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a b s t r a c t

The affine projection (AP)-type algorithms produce a good tradeoff between convergence
speed and complexity. As the projection order increases, the convergence rate of the AP
algorithm is improved at a relatively high complexity. Many efforts have been made to
reduce the complexity. However, most of the efficient versions of the AP-type algorithms
are based on the fast approximate filtering (FAF) scheme originally proposed in the fast AP
(FAP) algorithm. The approximation leads to degraded convergence performance.
Recently, a fast exact filtering (FEF) AP (FEAP) algorithm was proposed by Y. Zakharov.
In this paper, we propose a new FEF approach to further reduce the complexity of the
FEAP algorithm given that the calculation of the weight vector is not the primary objective
for the application at hand. The proposed FEF scheme is then extended to the
dichotomous coordinate descent (DCD)-AP, affine projection sign (APS), and modified
filtered-x affine projection (MFxAP) algorithms. The complexity of AP-type algorithms
based on the proposed FEF approach is comparable to that based on the FAF scheme.
Moreover, analysis results show that the complexity reduction of the new algorithms is
achieved without any performance degradation.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

In adaptive filtering, the least-mean-square (LMS)-type
algorithms are widely used but suffer from slow conver-
gence for colored signals. The affine projection (AP) algo-
rithm [1] was proposed to speed up the convergence,
which produces a good tradeoff between the convergence
speed and the complexity. Due to the good properties,
several variants of the AP algorithm have been developed
in the context of blind multiuser detection [2], acoustic
echo cancellation (AEC) [3,4], active noise control (ANC)
[5], and acoustic feedback cancellation (AFC) [6].

When the projection order P increases, the convergence
rate of the AP algorithm is improved at the price of a
considerable rise of the computational complexity. Many
efforts have been made to reduce the complexity of the AP
algorithm [3–20].

The complexity of the direct calculation of the error
vector is proportional to the projection order. The fast AP
(FAP) [3,4] algorithm and its variants [5–16] present a fast
approximate filtering (FAF) scheme to reduce the complex-
ity. Since the FAP algorithm is based on an implicit “small
regularization parameter” assumption, the FAP algorithm
is not exactly equal to the standard AP algorithm [17]. Most
of the existing fast AP-type algorithms [3–16] are based on
the FAF approach. The FAF approach reduces the complex-
ity efficiently but also leads to degraded performance.

To overcome this limitation, a fast exact filtering (FEF)
approach to the AP algorithm (FEAP) [18] was presented by
Y. Zakharov. However, in the FEAP algorithm, calculation of
the error vector requires the update of the weight vector
explicitly that provides the largest contribution towards the
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Table 1
FAP algorithm [3,4].

Equation � þ

RðnÞ ¼XT ðnÞXðnÞ 2P 2P

αðnÞ ¼XT ðn�1ÞxðnÞ 0 0

eðnÞ ¼ dðnÞ�xT ðnÞŵðn�2Þ�αT ðnÞφðn�1Þ LþP LþP

eðnÞ ¼
eðnÞ

ð1�μÞeðn�1Þ

" #
P�1 0

εðnÞ ¼ μ½RðnÞþδI��1eðnÞ Pm Pa

φðnÞ ¼ εðnÞþ
0

φðn�1Þ

" #
0 P�1

ŵðnÞ ¼ ŵðn�1Þþxðn�Pþ1ÞφP�1ðnÞ L L

Total
2Lþ4PþPm multiplications
2Lþ4PþPa additions
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algorithm complexity. Many AP-type algorithms [19–21]
adopt the FEF approach to reduce the complexity and have
a similar problem. In many applications such as AEC and
ANC, calculation of the weight vector is not the main
concern [3–15]. In this paper, we will extend the work in
[18] and propose an enhanced FEF approach to the AP
(EFEAP) algorithm. The complexity of the proposed EFEAP
algorithm is comparable to that of the FAP algorithm. We
then extend the proposed FEF approach to a family of AP-
type algorithms such as the dichotomous coordinate des-
cent (DCD)-AP [18], affine projection sign (APS) [22], and
modified filtered-x affine projection (MFxAP) algorithms
[14,15]. Computer simulations demonstrate the effective-
ness of the proposed approach.

Notations: throughout this paper, we use uppercase and
lowercase bold fonts to denote matrices and vectors,
respectively, e.g., R and r. Superscript T denotes the
transpose operator, and I is the P � P identity matrix.

2. Proposed FEF approach to the AP algorithm

Consider the desired response d(n) arising from the
linear model

dðnÞ ¼wT
oxðnÞþvðnÞ ð1Þ

where wo ¼ ½w0;w1;…;wL�1�T is the L-length weight vec-
tor of the unknown system, xðnÞ ¼ ½xðnÞ; xðn�1Þ;…;

xðn�Lþ1Þ�T denotes the input signal vector, and v(n)
represents the system noise.

The adaptive weight vector is wðnÞ ¼ ½w0ðnÞ;w1ðnÞ;…;

wL�1ðnÞ�T . To describe the AP algorithm, we define the
input signal, the desired signal, the filtered-out, and the
error vectors as follows:

XðnÞ ¼ ½xðnÞ; xðn�1Þ;…; xðn�Pþ1Þ� ð2Þ

dðnÞ ¼ ½dðnÞ; dðn�1Þ;…; dðn�Pþ1Þ�T ð3Þ

yðnÞ ¼ ½y0ðnÞ; y1ðnÞ;…; yP�1ðnÞ�T
¼XT ðnÞwðn�1Þ ð4Þ

eðnÞ ¼ ½e0ðnÞ; e1ðnÞ;…; eP�1ðnÞ�T
¼ dðnÞ�yðnÞ: ð5Þ
The update equation of the AP algorithm is

εðnÞ ¼ ½ε0ðnÞ; ε1ðnÞ;…; εP�1ðnÞ�T

¼ μ½XT ðnÞXðnÞþδI��1eðnÞ ð6Þ

wðnÞ ¼wðn�1ÞþXðnÞεðnÞ ð7Þ
where μ is the step size, and δ is a regularization
parameter.

