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ABSTRACT

The affine projection (AP)-type algorithms produce a good tradeoff between convergence
speed and complexity. As the projection order increases, the convergence rate of the AP
algorithm is improved at a relatively high complexity. Many efforts have been made to
reduce the complexity. However, most of the efficient versions of the AP-type algorithms
are based on the fast approximate filtering (FAF) scheme originally proposed in the fast AP
(FAP) algorithm. The approximation leads to degraded convergence performance.
Recently, a fast exact filtering (FEF) AP (FEAP) algorithm was proposed by Y. Zakharov.
In this paper, we propose a new FEF approach to further reduce the complexity of the
FEAP algorithm given that the calculation of the weight vector is not the primary objective
for the application at hand. The proposed FEF scheme is then extended to the
dichotomous coordinate descent (DCD)-AP, affine projection sign (APS), and modified
filtered-x affine projection (MFXAP) algorithms. The complexity of AP-type algorithms
based on the proposed FEF approach is comparable to that based on the FAF scheme.
Moreover, analysis results show that the complexity reduction of the new algorithms is
achieved without any performance degradation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

considerable rise of the computational complexity. Many
efforts have been made to reduce the complexity of the AP

In adaptive filtering, the least-mean-square (LMS)-type
algorithms are widely used but suffer from slow conver-
gence for colored signals. The affine projection (AP) algo-
rithm [1] was proposed to speed up the convergence,
which produces a good tradeoff between the convergence
speed and the complexity. Due to the good properties,
several variants of the AP algorithm have been developed
in the context of blind multiuser detection [2], acoustic
echo cancellation (AEC) [3,4], active noise control (ANC)
[5], and acoustic feedback cancellation (AFC) [6].

When the projection order P increases, the convergence
rate of the AP algorithm is improved at the price of a
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algorithm [3-20].

The complexity of the direct calculation of the error
vector is proportional to the projection order. The fast AP
(FAP) [3,4] algorithm and its variants [5-16] present a fast
approximate filtering (FAF) scheme to reduce the complex-
ity. Since the FAP algorithm is based on an implicit “small
regularization parameter” assumption, the FAP algorithm
is not exactly equal to the standard AP algorithm [17]. Most
of the existing fast AP-type algorithms [3-16] are based on
the FAF approach. The FAF approach reduces the complex-
ity efficiently but also leads to degraded performance.

To overcome this limitation, a fast exact filtering (FEF)
approach to the AP algorithm (FEAP) [18] was presented by
Y. Zakharov. However, in the FEAP algorithm, calculation of
the error vector requires the update of the weight vector
explicitly that provides the largest contribution towards the
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Table 1
FAP algorithm [3,4].

Equation X +
R(n) = X" (mX(n) 2P 2P
a(n)=X"(n—1)x(n) 0 0
e(n) =dn)—x"(mw(n-2)—a’ (Mpn—1) L+P L+P

e(n) P-1 0
M= 11— pem-1)
e(n) = u[R(n)+61]~ 'e(n) P Pq

0 0 P-1

pm) =e(m+ |:¢(”* 1)}
w(n)=wn-1)+x(n—P+1)pp_1(n) L L
Total

2L+4P+ Pp, multiplications
2L+4P+ P, additions

algorithm complexity. Many AP-type algorithms [19-21]
adopt the FEF approach to reduce the complexity and have
a similar problem. In many applications such as AEC and
ANC, calculation of the weight vector is not the main
concern [3-15]. In this paper, we will extend the work in
[18] and propose an enhanced FEF approach to the AP
(EFEAP) algorithm. The complexity of the proposed EFEAP
algorithm is comparable to that of the FAP algorithm. We
then extend the proposed FEF approach to a family of AP-
type algorithms such as the dichotomous coordinate des-
cent (DCD)-AP [18], affine projection sign (APS) [22], and
modified filtered-x affine projection (MFXAP) algorithms
[14,15]. Computer simulations demonstrate the effective-
ness of the proposed approach.

Notations: throughout this paper, we use uppercase and
lowercase bold fonts to denote matrices and vectors,
respectively, e.g., R and r. Superscript T denotes the
transpose operator, and I is the P x P identity matrix.

2. Proposed FEF approach to the AP algorithm

Consider the desired response d(n) arising from the
linear model

d(n) =wlx(n)+v(n) (1)
where w, = [Wo, Wy, ...,w;_1]" is the L-length weight vec-
tor of the unknown system, x(n)=[x(n),x(n—1),...,
x(n—L+1)]" denotes the input signal vector, and v(n)
represents the system noise.

