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Abstract—A new subspace-based auto-calibration algorithm
for uniform circular array with unknown mutual coupling is
presented in this letter. In allusion to the existing ambiguity
problems and the limitation of nonzero coupling coefficients
in [16], a more generalized iterative method is proposed to jointly
estimate the direction-of-arrival (DOA) and unknown mutual
coupling. It suffers from no ambiguity problems and does not
require the prior knowledge of the number of nonzero elements
in mutual coupling vector. Simulation results show the robustness,
effectiveness and higher estimated accuracy of the proposed
algorithm.

Index Terms—Array mutual coupling, auto-calibration,
direction-of-arrival (DOA) estimation, uniform circular array.

I. Introduction

T He problem of estimating the direction-of-arrival (DOA)
of multiple narrowband signals impinging on an array

has attracted considerable attention in the last decades [1]. In
particular, a variety of high-resolution algorithms whichexhib-
it potentially excellent performance have been proposed [2],
[3]. Most of these algorithms assume the array manifold is
perfectly known. However, in practice, the array manifold
is often affected by unknown array characteristics such as
mutual coupling [4], [5], which can seriously degrade the high-
resolution algorithms’ performance [6], [7].

To solve the problem of array mutual coupling, many
calibration algorithms have been published in literature [9]–
[17]. The algorithms of [9]–[12] are categorized as offline cal-
ibration method since all of them require calibration sources.
However, this kind of calibration method has the drawbacks of
being expensive and time consuming. Moreover, the additional
calibration sources are sometimes not available in practice.
Therefore, another way of array calibration, which is the
so-called online calibration or auto-calibration, has aroused
much interest these years [13]–[17]. These auto-calibration
methods are more attractive because they can estimate the
DOAs and the unknown mutual coupling coefficients simulta-
neously without any calibration sources. In [14], a novel online
calibration algorithm to compensate for mutual coupling in
uniform linear array (ULA) is developed. [15] presents a
MUSIC-based 2-D DOA estimation algorithm in the presence
of unknown mutual coupling for uniform rectangular array.
However, neither of them have considered the mutual coupling
calibration for uniform circular array (UCA).

This work was supported in part by the National Natural Science Foundation
of China under Grant 61222107 and 61471352.

The authors are with the Institute of Acoustics, Chinese Academy
of Sciences, Beijing 100190, China (e-mail: mwangcas@163.com, max-
c@mail.ioa.ac.cn, sfyan@ieee.org, haochengp@mail.ioa.ac.cn. S. Yan is the
corresponding author.

In contrast to the widely applied ULA, UCA can form
uniform beams over 360◦ azimuthal directions and has been
used in more and more applications [8]. Unfortunately, the
mutual coupling effect of a UCA can be much stronger than
that of a ULA. So it’s of great necessity to develop calibration
techniques for mutual coupling in UCA. [16] and [17] have
proposed two self-calibration algorithms for UCA. They can
simultaneously estimate the DOAs and coupling coefficients
by using the special structure of mutual coupling matrix
(MCM). However, both of them have treated the number
of nonzero coefficients in mutual coupling vector as a prior
knowledge, which is usually not known exactly for a practical
UCA because of the changing environment. More importantly,
there exist serious ambiguity problems during the estimation
process in [16] and [17], which has been analysed in [18]
and [19]. [19] presents a method to estimate unknown mutual
coupling and DOAs in beam space, while it should also know
the number of nonzero mutual coupling coefficients previously.

In order to overcome the drawbacks above, an iterative auto-
calibration algorithm for unknown mutual coupling in UCA is
presented in this letter. It is based on subspace theory and
utilizes the complex symmetric circular Toeplitz structure of
MCM as well. While it does not require any prior knowledge
of mutual coupling coefficients and can solve the ambiguity
problems very well. Moreover, it is proved to exhibit higher
estimated accuracy.

II. Problem formulation

ConsiderK uncorrelated narrow-band signals impinging on
an M-sensor uniform circular array (UCA) of radiusr lying on
the xy-plane. The impinging signals and the UCA are assumed
to be coplanar. Ideally, the vector ofM sensor outputs can be
written as

x(t) =
K
∑

k=1

a(ϕk)sk(t) + n(t) ∈ CM,1, (1)

wherea(ϕk) =
[

e jβr cos (ϕk−φ1), e jβr cos (ϕk−φ2), . . . , e jβr cos (ϕk−φM)
]T
∈

C
M,1 is the ideal steering vector for thekth signal sk(t)

impinging from directionϕk. Here, β = 2π/λ is the wave
number andφm = (m − 1)2π

M (m = 1, · · · ,M) is the azimuth
angle of themth sensor.n(t) is the vector of additive noise.