The complexity of the AP algorithm is mainly due to the
following three operations: (i) calculation of the filtered-
out vector yðnÞ in (4), (ii) update of the weight vector wðnÞ
in (7), and (iii) the matrix inversion operation in (6). For a
direct implementation, the first two steps need 2PL opera-
tions per sample, which is very expensive especially for a
long impulse response. We now briefly review the state-
of-the-art fast filtering approaches.

2.1. FAF approach

The FAP algorithm [3,4] updates the error vector eðnÞ
via the following approximation

eðnÞ � dðnÞ�xT ðnÞwðn�1Þ
ð1�μÞeðn�1Þ

" #
ð8Þ

where eðn�1Þ consists of the P�1 upper elements of
eðn�1Þ. For Clarity, we present the FAP algorithm in
Table 1, where the definitions of ŵðnÞ and φðnÞ can be
found in (13) and (14). The only difference among many
variants of FAP algorithm is the calculation of the linear
system of equations. We assume that solving ½RðnÞþ
δI�εðnÞ ¼ μeðnÞ requires Pm multiplications and Pa additions.

Using (8), the complexity of the filtering step reduces
from O(PL) operations in (4) to O(L) operations. But (8) is
only an approximate implementation of (5) under the
condition that δ is significantly smaller than the eigenvalue
of the matrix RðnÞ ¼XT ðnÞXðnÞ [4,17]. When the regular-
ization parameter δ is large, the approximation in (8) can
cause discrepancy between the FAP and AP algorithms.
Indeed, the regularization parameter can vary from very
small to very large, depending on the level of the additive
noise [23]. Thus, the assumption used in the derivation of
(8) has its shortcomings [17].

2.2. FEF approach

In the FAP algorithm, only the first component of the
error vector is calculated, and the others are approxi-
mated. More recently, a low-complexity FEAP algorithm
[18] was proposed where all the error vector components
can be exactly calculated. The basic idea is summarized as
follows.

Substituting (7) into (4), one has

yðnÞ ¼XT ðnÞwðn�1Þ
¼ zðnÞþGðnÞεðn�1Þ ð9Þ

where GðnÞ ¼XT ðnÞXðn�1Þ and zðnÞ ¼XT ðnÞwðn�2Þ. Tak-
ing (4) into account, zðnÞ can be expressed as

zðnÞ ¼XT ðnÞwðn�2Þ
¼ ½z0ðnÞ; y0ðn�1Þ;…; yP�2ðn�1Þ�T ð10Þ



Table 2
FEAP algorithm [18].

Equation � þ

GðnÞ ¼XT ðnÞXðn�1Þ 2P 2P

RðnÞ ¼XT ðnÞXðnÞ 2 2

z0ðnÞ ¼ xT ðnÞwðn�2Þ L L

zðnÞ ¼ ½z0ðnÞ; y0ðn�1Þ;…; yP�2ðn�1Þ�T 0 0
yðnÞ ¼ zðnÞþGðnÞεðn�1Þ P2 P2

eðnÞ ¼ dðnÞ�yðnÞ 0 P

εðnÞ ¼ μ½RðnÞþδI��1eðnÞ Pm Pa

wðnÞ ¼wðn�1ÞþXðnÞεðnÞ PL PL

Total

ðPþ1ÞLþP2þ2PþPmþ2 multiplications

ðPþ1ÞLþP2þ3PþPaþ2 additions
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where

z0ðnÞ ¼ xT ðnÞwðn�2Þ: ð11Þ
Calculation of the elements in RðnÞ and GðnÞ requires 2Pþ2
multiplications and 2Pþ2 additions using a recursive
technique.

The FEAP algorithm presented in Table 2 is attractive
because it provides an exact filtering. However, the calcu-
lation of z0ðnÞ requires the update of wðnÞ that needs PL
operations. Thus, the main complexity contribution of the
FEAP algorithm is the filter updating part. Considering this,
it is desirable to further reduce its complexity.

2.3. Proposed FEF approach

In many applications, calculation of the weight vector is
not the main concern but only the error signal is required.
By exploiting the shifted structure of the matrix XðnÞ, we
show that it is sufficient to obtain the error vector exactly
even if wðnÞ is not available at every sampling period.

The weight vector wðnÞ can be alternatively rewritten
as [3,4]

wðnÞ ¼ ŵðn�1ÞþXðnÞφðnÞ ð12Þ
where

ŵðn�1Þ ¼wð0Þþ ∑
n�1

k ¼ P
xðn�kÞ ∑

P�1

j ¼ 0
εjðn�kþ jÞ; ð13Þ

φðnÞ ¼ ½φ0ðnÞ;φ1ðnÞ;…;φP�1ðnÞ�T ð14Þ
with

φmðnÞ ¼ ∑
m

i ¼ 0
εiðn�mþ iÞ: ð15Þ

Both ŵðnÞ and φðnÞ can be recursively computed, respec-
tively,

φðnÞ ¼ εðnÞþ
0

φðn�1Þ

" #
ð16Þ

ŵðnÞ ¼ ŵðn�1Þþxðn�Pþ1ÞφP�1ðnÞ ð17Þ
where φðnÞ consists of the upper P�1 elements of φðnÞ.

