of
IMSAF and pseudo IMSAF with . Step sizes are

and , respectively. When the step size is 1.0,
the pseudo IMSAF and original IMSAF exhibit the similar per-
formance. Given a small step size , the pseudo IMSAF
does not maintain a close approximation to the original IMSAF.
Fig. 6(b) compares the convergence performance of the pseudo
IMSAF, PAP and MSAF algorithms with . It is
observed the Pseudo IMSAF has faster convergence speed than
the PAP and MSAF algorithms.

D. Example 4: Comparison of the IMSAF and AP Algorithms
Fig. 7 compares the performance of the IMSAF and AP al-

gorithms with an AR(10) process as input at .
The length of the adaptive filter is . The projection
order of the AP algorithm is . Given , the IMSAF
algorithm with demonstrates the similar performance as
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Fig. 7. Learning curves for the AP and IMSAF algorithms with an AR(10)
process as input; , , and .

the AP algorithm. When , the SIMSAF algorithm with
is enough to provide the similar convergence rate. This

finding demonstrates that the performance of the IMSAF algo-
rithm with a smaller projection order approaches that of the AP
algorithm with a larger projection order.

E. Example 5: Convergence Performance of the
SIMSAF-Levinson Algorithm
Fig. 8 compares the convergence performance of SIMSAF

and SIMSAF-Levinson algorithms. The input signal is the
AR(10) process. Other parameters are , , and

. When the regularization parameter is small , the
learning curve of the SIMSAF-Levinson algorithm fluctuates
strongly over time. We checked each of the learning curves and
noted that this algorithm even diverges in some runs. A large
regularization parameter can ensure the stability of
the SIMSAF-Levinson algorithm but lead to slower conver-
gence rate. When is assumed to be a Toeplitz matrix,
a large regularization parameter should be set to ensure the
algorithm stability especially for highly colored signals. This
requirement indicates that the SIMSAF-Levinson algorithm
is less tolerant to the matrix being ill-conditioned.
Similar results were also observed in the FAP algorithm [17].
Moreover, the complexity saved by the Levinson algorithm is
insignificant at a small projection order, as argued previously.
Thus, the use of the approach may be preferable when
the projection order is small .

F. Example 6: Comparison of the SIMSAF-CG and
SIMSAF-DCD Algorithms
Fig. 9 shows the convergence performance of the

SIMSAF-CG and SIMSAF-DCD algorithms with AR(10)
process as input. We use , , , and

in this case. The SNRs in Figs. 9(a)–9(c) are set to
30, 20, and 10 dB, respectively. Step sizes are chosen such that
identical steady-state misalignment is achieved for all the algo-
rithms. The performance of SIMSAF-CG and SIMSAF-DCD
algorithms with is similar to that of the standard
IMSAF. Given a fixed , the SIMSAF-CG algorithm con-
verges faster than the SIMSAF-DCD algorithm does. The

Fig. 8. Learning curves for SIMSAF and SIMSAF-Levinson algorithms with
an AR(10) process as input; , , , ,

.

Fig. 9. Learning curves for the SIMSAF-CG and SIMSAF-DCD algorithms;
. The excited signal is an AR(10)

process. (a) , (b) , (c) .

faster convergence of the CG algorithm is also demonstrated
in [36]. However, the better convergence performance of the
CG method is achieved at the cost of increased complexity.
Moreover, the steady-state misalignments of the IMSAF,
IMSAF-CG, and IMSAF-DCD algorithms increase as SNR
decreases.

G. Example 7: Comparison With Other Fast Adaptive
Filtering Algorithms
Simulations are conducted to compare the performance of

the IMSAF with that of other fast adaptive algorithms having
complexity. The classical NLMS, FAP, and the two fast

versions of RLS, i.e., QRD-based lattice filter (Algorithm 43.1
in [1]) and stabilized FTF algorithms [9] are involved in the
comparison. The array lattice form is selected because it is the



YANG et al.: LOW-COMPLEXITY IMPLEMENTATION OF THE IMSAF ALGORITHM 5145

Fig. 10. MSE curves of the NLMS, FAP, IMSAF, QRD-based lattice filter
and stabilized FTF algorithms with an AR(10) process as input; ,

.

most reliable in terms of finite precision in all the order-re-
cursive implementations of RLS [1]. The length of the adap-
tive filter is . Other parameters are set as follows:
NLMS ( , ), FAP ( , ,

), IMSAF ( , , , ),
stabilized FTF ( , ), and QRD-based
lattice filter ( , ). A sudden change
of the impulse response is introduced in the middle of the iter-
ations. Fig. 10 shows the MSE curves with an AR(10) process
as input at . The stabilized FTF diverges even in
MATLAB precision. The QRD-based lattice filter exhibits the
fastest convergence; however, its tracking rate is slower than the
IMSAF which can limit the performance in nonstationary envi-
ronments. The convergence speed of the IMSAF is lower than
that of the QRD-based filter but faster than those of the NLMS
and FAP algorithms. The NLMS, FAP, IMSAF-FEF2- ,
stabilized FTF and QRD-based lattice filter require 2048, 2208,
4754, 8192, and 23552 multiplication operations per sample, re-
spectively. Thus, the complexity of IMSAF is much lower than
those of the QRD-based lattice filter and the stabilized FTF. The
proposed IMSAF achieves a good tradeoff between the conver-
gence and complexity.
Figs. 11 and 12 present the comparison results of the five

adaptive algorithms with a real speech signal as input at
and 15 dB, respectively. The other parameters used are sim-

ilar to those in Fig. 10, except that a large regularization factor
is adopted for IMSAF. It is observed that a similar con-

clusion is reached regarding the performance of the five adap-
tive algorithms in a realistic SNR conditions using the speech
signal.