Using matrix notation, (1) can be rewritten as

x(t) = As(t) + n(t) ∈ CM,1, (2)

where A =
[

a(ϕ1), a(ϕ2), . . . , a(ϕK)
]

∈ CM,K and s(t) =
[s1(t), s2(t), . . . , sK(t)]T ∈ CK,1 denote the array manifold
matrix and the impinging signal vector, respectively.
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Equation (2) presents the ideal array signal vector model.
However, in the presence of mutual coupling, the array steering
vector for an arbitrary angleϕ should be modified as

ã(ϕ) = Ca(ϕ) ∈ CM,1, (3)

whereC ∈ CM,M denotes the mutual coupling matrix (MCM)
of the UCA, which describes how the received signal changes
as a result of mutual coupling.

Thus the output of the array described by (2) will become

x(t) = CAs(t) + n(t) ∈ CM,1. (4)

Due to the circular symmetry of a UCA, the MCMC
exhibits a complex symmetric circular Toeplitz structure [13].
Denote the first row ofC by c̃, which can be expressed as

c̃ = [c1, c2, · · · , cL, cL−1, · · · , c3, c2] ∈ C1,M (5)

when the sensor numberM is even withL = M/2+ 1, and

c̃ = [c1, c2, · · · , cL, cL, · · · , c3, c2] ∈ C1,M (6)

when M is odd with L = (M + 1)/2. Thus, the MCM can be
given by

C = toeplitz(̃c, c̃) ∈ CM,M , (7)

where toeplitz(•, •) denotes the symmetric Toeplitz matrix.
From (5)-(7), it’s easy to infer that there are onlyL = ⌊M/2+

1⌋ unknown mutual coupling coefficients in MCM. Denote
these unknown coefficients as a mutual coupling vector

c = [c1, c2, . . . , cL]T ∈ CL,1. (8)

Since the mutual coupling coefficient between two different
sensors is inversely proportional to their distance, the rela-
tionship of the elements ofc satisfies

1 = c1 > |c2| > . . . > |cL| ≥ 0. (9)

In the following discussion, it is supposed that the impinging
signals are uncorrelated with each other and independent with
the noises. It is also assumed that the noisesn(t) are spatially
white Gaussian random processes with zero mean andσ2

n
variance. Then the spatial covariance matrix of the array output
vectorx(t) can be expressed as

Rx = E
[

x(t)xH(t)
]

= CAE
[

s(t)sH(t)
]

AHCH
+ E
[

n(t)nH(t)
]

= CAR sAHCH
+ σ2

nI ∈ CM,M ,

(10)

where H and E denote complex conjugate transpose and
expectation, respectively.

Thus, the problem addressed here is to simultaneously
estimates the array MCM and the DOAs using the array output
vectorx(t) and its spatial covariance matrixRx.

III. Proposed auto-calibration algorithm

A. Subspace-based DOA estimation

Performing eigen-decomposition on the array output covari-
ance matrixRx, and lettingλm andem be the eigenvalues and
corresponding eigenvectors, the matrix can be written as

Rx =

M
∑

m=1

λmemeH
m = EsΛΛΛsEH

s + EnΛΛΛnEH
n ∈ C

M,M , (11)

whereEs = [e1, e2, . . . , eK ] ∈ CM,K contains theK principal
eigenvectors corresponding to theK maximum eigenvalues as
the signal subspace, andEn ∈ C

M,M−K contains the rest (M−K)
eigenvectors as the noise subspace [2].

Ideally, signal subspace spans the same space with the array
manifold matrix, i.e. span{Es} = span{CA}, and becauseEs

andEn are orthogonal, it holds that span{En} ⊥ span{CA}.
So the DOAs and unknown mutual coupling can be esti-

mated jointly by minimizing the cost function

J =‖ EH
n CA ‖2F=

K
∑

k=1

‖ EH
n Ca(ϕk) ‖2, (12)

where‖ • ‖F and‖ • ‖ denote the Frobenius matrix norm and
the vector 2-norm, respectively.