Having expressed wðnÞ in a special way in (12), we can
use the auxiliary coefficient vector ŵðnÞ instead of wðnÞ to
calculate z0ðnÞ. Substituting (12) into (11) yields

z0ðnÞ ¼ xT ðnÞwðn�2Þ
¼ xT ðnÞ½ŵðn�3ÞþXðn�2Þφðn�2Þ�
¼ xT ðnÞŵðn�3ÞþrT ðnÞφðn�2Þ ð18Þ

where rðnÞ ¼XT ðn�2ÞxðnÞ. Note that (18) is the exact
calculation of z0ðnÞ without any assumption.

Defining ρmðnÞ ¼ xT ðnÞxðn�mÞ, the matrices RðnÞ, GðnÞ,
and rðnÞ can be written as

RðnÞ ¼XT ðnÞXðnÞ

¼

ρ0ðnÞ ρ1ðnÞ … ρP�1ðnÞ
ρ1ðnÞ ρ0ðn�1Þ … ρP�2ðn�1Þ
… … … …

ρP�1ðnÞ ρP�2ðn�1Þ … ρ0ðn�Pþ1Þ

2
66664

3
77775 ð19Þ

GðnÞ ¼XT ðnÞXðn�1Þ

¼

ρ1ðnÞ ρ2ðnÞ … ρPðnÞ
ρ0ðn�1Þ ρ1ðn�1Þ … ρP�1ðn�1Þ

… … … …
ρP�2ðn�1Þ ρP�3ðn�2Þ … ρ1ðn�Pþ1Þ

2
66664

3
77775

ð20Þ

rðnÞ ¼XT ðn�2ÞxðnÞ
¼ ½ρ2ðnÞ; ρ3ðnÞ;…; ρPþ1ðnÞ�T : ð21Þ

From (19) to (21) it is noted that the update of RðnÞ, GðnÞ,
and rðnÞ only need to calculate Pþ2 elements, i.e.,
ρmðnÞ;m¼ 0;1;…; Pþ1. They can be updated recursively:

ρmðnÞ ¼ ρmðn�1ÞþxðnÞxðn�mÞ�xðn�LÞxðn�m�LÞ: ð22Þ

Update of the three matrices only needs 2ðPþ2Þ multi-
plication and 2ðPþ2Þ additions. The calculation of zðnÞ
requires Lþ3Pþ4 operations in total. The new algorithm
uses ŵðnÞ rather than wðnÞ to calculate the filtered-out
vector yðnÞ. Update of wðnÞ needs PL operations while
calculation of ŵðnÞ only needs L operations.

According to (17) and (18), we have to save ŵðn�3Þ,
ŵðn�2Þ, and ŵðn�1Þ at time index n which needs more
memory size than the original AP algorithm. However, the
calculation of z0ðnþ1Þ only requires ŵðn�2Þ at time index
nþ1, we can update ŵðn�2Þ but not ŵðnÞ at time index n
as follows:

ŵðn�2Þ ¼ ŵðn�3Þþxðn�P�1ÞφP�1ðn�2Þ: ð23Þ

Consequently, memory requirements in the new algorithm
remain similar to the standard AP algorithm.

Another difficulty is to solve the linear system of
equations ½RðnÞþδI�εðnÞ ¼ μeðnÞ. This problem has been
extensively investigated in the literature [3–20]. Detailed
discussion is beyond the scope of this paper. A good
overview of this problem can be found in [12]. The
proposed algorithm is summarized in Table 3. Both the
FEAP and EFEAP algorithms have the same performance as
the standard AP algorithm. However, the complexity of the
EFEAP algorithm is only slightly higher than the NLMS
algorithm but much lower than the FEAP algorithm.



Table 3
Proposed EFEAP algorithm.

Equation � þ

GðnÞ ¼XT ðnÞXðn�1Þ 2P 2P

RðnÞ ¼XT ðnÞXðnÞ 2 2

rðnÞ ¼XT ðn�2ÞxðnÞ 2 2

z0ðnÞ ¼ xT ðnÞŵðn�3ÞþrT ðnÞφðn�2Þ LþP LþP

zðnÞ ¼ ½z0ðnÞ; y0ðn�1Þ;…; yP�2ðn�1Þ�T 0 0
yðnÞ ¼ zðnÞþGðnÞεðn�1Þ P2 P2

eðnÞ ¼ dðnÞ�yðnÞ 0 P

εðnÞ ¼ μ½RðnÞþδI��1eðnÞ Pm Pa

φðnÞ ¼ εðnÞþ
0

φðn�1Þ

" #
0 P

ŵðn�2Þ ¼ ŵðn�3Þþxðn�P�1ÞφP�1ðn�2Þ L L

Total

2LþP2þ3PþPmþ4 multiplications

2LþP2þ4PþPaþ4 additions

Table 4
Proposed DCD-EFEAP algorithm.

Equation � þ

GðnÞ ¼XT ðnÞXðn�1Þ 2P 2P

RðnÞ ¼XT ðnÞXðnÞ 2 2

rðnÞ ¼XT ðn�2ÞxðnÞ 2 2

z0ðnÞ ¼ xT ðnÞŵðn�3ÞþrT ðnÞφðn�2Þ LþP LþP

zðnÞ ¼ ½z0ðnÞ; y0ðn�1Þ;…; yP�2ðn�1Þ�T 0 0
yðnÞ ¼ zðnÞþGðnÞεðn�1Þ P2 P2

eðnÞ ¼ dðnÞ�yðnÞ 0 P
εðnÞ ¼ 0;b¼ μeðnÞ; α¼H=2;m¼ 1 P 0
forl¼ 1;…;Nu 0 0
q¼ arg max

i ¼ 0;1;…;P�1
fjbijg 0 P�1

while jbqjrðα=2Þ ~Rq;qðnÞ&mrMb 0 1

m¼mþ1; α¼ α=2
endwhile
if m4Mb break endif 0 0
εqðnÞ ¼ εqðnÞþsignðbqÞα 0 1

b¼ b�signðbqÞα ~R
ðqÞðnÞ 0 P

endfor 0 0

φðnÞ ¼ εðnÞþ
0

φðn�1Þ

" #
0 P

ŵðn�2Þ ¼ ŵðn�3Þþxðn�P�1ÞφP�1ðn�2Þ L L

Total

2LþP2þ3Pþ4 multiplications

2LþP2þð4þ2NuÞPþMbþ4 additions
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3. Case studies