The adaptive weight vector is w(n)=[wg(n), w;(n),...,
wi_1(m)]". To describe the AP algorithm, we define the

input signal, the desired signal, the filtered-out, and the
error vectors as follows:

X(nm) =[x(n),X(n—1),...,X(n—P+1)] 2)
d(n)=[d(n),d(n—1),...,dn—P+1)]" 3)

y() =[yon), y, (), ..., yp_ (]
=X"mwn-1) 4)

e(n) =[eo(n), e1(n), ....ep_1(m)]"
=dn)—yn). S)

The update equation of the AP algorithm is

e(n) = [eo(n), e1(n), ..., ep_1 ()]
= uX"()X(n)+51)~ 'e(n) (6)

w(n)=w(n-—1)+X(n)e(n) (7)

where p is the step size, and & is a regularization
parameter.

The complexity of the AP algorithm is mainly due to the
following three operations: (i) calculation of the filtered-
out vector y(n) in (4), (ii) update of the weight vector w(n)
in (7), and (iii) the matrix inversion operation in (6). For a
direct implementation, the first two steps need 2PL opera-
tions per sample, which is very expensive especially for a
long impulse response. We now briefly review the state-
of-the-art fast filtering approaches.

2.1. FAF approach

The FAP algorithm [3,4] updates the error vector e(n)
via the following approximation

din)—xT(mwmn-1)
(I-pemn-1)

where e(n—1) consists of the P—1 upper elements of
e(n—1). For Clarity, we present the FAP algorithm in
Table 1, where the definitions of w(n) and @(n) can be
found in (13) and (14). The only difference among many
variants of FAP algorithm is the calculation of the linear
system of equations. We assume that solving [R(n)+
slle(n) = pe(n) requires Py, multiplications and P, additions.

Using (8), the complexity of the filtering step reduces
from O(PL) operations in (4) to O(L) operations. But (8) is
only an approximate implementation of (5) under the
condition that ¢ is significantly smaller than the eigenvalue
of the matrix R(n)=X"(m)X(n) [4,17]. When the regular-
ization parameter & is large, the approximation in (8) can
cause discrepancy between the FAP and AP algorithms.
Indeed, the regularization parameter can vary from very
small to very large, depending on the level of the additive
noise [23]. Thus, the assumption used in the derivation of
(8) has its shortcomings [17].

e(n)~

®

2.2. FEF approach

In the FAP algorithm, only the first component of the
error vector is calculated, and the others are approxi-
mated. More recently, a low-complexity FEAP algorithm
[18] was proposed where all the error vector components
can be exactly calculated. The basic idea is summarized as
follows.

Substituting (7) into (4), one has

ym =X"(mw(n-1)
=2z(n)+G(me(n—1) )

where G(n)=X"(mXn—-1) and z(n) = X" (m)w(n—2). Tak-
ing (4) into account, z(n) can be expressed as

z(n)=X"(mw(n-—2)
=[z20(n),yo(n—1),....yp_(n—1)]" (10)
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Table 2
FEAP algorithm [18].

Equation X +
G(n) =X"(mX(n-1) 2p 2P
R(n) = X" (m)X(n) 2 2
zo(n) =xT(Mw(n—2) L L
z(n) = [z0(n), yo(n—1), ... yp_(n— 1)’ 0

y(n) = z(n)+G(ne(n—1) P? P?
e(n) =d(n)—y(n) 0 P
e(n) = u[R(n)+51]~'e(n) P Pq
w(n) =w(n-—1)+X(n)e(n) PL PL
Total

(P+1)L+P? + 2P+ P, +2 multiplications
(P+1)L+P? +3P+P,+2 additions

where
Zo(n) = X" (Mw(n—2). a1

Calculation of the elements in R(n) and G(n) requires 2P + 2
multiplications and 2P+2 additions using a recursive
technique.

The FEAP algorithm presented in Table 2 is attractive
because it provides an exact filtering. However, the calcu-
lation of zy(n) requires the update of w(n) that needs PL
operations. Thus, the main complexity contribution of the
FEAP algorithm is the filter updating part. Considering this,
it is desirable to further reduce its complexity.

2.3. Proposed FEF approach

In many applications, calculation of the weight vector is
not the main concern but only the error signal is required.
By exploiting the shifted structure of the matrix X(n), we
show that it is sufficient to obtain the error vector exactly
even if w(n) is not available at every sampling period.

The weight vector w(n) can be alternatively rewritten
as [3,4]

w(n) =w(n-—1)+Xme((n) (12)

where

wn—-1)=w()+ nil x(n—k) Pil g(n—k+j), (13)
k=p j=0

@) =[po(M), p1 (1), ..., op_1 ()] (14)

with

NS E} ei(n—m-+i). (15)

i=0

Both w(n) and ¢(n) can be recursively computed, respec-
tively,

o) =e(n)+ (16)

0
p(n—-1)
W(n) =wW(n—1)+xX(n—P+1Dgp_1(1) 17)

where @(n) consists of the upper P—1 elements of ¢(n).
Having expressed w(n) in a special way in (12), we can
use the auxiliary coefficient vector w(n) instead of w(n) to

calculate zy(n). Substituting (12) into (11) yields
zo(n) =X (Mw(n—2)
=x'(MW(n-3)+Xn-2)pn-2)
=x"(mW(n-3)+r (mpn-2) (18)

where r(n)=X"(n—2)x(n). Note that (18) is the exact
calculation of zg(n) without any assumption.