B. Auto-calibration algorithm

Based on the above analysis, the auto-calibration problem
addressed in this letter has been formulated as an optimization
problem described by (12). However, estimating a matrix
directly is not an easy task since it possesses too many
parameters. By taking advantage of the symmetric circular
property of the MCM, we can transform it to a mutual coupling
vector as [13]

Ca(ϕ) = T[a(ϕ)]c ∈ CM,1, (13)

where c ∈ CL,1 is referred to (8),T[a(ϕ)] ∈ CM,L is the
transform matrix defined as the sum of the following four
matrices:

[T1] i j =















a(ϕ)i+ j−1 i + j ≤ M + 1

0 otherwise
(14a)

[T2] i j =















a(ϕ)i− j+1 i ≥ j ≥ 2

0 otherwise
(14b)

[T3] i j =















a(ϕ)M+1+i− j i < j ≤ q

0 otherwise
(14c)

[T4] i j =















a(ϕ)i+ j−M−1 2 ≤ j ≤ q,i + j ≥ M + 2

0 otherwise,
(14d)

whereq = ⌊(M + 1)/2⌋. Plugging (13) into the cost function
(12) yields

J =
K
∑

k=1

cHTH [a(ϕk)]EnEH
n T[a(ϕk)]c = cHQ(ϕ)c, (15)

whereQ(ϕ) is a Hermitian matrix defined as

Q(ϕ) =
K
∑

k=1

TH [a(ϕk)]EnEH
n T[a(ϕk)] ∈ CL,L. (16)
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Since Q(ϕ) is independent ofc, the auto-calibration of mu-
tual coupling has become a quadratic minimization problem
denoted as

({ϕk}
K
k=1, c) = arg min

{ϕk}
K
k=1,c

J = arg min
{ϕk}

K
k=1,c

cHQ(ϕ)c. (17)

In general, the solution of this optimization problem requires
a constraint to avoid the trivial solution. A norm constraint
‖ c ‖= 1 or a linear constraint such as [c]1 = 1 can be used
depending on the application. Some solutions have been given
in [16] and [17], respectively. However, there are two main
shortcomings associated. One is that they have used the prior
knowledge of the nonzero element numberξ in the mutual
coupling vector, which is often not known exactly. The other
is that serious ambiguity problems exist during the estimation
process, which has been analysed in [18]. The ambiguity is
mainly caused by the singularity or rank reduction of matrix
Q(ϕ) at some ambiguous angles. In addition, the ambiguity is
also determined by the choice ofξ.

Therefore, a more generalized and accurate method is
proposed in this letter. First, given an initial value of vector
c, the problem of DOA estimation will reduce to the standard
MUSIC algorithm with a one-dimensional peaks searching of

P(ϕ) = J−1
= (cHQ(ϕ)c)−1. (18)

Then update the value ofc by solving (17) using the currently
estimated DOAs{ϕk}

K
k=1 under the constraint‖ c ‖= 1. Thus,

the above joint minimization can be performed iteratively,
updatingc and {ϕk}

K
k=1 alternatingly until convergence.

Summarizing the above proposed auto-calibration algorithm
as follows:

Init c (0)
= [1, 0, . . . , 0]T ∈ CL,1 or any recently calibrated

or measured value, setl = 0.
1) Search for theK highest peaks of the spatial spec-

trum denoted by (18) withc = c(0), by using
function “findpeaks” defined in Matlab. These peaks
correspond to the newly estimated DOAs{ϕ(l)

k }
K
k=1.

ComputeJ(l) according to (15).
2) Repeat
3) Perform (17) withϕ = {ϕ(l)

k }
K
k=1 under the constraint

of ‖ c ‖= 1. The result of this minimization problem
is given by

c(l+1)
= emin{Q(l)(ϕ)}, (19)

whereQ(l)(ϕ) = Q(ϕ)|
ϕ={ϕ

(l)
k }

K
k=1

, andemin{Q(l)(ϕ)} de-
notes the eigenvector corresponding to the smallest
eigenvalue of matrixQ(l)(ϕ).

4) Normalize c(l+1) with respect to its first element
[c(l+1)]1.

5) Substitutec(l+1) into (18) to search for theK highest
peaks which corresponds to DOAs{ϕ(l+1)

k }Kk=1. Note
that this choice of{ϕ(l+1)

k }Kk=1 minimizes J(l+1) for
given c(l+1).

6) l← l + 1.
7) Until convergence, i.e.J(l−1) − J(l) ≤ δ, whereδ is

the threshold of convergence.
The success of peak searching above is mainly determined

by the SNR and the magnitude of mutual coupling. Since

our discussion focuses on the latter, a relatively high SNR
is considered in this letter.

Compared with the algorithms in [16] and [17], the above
method seldom encounters ambiguity problems. This is be-
cause the quadratic minimization problem expressed by (17)
is calculated only with theK newly estimated DOAs instead
of all possible direction angles, so that those ambiguous angles
which makes matrixQ(ϕ) rank reduction will be avoided. Ad-
ditionally, this method does not require any prior knowledge of
mutual coupling, and can estimate DOAs and mutual coupling
accurately no matter whetherc contains zero elements or not.

Finally, a necessary but not sufficient identifiability condi-
tion of the proposed algorithm is given without proof:

K ≤ ⌊(M − 1)/2⌋. (20)

IV. Simulation experiments

In this section, we present some computer simulations to
illustrate the estimation results of the proposed algorithm.
Some experiments are also made to compare the performance
of the proposed algorithm with that in [16].