In the previous section, we have presented a new FEF
approach to reduce the complexity of AP algorithm. We
found that the idea can also be generalized to some other
known AP-type algorithms. We will show the details and
also discuss the possible applications of the proposed
approach.
3.1. FEF approach to the DCD-AP algorithm

The DCD-AP algorithm [18] uses the DCD iterations to
solve the linear system of equations. The number of
multiplications required in the DCD-AP algorithm is sig-
nificantly reduced, however, the number of additions
is still large [18]. Combing the DCD iterations and the
proposed FEF approach results in the DCD-EFEAP algo-
rithm in Table 4, where we define ~RðnÞ ¼ RðnÞþδI and
b¼ ½b0; b1;…; bP�1�T . Parameters of the DCD iterations are
as follows: Nu denotes the maximum number of “success-
ful” iterations, Mb is the number of bits used for repre-
sentation of elements of εðnÞ, ½�H;H� represents the
amplitude range of εðnÞ, and ~R

ðqÞðnÞ is the qth column of
the matrix ~RðnÞ.

The DCD-EFEAP and DCD-AP algorithms with different
complexities have exactly the same performance. The
DCD-EFEAP algorithm takes L more multiplications but
saves ðNu�1ÞL additions compared to the DCD-AP algo-
rithm. If the algorithm is implemented on software plat-
forms such as DSP and ARM, both the multiplication and
addition operations should be taken into account. The
proposed DCD-EFEAP algorithm is more appropriate for
implementation in the software.

Table 5 presents the complexity of several fast AP
algorithms. Note that the proposed EFEAP algorithm needs
P2 more multiplications than the FAP algorithm if they use
the same method to solve (6). In practical applications
such as AEC, P is between 2 and 10 and P5L [12], so the
EFEAP algorithm is only marginally more complex than the
FAP algorithm.
3.2. FEF approach to the APS algorithm

In many applications, the noise exhibits non-Gaussian
behavior and the distributions have heavier tails than
those of the Gaussian distribution [24,25]. Recently, the
APS algorithm [22] is proposed to enhance the robustness
against such non-Gaussian interferences.

Direct implementation of the APS algorithm requires
PLþ2L multiplications and 2PLþL additions at each time
instant [21]. A fast APS (FAPS) algorithm [21] was pre-
sented based on the FEF scheme [18]. The FAPS algorithm
needs 2Lþ3P multiplications and ðPþ1ÞLþ2P2þ3P addi-
tions per sample. Although the multiplications used in the
FAPS algorithm are significantly reduced, the number of
additions is still high [21]. The complexity of the APS
algorithm can be further reduced by using the proposed
FEF approach.

Using the definitions in (2)–(5), the weight update
equation of the APS algorithm can be written as [19]

w nð Þ ¼w n�1ð Þþ μxsðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT
s ðnÞxsðnÞþδ

p ð24Þ

where xsðnÞ ¼XðnÞsign½eðnÞ�. Rearranging (24), it follows

wðnÞ ¼wðn�1ÞþXðnÞεðnÞ ð25Þ
where

ε nð Þ ¼ μ sign½eðnÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sign½eT ðnÞ�RðnÞsign½eðnÞ�þδ

p : ð26Þ

We found that the update equation of the APS algorithm is
similar to that of the AP algorithm. The only difference is
the calculation of εðnÞ in (6) and (26). Thus, the proposed
FEF approach can be applied to the APS algorithm. The



Table 5
Complexity of several fast versions of the AP algorithm.

Algorithm Comment Number of multiplications per sample Number of additions per sample

AP [1] Exact filtering 2PLþ3PþPm 2PLþ2PþPa

FAP [3,4,6–13] Approximate filtering 2Lþ4PþPm 2Lþ4PþPa

FEAP [18] Exact filtering ðPþ1ÞLþP2þ3PþPm ðPþ1ÞLþP2þ3PþPa

EFEAP Exact filtering 2LþP2þ3PþPm 2LþP2þ4PþPa

DCD-FAP [11] Approximate filtering 2Lþ4P 2Lþð2NuþMbþ4ÞP
DCD-AP [18] Exact filtering LþP2þ3P ðNuþ1ÞLþP2þð2Nuþ3ÞP
DCD-EFEAP Exact filtering 2LþP2þ3P 2LþP2þð2Nuþ4ÞP

Table 6
Proposed fast APS algorithm.

Term � þ

GðnÞ ¼XT ðnÞXðn�1Þ 2P 2P

RðnÞ ¼XT ðnÞXðnÞ 2 2

rðnÞ ¼XT ðn�2ÞxðnÞ 2 2

z0ðnÞ ¼ xT ðnÞŵðn�3ÞþrT ðnÞφðn�2Þ LþP LþP

zðnÞ ¼ ½z0ðnÞ; y0ðn�1Þ;…; yP�2ðn�1Þ�T 0 0
yðnÞ ¼ zðnÞþGðnÞεðn�1Þ P2 P2

eðnÞ ¼ dðnÞ�yðnÞ 0 P

ε nð Þ ¼ μ sign½eðnÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sign½eT ðnÞ�RðnÞ sign½eðnÞ�þδ

p 0 P2

φðnÞ ¼ εðnÞþ
0

φðn�1Þ

" #
0 P

ŵðn�2Þ ¼ ŵðn�3Þþxðn�P�1ÞφP�1ðn�2Þ L L

Total

2LþP2þ3Pþ4 multiplications

2Lþ2P2þ4Pþ4 additions

Fig. 1. Multichannel feedback active noise control system with adaptive
filters.
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proposed fast APS algorithm is listed in Table 6. Note that
both the multiplications and the additions required in the
proposed algorithm are reduced.