Defining p,(n) = X' (n)x(n —m), the matrices R(1n), G(n),
and r(n) can be written as

R(n) = X" (m)X(n)

[ po(m) p1() pp—1(M)
_ p1(1) poM=1) ... pp_r(n—1) (19)
|Pp-1(M) pp_a(n—1) po(n—P+1)
G(n)=X"(mX(n-1)
p1() pa(n) pp(N)
_ po(n—1) p1(n—1) pp_1(n—1)
|Pp—2(M=1) pp_3(n—=2) p1(n—P+1)
(20)

r(n) = X" (n—2)x(n)
=[pa(n), p3(), ..., pp 1 (M]". (1)

From (19) to (21) it is noted that the update of R(n), G(n),
and r(n) only need to calculate P+2 elements, i.e.,
pm(M), m=0,1,...,P+1. They can be updated recursively:

pm(M) =pp(n—1)+x(Mx(n—m)—x(n—Lx(n—m—L). (22)

Update of the three matrices only needs 2(P+2) multi-
plication and 2(P+2) additions. The calculation of z(n)
requires L+3P+4 operations in total. The new algorithm
uses W(n) rather than w(n) to calculate the filtered-out
vector y(n). Update of w(n) needs PL operations while
calculation of w(n) only needs L operations.

According to (17) and (18), we have to save w(n—3),
w(n—2), and w(n—1) at time index n which needs more
memory size than the original AP algorithm. However, the
calculation of zy(n+1) only requires w(n—2) at time index
n+1, we can update w(n—2) but not w(n) at time index n
as follows:

W(n—2)=wn-3)+x(n—P—1)pp_1(n—2). 23)

Consequently, memory requirements in the new algorithm
remain similar to the standard AP algorithm.

Another difficulty is to solve the linear system of
equations [R(n)+6lle(n) = pe(n). This problem has been
extensively investigated in the literature [3-20]. Detailed
discussion is beyond the scope of this paper. A good
overview of this problem can be found in [12]. The
proposed algorithm is summarized in Table 3. Both the
FEAP and EFEAP algorithms have the same performance as
the standard AP algorithm. However, the complexity of the
EFEAP algorithm is only slightly higher than the NLMS
algorithm but much lower than the FEAP algorithm.
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Table 3
Proposed EFEAP algorithm.

Table 4
Proposed DCD-EFEAP algorithm.

Equation X + Equation X +
G =X"(mXn-1) 2P 2P G(n) =X"(mX(n-1) 2p 2p
R(n) = X" (m)X(n) 2 2 R(n) =X (n)X(n) 2 2
r(n) = X" (n—2)x(n) 2 2 r(n) = X" (n—2)x(n) 2 2
2o(n) =XT (MW —3)+1" (M)p(n—2) L+P L+P zo(n) =XT (MW (N —3)+1" (Mp(n—2) L+P L+P
z(n) =[20(n), yo(n—1), ..., yp_p(n— 1" 0 0 z(n) =[20(n), yo(n—1), ..., yp_(n— 1) 0 0
V(1) =2z(n)+G(me(n—1) p? p? y() =z(n)+G(me(n—1) p? p?
e(n)=d(n)—y(n) 0 P e(n)=d(n)—yn) 0 P
e(n) = u[R(n)+ 51~ e(n) Pm Pq e(n)=0,b=pen),a=H/2,m=1 P 0
0 0 P forl=1,....Ny 0 0
pm=eMm+| = arg max {/b; 0 P-1
[q;(n—h} q i=0,g1,.A.,P)—(1” 4
W(n—2)=W(n-3)+x(n—P-1pp_1(n—-2) L L while |bg| < (a/2)Rqq(m)&m < M, 0 1
Total m=m+1l,a=a/2
5 T endwhile
2L+P2 +3P+Py+4 mu.lt.lpllcatlons if m > M, break endif 0 0
2L+ P*+4P+ P, +4 additions eq(1) = eq(n) +sign(by)a 0 1
b=b— sign(bq)alilq’(n) 0 p
endfor 0 0
3. Case studies B 0 0 P
@(n)=em)+ p—1
In the previous section, we have presented a new FEF W(n—2)=W(n-3)+X(n—P-1gp_;(n—2) L L

approach to reduce the complexity of AP algorithm. We
found that the idea can also be generalized to some other
known AP-type algorithms. We will show the details and
also discuss the possible applications of the proposed
approach.