Consider a 7-sensor UCA of radiusr = 0.6λ, then the num-
ber of unknown coupling coefficients isL = ⌊M/2+1⌋ = 4. As-
sumingc = c1 =

[

1, 0.6325+ 0.3946j, 0.3514+ 0.2192j, 0
]T .

Three equal-power uncorrelated sources with SNR= 20dB
impinge on the array from−30◦, 25◦ and 60◦, respectively. The
number of collected snapshotsN is 500. Experiment results are
depicted in Fig. 1. It is shown that both the proposed method
and method in [16] can successfully estimate the DOAs since
the two spatial spectrum curves share very sharp peaks at the
three correct angles. However, the peaks of the uncalibrated
curve are not sharp and deviate from their true positions, so
it is not able to estimate the DOAs without calibration.

Then, change one of the simulation conditions, i.e.c = c2 =
[

1, 0.6325+ 0.3946j, 0.3514+ 0.2192j, 0.2816+ 0.1757j
]T .

For method in [16], some ambiguous peaks such as−154.8◦

and 177.9◦ appear except for the three favorable ones, as
shown in Fig. 2. Whereas our proposed method is very robust
and performs as well as before. Again, the uncalibrated
method keeps poor to estimate DOAs. It is noted that this
choice of c is actually more close to reality, because the
mutual coupling between two relatively far away sensors,
though small, is not zero, and it is usually hard to tell the
threshold of zero mutual coupling.

Next, set the mutual coupling vector back toc1 and change
the sensor number of the UCA to 6. Simulation results are seen
in Fig. 3. Ambiguity problems of the method in [16] emerge
again, and the proposed method significantly outperforms the
method in [16]. The uncalibrated method is still unable to
estimate DOAs due to the array mutual coupling.

The last simulation considers the same scenario as the first
one, i.e.M = 7 andc = c1, where method in [16] does not
possess ambiguity problems. 200 Monte Carlo experiments
are performed to evaluate the statistical performance of the
proposed algorithm. In each experiment, 500 snapshots of
data are collected and the SNR ranges from 5 dB to 40 dB.
Fig. 4 shows the estimated RMSE of the signal from 25◦ and
the corresponding Cramer-Rao lower bound (CRB). It can be
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Fig. 1. Comparison of spatial spec-
trum for a 7-sensor UCA withc = c1.
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Fig. 2. Comparison of spatial spec-
trum for a 7-sensor UCA withc = c2.
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Fig. 3. Comparison of spatial spec-
trum for a 6-sensor UCA withc = c1.
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Fig. 4. RMSE of the DOA estimates
and the corresponding CRB versus S-
NR.
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Fig. 5. Spatial spectrum for a 7-sensor
UCA with r = 0.5λ andc = c3.
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Fig. 6. Spatial spectrum for a 7-sensor
UCA with r = 0.7λ andc = c4.

seen clearly that the proposed iterative method is efficient and
achieves higher estimated accuracy.

It should be noted that the above coupling coefficients
are selected by referring to [17], [19], and also determined
by the inverse relationship with their sensors’ distances.For
smaller coupling coefficients, the proposed algorithm certainly
works well. In essence, the performance of the algorithm
is determined by the deviation between the available initial
coupling value and the actual one. Specifically, the larger the
deviation is, the more seriously the performance degrades.So
the proposed method is not suitable for very large mutual
coupling without a proper initial value ofc, since in addition to
the performance degradation of peak searching, the iterative
process may also converge to a local minimum of the cost
function J.

At last, to demonstrate the performance of the proposed
algorithm further, two simulations with different UCA sizes
and related coupling coefficients are shown here. In Fig. 5,r =
0.5λ and c = c3 =

[

1, 0.7+ 0.44j, 0.39+ 0.24j, 0.31+ 0.2 j
]T ,

while in Fig. 6, r = 0.7λ and c = c4 =
[

1, 0.54+ 0.34j, 0.3+ 0.19j, 0.24+ 0.15j
]T . Both of the sim-

ulation results have shown the superior performance of our
method.

V. Conclusion

In conclusion, we present an iterative auto-calibration
method to jointly estimate the DOA and unknown mutual

coupling for a uniform circular array. This method is based
on subspace theory and uses the special structure of mutual
coupling matrix. While it does not require any prior knowledge
of nonzero element number in mutual coupling vector and
suffers from no ambiguity problems. Computer simulations
have demonstrated the robustness, effectiveness and higher
estimated accuracy of the proposed algorithm. In the future
work, we might put our emphasis on some experimental
measurements to validate our algorithm further.
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