3.3. FEF approach to the MFxAP algorithm

The filtered-x least mean squares (FxLMS) algorithm is
commonly used in the ANC system [26] but suffers from
slow convergence. The AP algorithms have been intro-
duced to ANC applications with the aim of improving the
convergence performance of the FxLMS algorithm and
avoiding the instabilities of the RLS algorithm [27]. The
conventional filtered-x affine projection (CFxAP) algorithm
uses past samples of the error signal to build the error
vector [15]. However, the delay introduced by the second-
ary paths reduces the upper bound for the step size that
can be used, resulting in slow convergence [28]. To
compensate the delay, the MFxAP algorithm is presented
[5,14] but the complexity is very high. The fast MFxAP
algorithm [15] is subsequently proposed to reduce the
complexity based on the FAF approach. However, the
convergence performance of the fast MFxAP algorithm is
degraded by the approximations involved in the error
vector computation. The FEF approach in [18] is also
applied to the MFxAP algorithm [19] but the complexity
is only mildly reduced.

3.3.1. Multichannel MFxAP algorithm
A multichannel active noise controller scheme (I refer-

ence signals, J secondary sources, and K error sensors) is
depicted in Fig. 1. Notation in Table 7 will be used to
describe the MFxAP algorithm. We only discuss the multi-
channel MFxAP algorithm [15] because the monochannel
MFxAP algorithm [5] is a special case of the former at
I¼ J ¼ K ¼ 1.

The MFxAP algorithm can be described as

vi;j;kðnÞ ¼ hT
j;kxMiðnÞ; ð27Þ

yjðnÞ ¼ ∑
I

i ¼ 1
wT

i;jðn�1ÞxiðnÞ; ð28Þ

d̂kðnÞ ¼ ekðnÞ� ∑
J

j ¼ 1
hT
j;kyjðnÞ; ð29Þ

ŷ i;j;kðnÞ ¼ ½ŷi;j;k;0ðnÞ; ŷi;j;k;1ðnÞ;…; ŷi;j;k;P�1ðnÞ�T

¼VT
i;j;kðnÞwi;jðn�1Þ; ð30Þ
Ri;j;kðnÞ ¼VT
i;j;kðnÞVi;j;kðnÞ; ð31Þ

êkðnÞ ¼ d̂kðnÞþ ∑
I

i ¼ 1
∑
J

j ¼ 1
ŷ i;j;kðnÞ; ð32Þ

εi;j;kðnÞ ¼ ½εi;j;k;0ðnÞ; εi;j;k;1ðnÞ;…; εi;j;k;P�1ðnÞ�T

¼ μ½Ri;j;kðnÞþδI��1êkðnÞ; ð33Þ

wi;jðnÞ ¼wi;jðn�1Þ� ∑
K

k ¼ 1
Vi;j;kðnÞεi;j;kðnÞ ð34Þ



Table 7
Notations for the MFxAP algorithm.

Symbol Definition

I Number of reference sensors
J Number of actuators
K Number of error sensors
L Length of the FIR adaptive filters
P Projection order
M Length of (fixed) FIR filters
xiðnÞ Value at time n of the ith reference signal
yjðnÞ Value at time n of the jth actuator signal
ekðnÞ Value at time n of the kth error sensor

d̂kðnÞ Estimate of dkðnÞ
êkðnÞ Value at time n of the kth error sensor used for adaptation

of the weight vector
wi;j;lðnÞ Value at time n of the lth coefficient in the adaptive FIR filter

linking xiðnÞ and yjðnÞ
hj;k;m Value of themth coefficient in the (fixed) FIR filter modeling

the plant between yjðnÞ and ekðnÞ
vi;j;kðnÞ Value at time n of the filtered reference signal, i.e., the

signal obtained by filtering the signal xiðnÞ
with the plant model filter hj;k

wi;jðnÞ ½wi;j;0ðnÞ;wi;j;1ðnÞ;…;wi;j;L�1ðnÞ�T
hj;k ½hj;k;0 ;hj;k;1;…; hj;k;M�1�T
vi;j;kðnÞ ½vi;j;kðnÞ; vi;j;kðn�1Þ;…; vi;j;kðn�Lþ1Þ�T
Vi;j;kðnÞ ½vi;j;kðnÞ; vi;j;kðn�1Þ;…; vi;j;kðn�Pþ1Þ�
xiðnÞ ½xiðnÞ; xiðn�1Þ;…; xiðn�Lþ1Þ�T
xMiðnÞ ½xiðnÞ; xiðn�1Þ;…; xiðn�Mþ1Þ�T
yiðnÞ ½yiðnÞ; yiðn�1Þ;…; yiðn�Mþ1Þ�T
d̂kðnÞ ½d̂kðnÞ; d̂kðn�1Þ;…; d̂kðn�Pþ1Þ�T
êkðnÞ ½êkðnÞ; êkðn�1Þ;…; êkðn�Pþ1Þ�T
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where μ is the step size and δ is a regularization parameter.
Among the different available definitions of εi;j;kðnÞ [29], we
use the approach in (33).