3.1. FEF approach to the DCD-AP algorithm

The DCD-AP algorithm [18] uses the DCD iterations to
solve the linear system of equations. The number of
multiplications required in the DCD-AP algorithm is sig-
nificantly reduced, however, the number of additions
is still large [18]. Combing the DCD iterations and the
proposed FEF approach results in the DCD-EFEAP algo-
rithm in Table 4, where we define R(n)=R(n)+sl and
b =[bg, b1, ..., bp_1]". Parameters of the DCD iterations are
as follows: N, denotes the maximum number of “success-
ful” iterations, M, is the number of bits used for repre-
sentation of elements of e(n), [—H,H] represents the
amplitude range of ¢(n), and f{(q)(n) is the gth column of
the matrix R(n).

The DCD-EFEAP and DCD-AP algorithms with different
complexities have exactly the same performance. The
DCD-EFEAP algorithm takes L more multiplications but
saves (N, —1)L additions compared to the DCD-AP algo-
rithm. If the algorithm is implemented on software plat-
forms such as DSP and ARM, both the multiplication and
addition operations should be taken into account. The
proposed DCD-EFEAP algorithm is more appropriate for
implementation in the software.

Table 5 presents the complexity of several fast AP
algorithms. Note that the proposed EFEAP algorithm needs
P? more multiplications than the FAP algorithm if they use
the same method to solve (6). In practical applications
such as AEC, P is between 2 and 10 and P <L [12], so the
EFEAP algorithm is only marginally more complex than the
FAP algorithm.

Total
2L+ P? 4+ 3P+4 multiplications
2L+P? +(4+2N,)P+M, +4 additions

3.2. FEF approach to the APS algorithm

In many applications, the noise exhibits non-Gaussian
behavior and the distributions have heavier tails than
those of the Gaussian distribution [24,25]. Recently, the
APS algorithm [22] is proposed to enhance the robustness
against such non-Gaussian interferences.

Direct implementation of the APS algorithm requires
PL+2L multiplications and 2PL+L additions at each time
instant [21]. A fast APS (FAPS) algorithm [21] was pre-
sented based on the FEF scheme [18]. The FAPS algorithm
needs 2L+ 3P multiplications and (P+1)L+2P?+3P addi-
tions per sample. Although the multiplications used in the
FAPS algorithm are significantly reduced, the number of
additions is still high [21]. The complexity of the APS
algorithm can be further reduced by using the proposed
FEF approach.

Using the definitions in (2)-(5), the weight update
equation of the APS algorithm can be written as [19]

_ _ HXs(1)
w(n) =wn—-1)+ ——XST(TI)XS(TI) = (24)
where X;(n) = X(n)sign[e(n)]. Rearranging (24), it follows
w(n) =w(n-—1)+X(n)e(n) (25)
where
e(n) u signfe(n)] (26)

" \/signie (mIR(msignie(n)] +6-

We found that the update equation of the APS algorithm is
similar to that of the AP algorithm. The only difference is
the calculation of e(n) in (6) and (26). Thus, the proposed
FEF approach can be applied to the APS algorithm. The
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Table 5
Complexity of several fast versions of the AP algorithm.

Algorithm Comment Number of multiplications per sample Number of additions per sample
AP [1] Exact filtering 2PL+3P+Pp 2PL+2P+Pq
FAP [3,4,6-13] Approximate filtering 2L+4P+ Py, 2L+4P+P,
FEAP [18] Exact filtering (P+1)L+P?>+3P+Py, (P+1)L+P?>+3P+P,
EFEAP Exact filtering 2L+P?+3P+Pp, 2L+P?+4P+P,
DCD-FAP [11] Approximate filtering 2L+4P 2L+ (2N, +Mp+4)P
DCD-AP [18] Exact filtering L+P?+3P (Ny+1)L+P*+ (2N, +3)P
DCD-EFEAP Exact filtering 2L+P? 43P 2L+P? +(2Ny +4)P
Table 6
proposed fast APS algorithm is listed in Table 6. Note that Proposed fast APS algorithm.
both the multiplications and the additions required in the
proposed algorithm are reduced. Term * +
G(n) =X"(mX(n-1) 2p 2p
3.3. FEF approach to the MFXAP algorithm R(n) = X" (m)X(n) 2 2
r(n) = X' (n—2)x(n) 2 2
The filtered-x least mean squares (FXLMS) algorithm is zo(n) =X" (MW (n—3)+1" (Mp(n—2) L+P L+P
commonly used in the ANC system [26] but suffers from z(n) = [2o(1), yo(n—1), ..., yp_p(n— D] 0 0
slow convergence. The AP algorithms have been intro- ym =2 +Gmen—1) P P?
duced to ANC applications with the aim of improving the em=dm-yn 8 P
convergence performance of the FxLMS algorithm and e(n) = \/sign[eT;lnj]lli?rgj(sri‘;]n[e I P
avoiding the instabilities of the RLS algorithm [27]. The 0 0 P
conventional filtered-x affine projection (CFXAP) algorithm () =e(m)+ {Wﬂ* 1
uses past samples of the error signal to build the error W(n—2) = W(n—3)+X(n—P—T)pp_,(1—2) L L
vector [15]. However, the delay introduced by the second-
ary paths reduces the upper bound for the step size that Total , o
can be used, resulting in slow convergence [28]. To 2L+P 2+3P+4 mmn,p,hcanons
compensate the delay, the MFxAP algorithm is presented 2L+2P"+4P+4 additions
[5,14] but the complexity is very high. The fast MFxAP
algorithm [15] is subsequently proposed to reduce the Error Microphones
complexity based on the FAF approach. However, the
convergence performance of the fast MFxAP algorithm is (g (L
degraded by the approximations involved in the error () &(n) e ()
vector computation. The FEF approach in [18] is also Secondary Paths
applied to the MFXAP algorithm [19] but the complexity
is only mildly reduced. gActuators g g
A7) A y,(n) Ay, ()
3.3.1. Multichannel MFXAP algorithm ;
A multichannel active noise controller scheme (I refer- Ls| K Adaptive Controller