VIII. CONCLUSIONS

This paper discusses the low-complexity implementation
of the IMSAF algorithm in detail. We first proposed three
approaches to reduce filtering complexity; these approaches
can also be generalized to many adaptive filters that use similar
filtering and update equations. Then, we presented the SIMSAF
algorithm that facilitates the conversion of the matrix inver-
sion operation with size into matrix inversion

Fig. 11. Comparison of the NLMS, FAP, IMSAF, QRD-based lattice filter and
stabilized FTF algorithms given a real speech signal as input at .
(a) Error signals and (b) misalignments.

Fig. 12. Comparison of the NLMS, FAP, IMSAF, QRD-based lattice filter and
stabilized FTF algorithms given a real speech signal as input at .
(a) Error signals and (b) misalignments.

operations with size . The performance of the SIMSAF
algorithm is close to that of the original IMSAF algorithm.
Interestingly, the IMSAF algorithm adopts two prewhitening
schemes to accelerate the convergence for colored signals.
Based on this property, we can set up a new variant algorithm
(pseudo IMSAF) that resembles the NLMS-type algorithm. The
solution of the linear system of equations has a great influence
on the overall performance of IMSAF and a proper method
should be chosen according to the real application.
The complexity of the proposed several low-complexity

IMSAF variants is only slightly higher than that of FAP but is
considerably lower than that of RLS-type algorithms. The pro-
posed fast IMSAF algorithms provide an alternative solution
for many applications.
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APPENDIX A
ON THE APPROXIMATION IN (28)

We now start to explore the effect of the approximation in
(28) on the convergence performance. By disregarding

in the matrix , we can rewrite
(25) as

(59)

The matrix has the following similarity
decomposition

(60)

where is a unitary matrix with size , and
is the diagonal matrix with

eigenvalue . Substituting (60) into (59) yields

(61)

As per (61), we can see that the ratio determines the ap-
proximation accuracy of (28). To simplify the analysis, we as-
sume that . We can rewrite (61) as

(62)

Substituting (62) into (28) results in

(63)

where . We now present two special cases to
illustrate the difference between (63) and (28).

Case A:When , we have . Thus, (63) becomes
(22). That is, the approximation used in (28) exerts a weak
effect on overall performance.
Case B: When is comparable to or , and then

does not hold again. Defining the weight error
vector as , (63) can be expressed as

(64)

where , and
( being the subband

noise signal). Subtracting from both sides of (46) yields

(65)

Substituting (64) into (65) yields

(66)

To compute , we use the following assumptions:
A.1) is independent with , A.2) and

are the independent and identically distributed signals.

Using A.1 and ignoring the correlation between different sub-
band signals, the expected squared Euclidean of both sides of
(66) is

(67)

where

(68)

(69)

By using A.2, we obtain the approximation
and , where

is the variance of the subband input signal. Thus, we get

(70)
(71)

where is the variance of the subband noise signal and
, ,

. Using the results above, we get a recursive expression for

(72)

Assuming the algorithm convergence, one can write
. From (72),

we get the steady-state misalignment:

(73)

We can compare the performance of IMSAF and IMSAF-FAF
algorithms based on (72) and (73). For IMSAF, we have ,
thus . For IMSAF-FAF, we have , thus

. From (72), it is seen that controls the algorithm
convergence and

(74)
(75)

It is easy to verify that . From (73), we
obtain

(76)

(77)

Since holds, we get
. Therefore, the IMSAF-FAF algorithm

can achieve smaller steady-state misalignment but also slower
convergence rate than the IMSAF algorithm.
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Note that the analysis is based on a relatively simple signal
mode, and it is worthwhile to study the more general case where
the matrix has an arbitrary set of eigenvalues.

APPENDIX B
DERIVATION OF (47)

In the special case wherein and , (28) becomes

(78)

Using (7) and (49), can be expressed in a block
matrix form

(79)

An inverse matrix can be calculated from its parts by [40]

(80)

where . Using (79) and (80), we can
express the inversion of as

(81)

where

(82)

(83)

(84)

(85)

Using (50) and (84), we obtain:

(86)

By applying (78), (81) and (86), we have

(87)

Substituting (50) into (48), can be rewritten as

(88)

By evaluating the energies of both sides of (88), it follows

(89)

Substituting (89) into (87) yields

(90)

Substituting (90) into (46), (47) is obtained. End of proof.
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