From (31) it is noted that the lower ðP�1Þ � ðP�1Þ
block of Ri;j;kðnÞ can be obtained by copying the upper
ðP�1Þ � ðP�1Þ block of Ri;j;kðn�1Þ. The only part of the
matrix Ri;j;kðnÞ that should be directly updated is the
elements in the first row. The update of Ri;j;kðnÞ only needs
2Pmultiplications per sample by using a recursive scheme.
3.3.2. Proposed fast MFxAP algorithm
Expanding the matrix/vector multiplications in (34),

the weight vector wi;jðnÞ can be rewritten as

wi;jðnÞ ¼wi;jðn�1Þ� ∑
K

k ¼ 1
∑
P�1

m ¼ 0
vi;j;kðn�mÞεi;j;k;mðnÞ: ð35Þ

Continuing to recursively expand Eq. (35) yields

wi;jðnÞ ¼wi;jð0Þ� ∑
K

k ¼ 1
∑
n�1

l ¼ 0
∑
P�1

m ¼ 0
vi;j;kðn� l�mÞεi;j;k;mðn� lÞ:

ð36Þ

Assuming that vi;j;kðnÞ ¼ 0 for no0, (36) can be rewritten as

wi;jðnÞ ¼wi;jð0Þ� ∑
K

k ¼ 1
∑
P�1

l ¼ 0
vi;j;kðn� lÞ ∑

l

m ¼ 0
εi;j;k;mðn� lþmÞ

� ∑
K

k ¼ 1
∑
n�1

l ¼ P
vi;j;kðn� lÞ ∑

P�1

m ¼ 0
εi;j;k;mðn� lþmÞ: ð37Þ
The weight vector wi;jðnÞ can be alternatively rewritten as

wi;jðnÞ ¼ ŵ i;jðn�1Þ� ∑
K

k ¼ 1
Vi;j;kðnÞφi;j;kðnÞ ð38Þ

where

ŵ i;jðn�1Þ ¼wi;jð0Þ� ∑
K

k ¼ 1
∑
n�1

l ¼ P
vi;j;kðn� lÞ ∑

P�1

m ¼ 0
εi;j;k;mðn� lþmÞ

ð39Þ

φi;j;kðnÞ ¼ ½φi;j;k;0ðnÞ;φi;j;k;1ðnÞ;…;φi;j;k;P�1ðnÞ�T ð40Þ
with

φi;j;k;qðnÞ ¼ ∑
q

m ¼ 0
εi;j;k;mðn�qþmÞ: ð41Þ

It is interesting that both ŵ i;jðnÞ and φi;j;kðnÞ can be recur-
sively computed:

φi;j;kðnÞ ¼ εi;j;kðnÞþ
0

φ i;j;kðn�1Þ

" #
; ð42Þ

ŵ i;jðnÞ ¼ ŵ i;jðn�1Þ� ∑
K

k ¼ 1
vi;j;kðn�Pþ1Þφi;j;k;P�1ðnÞ ð43Þ

where φ i;j;kðnÞ consists of the upper P�1 elements of
φi;j;kðnÞ.

Substituting (34) into (30) yields

ŷ i;j;kðnÞ ¼VT
i;j;kðnÞwi;jðn�1Þ

¼ VT
i;j;kðnÞ wi;jðn�2Þ� ∑

K

q ¼ 1
Vi;j;qðn�1Þεi;j;qðn�1Þ

" #

¼ zi;j;kðnÞ� ∑
K

q ¼ 1
Gi;j;k;qðnÞεi;j;qðn�1Þ ð44Þ

where Gi;j;k;qðnÞ ¼ VT
i;j;kðnÞVi;j;qðn�1Þ, and

zi;j;kðnÞ ¼VT
i;j;kðnÞwi;jðn�2Þ

¼ ½vTi;j;kðnÞwi;jðn�2Þ; vTi;j;kðn�1Þwi;jðn�2Þ;
…; vTi;j;kðn�Pþ1Þwi;jðn�2Þ�T

¼ ½zi;j;kðnÞ; ŷi;j;k;0ðn�1Þ;…; ŷi;j;k;P�2ðn�1Þ�T ð45Þ

with zi;j;kðnÞ ¼ vTi;j;kðnÞwi;jðn�2Þ. Using (38), zi;j;kðnÞ can be
calculated using the auxiliary coefficient vector ŵ i;jðnÞ
rather than using wi;jðnÞ:
zi;j;kðnÞ ¼ vTi;j;kðnÞwi;jðn�2Þ

¼ vTi;j;kðnÞ ŵ i;jðn�3Þ� ∑
K

q ¼ 1
Vi;j;qðn�2Þφi;j;qðn�2Þ

" #

¼ vTi;j;kðnÞŵ i;jðn�3Þ� ∑
K

q ¼ 1
ψT

i;j;k;qðnÞφi;j;qðn�2Þ ð46Þ

where ψ i;j;k;qðnÞ ¼VT
i;j;qðn�2Þvi;j;kðnÞ.

The auxiliary coefficient strategy can also be applied to
compute the cancelling signal;

yjðnÞ ¼ ∑
I

i ¼ 1
wT

i;jðn�1ÞxiðnÞ

¼ ∑
I

i ¼ 1
xT
i ðnÞ ŵ i;jðn�2Þ� ∑

K

k ¼ 1
Vi;j;kðn�1Þφi;j;kðn�1Þ

" #

¼ ∑
I

i ¼ 1
xT
i ðnÞŵ i;jðn�2Þ� ∑

K

k ¼ 1
rTi;j;kðnÞφi;j;kðn�1Þ

" #
: ð47Þ



Table 8
Proposed fast MFxAP algorithm.