ence signals, J secondary sources, and K error sensors) is
depicted in Fig. 1. Notation in Table 7 will be used to
describe the MFXAP algorithm. We only discuss the multi-
channel MFxAP algorithm [15] because the monochannel
MFXAP algorithm [5] is a special case of the former at
I=]=K=1.

The MFXAP algorithm can be described as

Vi,i,l((n) = h}:kXM,'(n), (27)
I
yi(n) = Zl w/i(n—1x;(n), 28)
1=
~ J T
di(n) =ex(n)— '21 h;y;(n), 9)
Jj=

Viik =ijk0), Vijr1 (M), ... Vijrp—1 (]
= Vijmwij(n—1), (30)

1
x.(n)g xmg ) g

Reference Microphones

Fig. 1. Multichannel feedback active noise control system with adaptive
filters.

R;j (1) = V[ (Vi j(1), 31)

A I
em=dm+ ¥ ¥ ¥ijx(m), (32)

i=1j=1

eijk() = [eij k0N, €ij 1 (M), .. eijgp 1 (M)
= u[R;j () + 1]~ 1 é(n), (33)

K
w;j(n)=w;j(n—1)— kZ1 Vijk(Meij (1) (34)
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Table 7
Notations for the MFxXAP algorithm.

Symbol Definition

Number of reference sensors

Number of actuators

Number of error sensors

Length of the FIR adaptive filters

Projection order

Length of (fixed) FIR filters

Xi(n) Value at time n of the ith reference signal

yj(m) Value at time n of the jth actuator signal

er(n) Value at time n of the kth error sensor

dyny  Estimate of dy(n)

éx(n)  Value at time n of the kth error sensor used for adaptation
of the weight vector

wiji(m)  Value at time n of the Ith coefficient in the adaptive FIR filter
linking x;(n) and y;(n)

hjjem Value of the mth coefficient in the (fixed) FIR filter modeling
the plant between y;(n) and ey (1)

vijk(m) Value at time n of the filtered reference signal, i.e., the
signal obtained by filtering the signal x;(n)
with the plant model filter h;

Wi () [wijo(n), Wiji (), ..., Wi ()]

hj [LITTR TR vER o

Vi) Vi), viggen—1), ... Vijrn—L+ 1]

Vi@ [Vije(m), Vijem—1), ... Vij(n—P+1)]

Xi(M)  [xi(n),x;(n—1), ..., x;(n—L+1)]"

Xmi(M)  [x(n),xi(n—1), ..., x;(n—M+1)]"

i ym.yn=1, ...y =M+ D)

dym)  [di().di(n—1),....d(n—P+ 1)

ex(n)  [Er(n).ér(n—1),....6,(n—P+1)"

ToER— =

where  is the step size and § is a regularization parameter.
Among the different available definitions of ¢;;(n) [29], we
use the approach in (33).

From (31) it is noted that the lower (P—1) x (P—1)
block of R;jx(n) can be obtained by copying the upper
(P—1) x (P—1) block of R;jx(n—1). The only part of the
matrix Rjji(n) that should be directly updated is the
elements in the first row. The update of R; () only needs
2P multiplications per sample by using a recursive scheme.

3.3.2. Proposed fast MFXAP algorithm
Expanding the matrix/vector multiplications in (34),
the weight vector w;;(n) can be rewritten as

K P-1
wii(n)=w;;(n—1)— ZOVuk(n M)ejjjm(1). (35)

Continuing to recursively expand Eq. (35) yields

K n-1P-1

wim=w;(0)— > > X Vijk(n— - me;jjm(M— D).

k=11=0m=0

(36)
Assuming that v;;,(n) =0 for n <0, (36) can be rewritten as
K P-1

Wi,i(n) Wl,}(o)_ Z Z vle(n_l) Z 5lem(n_l+m)

k=11=

|
I M=

n-1 P-1
Y Vijem=0) ¥ ejem—I1+m). (37)
I1=P m=0

The weight vector w;;(n) can be alternatively rewritten as
K
w;j(n)=w;j(n—1)— ’ 2 Vijrme;ji(n) (38)
k=1
where

K n-1 P_1
Wiin—-1)=w;(0)— ¥ ¥ viju(n—=0) ¥ ejemn—14+m)
k=11=P m=0

(39)
@i =[50, Pij k1 (), ... ijgep— 1 (W] (40)
with
q
Pijrq(M) = ; . eijm(M—q+m). (41)

It is interesting that both w;;(1) and ¢;;,(1) can be recur-
sively computed:

0
Pij, () = &jj, Wk @i k(n 1):| (42)
. . K
w;i(n) =w;j(n—1)— ’ ;1 Vijk(M=P+1D)pijp_1() 43)

where @;;,(n) consists of the upper P—1 elements of

@ijM).
Substituting (34) into (30) yields

Vijr(m) = Vi (mwii(n—1)

K
= V,‘Tj,k(n) w;(n—2)— 21 Vijq(n—Tejjq(n—1)
q=

K
=1z (n)— ;1 Gijiq(Meijq(n—1) (44)

where Gy q(1) = Vu k(MVjjq(n—1), and
Zj(n)= ,-j,k(n)Wu(n -2)
= [V} (MW (N —2), V[, (n—1)W;(n—2),
s Vi —=P+ 1wy (n—2)]"
=[2ijuM). VijroMm—1), ... ¥ijp_2(n—1]" (45)

with z;;,(n) = vu (mw;;(n—2). Using (38), z;x(n) can be
calculated using the auxiliary coefficient vector w;;(n)
rather than using w;;(n):

zij () = V{; (Mw;j(n—2)

K
=V, () |Wij(n—3)— q§1 Vijg(n—2)p;j(n—2)

K
=V (MWij(n—3)— glw?j,k,q<n>¢ij,q<n—2) (46)

where V,ij,k,q(n) =V, i, q(n 2)vlJ k(n)
The auxiliary coefficient strategy can also be applied to

compute the cancelling signal;

I
ym= 3 w];(n—1)x;(n)

I K
X X {wu(n =2~ X Vi = Deiju(n - 1)}

I K
> {X,‘T(n)‘f\’u(n -2)- k21 r} (M;jk(n— 1)] .47

i=1
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where r;;(n) :V,»ij,{(n—l)x,-(n). The vector r;;(n) can be
recursively computed and only needs 2P multiplications:
Tij(N) = Tjj (N — 1)+ (n— 1x;(1)
—n;j(n—1-L)x;(n—L) (48)
where (1) = [Vij (), Vi j (M —1), ..., Vij(n—P+ D]
The remaining problem is the calculation of G;j 4(1)

and ;. 4(n). We firstly define the cross-correlation ele-
ment

Pgm=

Vi (Vi q(n—m). (49)
Using (49), we can write Gijy (1) and w;j, 4(n) as follows:

z,] k. q(n) = VU k(n)vixj‘q(n - 1)

(1) (2) (P)
P,qu(n) P,qu(n) pi,]kq(n)
0 1 P-1
pﬁJ{,k(n—l) /)iJ’,fq(n n o pﬁm)(n 1)
P-2 3 1
prqk)(n 1) pqug(n 2) .. pr)kq(n—P-i-])
(50)

Vijk q(n) vlJ q(n - z)vi,j,k(n)
= V] (MVijq(n—2), V] (Vi g(n—3),

s VMV g(n—P =1

= [0 g P g M s i (). 51)
It can be seen from (50) and (51) that the update of
Gijkq(n) and w;ji4(n) only needs to compute p('") L),
m=0,1,...,P+1. They can be recursively computed as

Pl =Pl = D+ Vija(n)Vijq(n—m)
—Vijr(n—=L)v;jqo(n—m—L). (52)

Thus, joint update of Gjjiq(n) and w;j,4(n) only needs
2P +4 multiplications. The proposed fast MFxAP algorithm
is presented in Table 8.

In the special case =] =K =1, (27)-(34) becomes the
monochannel structure used in [5]. It is noted from Table 8
that the proposed fast MFxAP algorithm needs
3L+2M+P?+8P+P,, multiplications per sample for a
monochannel case. The monochannel fast MFxAP algo-
rithm [5] needs 3L+2M+5P+P;, multiplications per
sample. Thus, the proposed algorithm has a similar com-
plexity with the fast algorithm in [5], but the former
provides an exact filtering. Table 9 evaluates the complex-
ity of several fast algorithmic variants of the FxAP
algorithms.