Equation �

vi;j;kðnÞ ¼ hT
j;kxMiðnÞ IJKM

ri;j;kðnÞ ¼VT
i;j;kðn�1ÞxiðnÞ 2IJKP

yjðnÞ ¼ ∑
I

i ¼ 1
xT
i ðnÞŵ i;jðn�2Þ� ∑

K

k ¼ 1
rTi;j;kðnÞφi;j;kðn�1Þ

" #
IJðLþPKÞ

d̂kðnÞ ¼ ekðnÞ� ∑
J

j ¼ 1
hT
j;kyjðnÞ

JKM

ψ i;j;k;qðnÞ ¼ VT
i;j;kðn�2Þvi;j;qðnÞ 2IJK2

Gi;j;k;qðnÞ ¼ VT
i;j;kðnÞVi;j;qðn�1Þ IJK2ð2Pþ2Þ

zi;j;kðnÞ ¼ vT
i;j;kðnÞŵ i;jðn�3Þ� ∑

K

q ¼ 1
ψT

i;j;k;qðnÞφi;j;qðn�2Þ IJKðLþKPÞ

zi;j;kðnÞ ¼ ½zi;j;kðnÞ; ŷ i;j;k;0ðn�1Þ;…; ŷ i;j;k;P�2ðn�1Þ�T 0

ŷ i;j;kðnÞ ¼ zi;j;kðnÞ�∑K
q ¼ 1Gi;j;k;qðnÞεi;j;qðn�1Þ IJK2P2

êkðnÞ ¼ d̂kðnÞþ ∑
I

i ¼ 1
∑
J

j ¼ 1
ŷ i;j;kðnÞ

0

Ri;j;kðnÞ ¼ VT
i;j;kðnÞVi;j;kðnÞ 2IJKP

εi;j;kðnÞ ¼ ½Ri;j;kðnÞþδI��1êkðnÞ Pm

φi;j;kðnÞ ¼ εi;j;kðnÞþ
0

φ i;j;kðn�1Þ

" #
0

ŵ i;jðnÞ ¼ ŵ i;jðn�1Þ�∑K
k ¼ 1vi;j;kðn�Pþ1Þφi;j;k;P�1ðnÞ IJKL

Table 9
Complexity of several FxAP algorithms.

Algorithm Number of multiplications per sample

MFxAP LIJð2KPþ1Þþ JKMðIþ1Þþ2IJKPþPm

Fast MFxAP IJLð2Kþ1Þþ JKMðIþ1Þþ5IJKPþPm

Proposed MFxAP IJLð2Kþ1Þþ JKMðIþ1Þþ IJKPð5þ3KþKPÞþPm

CFxAP IJLðKPþ1Þþ IJKMþ2IJKPþPm

Fast CFxAP IJLðKþ1Þþ IJKMþ5IJKPþPm
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where ri;j;kðnÞ ¼ VT
i;j;kðn�1ÞxiðnÞ. The vector ri;j;kðnÞ can be

recursively computed and only needs 2P multiplications:

ri;j;kðnÞ ¼ ri;j;kðn�1Þþηi;j;kðn�1ÞxiðnÞ
�ηi;j;kðn�1�LÞxiðn�LÞ ð48Þ

where ηi;j;kðnÞ ¼ ½vi;j;kðnÞ; vi;j;kðn�1Þ;…; vi;j;kðn�Pþ1Þ�T .
The remaining problem is the calculation of Gi;j;k;qðnÞ

and ψ i;j;k;qðnÞ. We firstly define the cross-correlation ele-
ment

ρðmÞ
i;j;k;qðnÞ ¼ vTi;j;kðnÞvi;j;qðn�mÞ: ð49Þ

Using (49), we can write Gi;j;k;qðnÞ and ψ i;j;k;qðnÞ as follows:

Gi;j;k;qðnÞ ¼VT
i;j;kðnÞVi;j;qðn�1Þ

¼

ρð1Þi;j;k;qðnÞ ρð2Þi;j;k;qðnÞ … ρðPÞi;j;k;qðnÞ
ρð0Þi;j;q;kðn�1Þ ρð1Þi;j;k;qðn�1Þ … ρðP�1Þ

i;j;k;q ðn�1Þ
⋮ ⋮ … ⋮

ρðP�2Þ
i;j;q;k ðn�1Þ ρðP�3Þ

i;j;q;k ðn�2Þ … ρð1Þi;j;k;qðn�Pþ1Þ

2
666664

3
777775;

ð50Þ

ψ i;j;k;qðnÞ ¼VT
i;j;qðn�2Þvi;j;kðnÞ

¼ ½vT
i;j;kðnÞvi;j;qðn�2Þ; vTi;j;kðnÞvi;j;qðn�3Þ;

…; vTi;j;kðnÞvi;j;qðn�P�1Þ�T

¼ ½ρð2Þi;j;k;qðnÞ; ρ
ð3Þ
i;j;k;qðnÞ;…; ρðPþ1Þ

i;j;k;q ðnÞ�: ð51Þ

It can be seen from (50) and (51) that the update of
Gi;j;k;qðnÞ and ψ i;j;k;qðnÞ only needs to compute ρðmÞ

i;j;k;qðnÞ;
m¼ 0;1;…; Pþ1. They can be recursively computed as

ρðmÞ
i;j;k;qðnÞ ¼ ρðmÞ

i;j;k;qðn�1Þþvi;j;kðnÞvi;j;qðn�mÞ
�vi;j;kðn�LÞvi;j;qðn�m�LÞ: ð52Þ

Thus, joint update of Gi;j;k;qðnÞ and ψ i;j;k;qðnÞ only needs
2Pþ4 multiplications. The proposed fast MFxAP algorithm
is presented in Table 8.

In the special case I¼ J ¼ K ¼ 1, (27)–(34) becomes the
monochannel structure used in [5]. It is noted from Table 8
that the proposed fast MFxAP algorithm needs
3Lþ2MþP2þ8PþPm multiplications per sample for a
monochannel case. The monochannel fast MFxAP algo-
rithm [5] needs 3Lþ2Mþ5PþPm multiplications per
sample. Thus, the proposed algorithm has a similar com-
plexity with the fast algorithm in [5], but the former
provides an exact filtering. Table 9 evaluates the complex-
ity of several fast algorithmic variants of the FxAP
algorithms.