3.4. Other applications

In fact, the core idea of the proposed FEF approach lies
in the time-shift property of the vector in (4) and (7). In
this manner, the proposed FEF scheme can also be
extended to many other adaptive filtering algorithms that
have a similar filtering and weight update structure with-
out fundamental problems, e.g., the proportionate-type AP
[30], improved multiband-structured subband adaptive
filter (IMSAF) [31], and affine projection sign subband
adaptive filter (AP-SSAF) [32] algorithms.

Table 8
Proposed fast MFXAP algorithm.

Equation X
Vijr(n) = kxMI ) kM
1) = V[ (n—1)x;(n) 2lkp
I . K J(L+PK)
yim= ¥ |x](mwW;;n-2)- k21 ] (Meij(n—1)
. Lo, JKM
di(n) =ex(n)— _2] h; .y;(m)
=
Wijjq(M = V{,‘_k(n —2)Vjjq(n) 2IK?
Gijq() = V] (mVijq(n—1) JK2(2P+2)
. K IJK(L+KP)
Zij () = V[ (MW;j(n—3)— Z] Vg (M@ijq(M—2)
P
23 () = (235, Vijko(M— 1), .. Vijrp 2= D" 0
Vij(m) =12;j(n)— 25 1Gijkq(Meijq(n—1) IK*P?
. 0
&,(m) =dy(m)+ Z Z Vijx(m
i=1j=

Ryji(1) = V] (V4 (1) 24kp
£;j5() = [Rij () +61] "' é,(n) P

0 0
@ij, k(M) = Eij. k(M+ @ij ixn— 1)
Wij(n) =Wij(n—1)— XK _ Vij(n—P+1Dgjjxp_1(1) KL

Table 9
Complexity of several FXAP algorithms.

Algorithm Number of multiplications per sample
MFXAP LIJ(2KP+1)+JKM(I+ 1)+ 2IJKP+ Py,
Fast MFxAP JLQ2K +1)+JKM(I+ 1)+ 5 KP+ Py,

Proposed MFXAP  [JL2K + 1) +JKM(I+ 1)+ [[KP(5 + 3K + KP) + Py
CFXAP JL(KP+ 1)+ KM+ 2IJKP + Py,
Fast CFxAP LK + 1)+ JKM + 51JKP+ Py

4. Complexity comparisons

Fig. 2 presents the complexity of several variants of AP
algorithm based on the total number of operations (multi-
plications plus additions), where we use the LDL'
approach [12] to solve the linear system of equation in
the first four algorithms in Table 5. The parameters are
L=1024, M, =16, and N, =P. In the exact filtering meth-
ods, the complexity of the EFEAP algorithm is much lower
than the FEAP and the standard AP algorithms especially
for a large projection order. Note that for P=20, the
proposed EFEAP algorithm attains a complexity that is
only 11% and 19% of the AP and FEAP algorithms, respec-
tively. The complexity of the EFEAP algorithm is compar-
able to that of the FAP algorithm but the latter only
provides an approximate filtering. The DCD-EFEAP algo-
rithm achieves the least complexity among the three DCD-
based algorithms in Table 5.

Fig. 3 illustrates the total number of operations (multi-
plications plus additions) required by three versions of the
APS algorithm. The length of the adaptive filter is L=1024.
All the three algorithms are mathematically equal, but the
proposed fast version achieves the lowest complexity. The
computational load of the APS and FAPS algorithms
increases linearly with the projection order while that of
the proposed APS algorithm does not.
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—H—AP[1]

——FAP [34]

—A— FEAP [18]

—<— EFEAP

- % - DCD-FAP [11]
DCD-AP [18]

- - DCD-EFEAP

Total Operations Per Sample

Projection order

Fig. 2. Complexity comparison of several fast AP algorithms, L=1024.

—P— Arsi22)
—O— FAPS[21]

—3¥— Proposed APS

Total Operations Per Sample

Projection order

Fig. 3. Complexity comparison of several fast APS algorithms, L=1024.

Fig. 4 presents a computational comparison of different
FxAP algorithms, where the parameters are [=2, J=3,
K=2, L=300, and M=128. To simplify, we use the recur-
sive approach to solve the linear system of equation [15],
ie., Pn=IK(7P*+12P). From Fig. 4 it is clear that the
complexity of the proposed fast MFXAP algorithm is
significantly lower than that of the standard MFxAP and
CFXAP algorithms but only slightly higher than that of the
Fast MFxAP and Fast CFxXAP algorithms. However, the
proposed fast MFxXAP algorithm is an exact version of the
standard MFXAP algorithm.

5. Simulation results

Computer simulations are carried out in the context of
AEC. The impulse response w, is generated according to
w;=e~"r(i), i=0,1,....L—1, where r(i) is a zero-mean
white noise sequence and 7 is the envelope decay rate. The
sampling rate is 8 kHz. An independent white noise signal is
added to the echo signal, with 30-dB signal-to-noise ratio
(SNR). The convergence performance is evaluated in terms of
the normalized mean square deviation (MSD), defined as

x10*
18| ) ) ) ) ) ) )
16| —P— MFxaP
Fast MFXAP
14 } i Proposed MFxAP i
=4 CFxAP
12 b — 3% - Fast CFxAP

Multiplications Per Sample

Projection order

Fig. 4. Numerical complexity of the MFxAP, CFxAP, fast MFxAP, fast
CFxAP and proposed fast MFXAP algorithms. The parameters are [=2,
J=3,K=2, =300, M=128.

O]

MSD (dB)

Time (s)

(op

-260 f " i i i i ]

-280 | E

-300 g

Kk (n) (dB)

-320 g

_340 L L L L L
0 0.5 1 1.5 2 25 3

Time(Sec)
Fig. 5. Comparison between the AP and proposed EFEAP algorithms with

L=512, u=0.3, P=6. (a) MSD of the two algorithms and (b) the Euclidean
norm of the difference of the two computed solutions.

10 logo[[lwo —wW(n)||?/||Wo|I?]. The length of the adaptive
filter is L=512. The input signal is an AR(10) process with
coefficients (5.3217, —9.2948, 7.0933, —2.8152, 2.5805,
—2.4230, 0.3747, 2.2628, —0.3028, — 1.7444, 1.1053). Exact
solution of the linear system of equations has been used in
all the algorithms involved in the simulations except the
original FAP algorithm. The results are obtained by averaging
over 100 Monte Carlo trials.

Fig. 5 shows the convergence performance of the EFEAP
and standard AP algorithms. Note from Fig. 5(a) that the
MSD of the EFEAP algorithm matches well with that of the
standard AP algorithm. Fig. 5(b) verifies that the two
implementations are theoretically and practically equiva-
lent by the extremely small values of the quantity
x(1) =10 logyo[IWap(1) — Wereap()|12], ie., k(1) =0 within
the numerical limits of the computations.
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0 T T T T T T T
=2 ——EFEAP § =020
X

Ideal FAP § = 0.20 2

——EFEAP & =2002

Ideal FAP & = 20 2

_22 L L L L L L L
0 0.5 1 1.5 2 25 3 35 4

Time(Sec)

Fig. 6. Learning curves of the ideal FAP and EFEAP algorithms with
L=512, y=0.5, P=4.

EFEAP P=12
FAP[3,4] P=2
FAP[3,4] P=12
EFEAP P=2

| EFEAP P=5

 FAP[34]P=5
0 2 4 6 8 10 12 14 16 18 20 22
Time(Sec)

Fig. 7. Convergence characteristics of the original FAP and EFEAP algo-
rithms with L=512, x=1.0.

The FAP algorithm based on an ideal matrix inversion
is called ideal FAP [11]. Fig. 6 compares the convergence
performance of the EFEAP and ideal FAP algorithms using
different regularization parameters. We select §=0.252
and § = 2002, where o2 is the variance of the input signal.
It can be seen that when 6 = 0.2¢2, the ideal FAP and EFEAP
algorithms perform indistinguishably. However, when a
relatively large regularization parameter s is employed, the
ideal FAP algorithm has slower convergence rate than the
EFEAP algorithm.

Fig. 7 shows the convergence and tracking behavior of
the EFEAP and original FAP [3,4] algorithms. The impulse
response is changed at the middle of the iterations. To
achieve the fastest convergence, the step size is set to
u=1.0. It is seen that the EFEAP has faster convergence
rate than the original FAP algorithm. However, the steady-
state misadjustment of the original FAP algorithm is
smaller than that of the EFEAP algorithm with the same
step size, which is an interesting discovery and worth-
while of further study. Also, it is well recognized that the
original FAP algorithm suffers from numerical instability
especially in a fixed-point implementation because of the
propagating errors [13,14]. These facts demonstrate the
strengths of the proposed algorithm.

6. Conclusion

This paper provides a new FEF approach to the AP-type
algorithms. We firstly introduce the FEF approach to the
standard AP algorithm. As a general framework, we also
apply the approach to some known AP algorithms, e.g.,
DCD-AP, APS and MFXAP algorithms. There is an exact
mathematical equivalence between the original AP-types
algorithms and the proposed fast versions, thereby making
the proposed algorithms attractive for a real-time imple-
mentation. A detailed comparison (memory size, compu-
tational complexity) of different implementation methods
in hardware platforms such as FPGA and DSP is our
future work.
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