3.4. Other applications

In fact, the core idea of the proposed FEF approach lies
in the time-shift property of the vector in (4) and (7). In
this manner, the proposed FEF scheme can also be
extended to many other adaptive filtering algorithms that
have a similar filtering and weight update structure with-
out fundamental problems, e.g., the proportionate-type AP
[30], improved multiband-structured subband adaptive
filter (IMSAF) [31], and affine projection sign subband
adaptive filter (AP-SSAF) [32] algorithms.
4. Complexity comparisons

Fig. 2 presents the complexity of several variants of AP
algorithm based on the total number of operations (multi-
plications plus additions), where we use the LDLT

approach [12] to solve the linear system of equation in
the first four algorithms in Table 5. The parameters are
L¼1024, Mb ¼ 16, and Nu ¼ P. In the exact filtering meth-
ods, the complexity of the EFEAP algorithm is much lower
than the FEAP and the standard AP algorithms especially
for a large projection order. Note that for P¼20, the
proposed EFEAP algorithm attains a complexity that is
only 11% and 19% of the AP and FEAP algorithms, respec-
tively. The complexity of the EFEAP algorithm is compar-
able to that of the FAP algorithm but the latter only
provides an approximate filtering. The DCD-EFEAP algo-
rithm achieves the least complexity among the three DCD-
based algorithms in Table 5.

Fig. 3 illustrates the total number of operations (multi-
plications plus additions) required by three versions of the
APS algorithm. The length of the adaptive filter is L¼1024.
All the three algorithms are mathematically equal, but the
proposed fast version achieves the lowest complexity. The
computational load of the APS and FAPS algorithms
increases linearly with the projection order while that of
the proposed APS algorithm does not.
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Fig. 4 presents a computational comparison of different
FxAP algorithms, where the parameters are I¼2, J¼3,
K¼2, L¼300, and M¼128. To simplify, we use the recur-
sive approach to solve the linear system of equation [15],
i.e., Pm ¼ IJKð7P2þ12PÞ. From Fig. 4 it is clear that the
complexity of the proposed fast MFxAP algorithm is
significantly lower than that of the standard MFxAP and
CFxAP algorithms but only slightly higher than that of the
Fast MFxAP and Fast CFxAP algorithms. However, the
proposed fast MFxAP algorithm is an exact version of the
standard MFxAP algorithm.

5. Simulation results

Computer simulations are carried out in the context of
AEC. The impulse response wo is generated according to
wi ¼ e� τirðiÞ; i¼ 0;1;…; L�1, where r(i) is a zero-mean
white noise sequence and τ is the envelope decay rate. The
sampling rate is 8 kHz. An independent white noise signal is
added to the echo signal, with 30-dB signal-to-noise ratio
(SNR). The convergence performance is evaluated in terms of
the normalized mean square deviation (MSD), defined as
10 log10½‖wo�wðnÞ‖2=‖wo‖2�. The length of the adaptive
filter is L¼512. The input signal is an AR(10) process with
coefficients (5.3217, �9.2948, 7.0933, �2.8152, 2.5805,
�2.4230, 0.3747, 2.2628, �0.3028, �1.7444, 1.1053). Exact
solution of the linear system of equations has been used in
all the algorithms involved in the simulations except the
original FAP algorithm. The results are obtained by averaging
over 100 Monte Carlo trials.

Fig. 5 shows the convergence performance of the EFEAP
and standard AP algorithms. Note from Fig. 5(a) that the
MSD of the EFEAP algorithm matches well with that of the
standard AP algorithm. Fig. 5(b) verifies that the two
implementations are theoretically and practically equiva-
lent by the extremely small values of the quantity
κðnÞ ¼ 10 log10½‖wAPðnÞ�wEFEAPðnÞ‖2�, i.e., κðnÞ ¼ 0 within
the numerical limits of the computations.
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The FAP algorithm based on an ideal matrix inversion
is called ideal FAP [11]. Fig. 6 compares the convergence
performance of the EFEAP and ideal FAP algorithms using
different regularization parameters. We select δ¼ 0:2s2x
and δ¼ 20s2x , where s2x is the variance of the input signal.
It can be seen that when δ¼ 0:2s2x , the ideal FAP and EFEAP
algorithms perform indistinguishably. However, when a
relatively large regularization parameter δ is employed, the
ideal FAP algorithm has slower convergence rate than the
EFEAP algorithm.

Fig. 7 shows the convergence and tracking behavior of
the EFEAP and original FAP [3,4] algorithms. The impulse
response is changed at the middle of the iterations. To
achieve the fastest convergence, the step size is set to
μ¼ 1:0. It is seen that the EFEAP has faster convergence
rate than the original FAP algorithm. However, the steady-
state misadjustment of the original FAP algorithm is
smaller than that of the EFEAP algorithm with the same
step size, which is an interesting discovery and worth-
while of further study. Also, it is well recognized that the
original FAP algorithm suffers from numerical instability
especially in a fixed-point implementation because of the
propagating errors [13,14]. These facts demonstrate the
strengths of the proposed algorithm.
6. Conclusion

This paper provides a new FEF approach to the AP-type
algorithms. We firstly introduce the FEF approach to the
standard AP algorithm. As a general framework, we also
apply the approach to some known AP algorithms, e.g.,
DCD-AP, APS and MFxAP algorithms. There is an exact
mathematical equivalence between the original AP-types
algorithms and the proposed fast versions, thereby making
the proposed algorithms attractive for a real-time imple-
mentation. A detailed comparison (memory size, compu-
tational complexity) of different implementation methods
in hardware platforms such as FPGA and DSP is our
future work.
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