
3204 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 12, JUNE 15, 2015

Generalized Iterated Kalman Filter and its
Performance Evaluation

Xiaoqing Hu, Ming Bao, Xiao-Ping Zhang, Senior Member, IEEE, Luyang Guan, and Yu-Hen Hu, Fellow, IEEE

Abstract—In this paper, we present a generalized iterated
Kalman filter (GIKF) algorithm for state estimation of a non-
linear stochastic discrete-time system with state-dependent
multiplicative observation noise. The GIKF algorithm adopts
the Newton–Raphson iterative optimization steps to yield an
approximate maximum a posteriori estimate of the states. The
mean-square estimation error (MSE) and the Cramér–Rao
lower bound (CRLB) of the state estimates are also derived. In
particular, the local convergence of MSE of GIKF is rigorously
established. It is also proved that the GIKF yields a smaller MSE
than those of the generalized extended Kalman filter and the
traditional extended Kalman filter. The performance advantages
and convergence of GIKF are demonstrated using Monte Carlo
simulations on a target tracking application in a range measuring
sensor network.
Index Terms—Convergence, iterated Kalman filter, multiplica-

tive noise, nonlinear systems.

I. INTRODUCTION

D ISCRETE-TIME filtering for nonlinear stochastic sys-
tems has been the subject of considerable research during

the past few decades. Scientific and engineering applications
include target tracking, infrastructure monitoring, habitat
sensing, and battlefield surveillance [1]–[3]. The objective
of nonlinear filtering is to estimate the state of a dynamic
process based on noisy observations. To infer the states of the
system (position, velocity, attitude, and heading, etc.), certain
modalities of measurements such as time of arrival [4], signal
intensity [5], phase lags [6] or images [7] must be incorporated.
In practical applications, the measurement model is often

signal dependent. For instance, in a bearings-only sensor
application [8], the measurement noise is a function of the
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signal to noise ratio (SNR) and the incident angle of the signal.
In a ranging sensor application [9], the measurement noise
increases as the relative distance to the object increases. In the
stereo camera application [10], the absolute noise increases
with the magnitude of the signal. The measurement signals
contaminated by the multiplicative noise are common in many
systems such as image processing systems [11], control systems
[12], communication systems [13] and tracking systems [14].
However, the widely used Kalman filter (KF) [15] and its

variants such as extended Kalman filter (EKF) [16], iterated
Kalman filter (IKF) [17], interactive multiple model Kalman
filter (IMM) [18], unscented Kalman filter (UKF) [19], iterated
unscented Kalman filter [20] and Gaussian filter [21], often as-
sume that the observation noise is additive and an i.i.d Gaussian
process. The assumption would become invalid when the obser-
vation noise is signal-dependent, since the statistics of the multi-
plicative noise depends on the state of the system. This situation
motivates our focus on an estimation problem of the state of a
nonlinear stochastic discrete-time system with state-dependent
multiplicative observation noise.
Previously, using a maximum likelihood approach cou-

pled with Gauss-Newton algorithm, a recursive algorithm is
proposed to estimate the state of a stochastic process from
measurements with additive state-dependent observation noise
[22]. This method, however, only applies to observations made
on a single sensor, and does not readily generalize to obser-
vations made by multiple sensors. In [10], a robust estimation
algorithm is presented for non-linear state-space models driven
by state-dependent noise. The algorithm is derived from first
principles as an iterative solver for a quadratic composite
minimization problem. This method mainly deals with an ad-
ditive measurement noise processes for a common type outlier
non-Gaussian phenomenon. A KF+ML combination algorithm
is proposed in [14], where the maximum likelihood (ML)
estimator is used for pre-localization of the target and mea-
surement conversion to remove the measurement nonlinearity.
The converted measurement and its associated noise statistics
are then used in the standard Kalman filter for recursive update
of the state. With this approach, the conversion of sensor
measurements to Cartesian coordinates requires knowledge of
range of the targets. The accuracy of converted measurements
degrades tremendously when an inaccurate range is used. As
such, this method is applicable mainly to low noise situations.
The work presented in this article differs from these earlier
works in the following ways: First, this work extends the
filtering problem to situations with multiplicative observation
noise rather than only additive noise. As such, the earlier
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works cannot be applicable to the multiplicative observation
noise cases. Second, the multiple sensors in this work would
collaborate to measure information on the object of interest for
the state filtering. In addition, an iterative method is adopted
to linearize the measurement function. Such a filter can reduce
the effects of linearization errors and therefore obtain better
estimation performance even in high noise situations.
Filtering with multiplicative measurement noise has also

been addressed in several earlier works. In [23]–[25], minimal
variance filters and polynomial filters are employed for linear
systems with multiplicative, state dependent observation noise.
In [26], a recursive unscented filtering algorithm is derived for
state estimation in a class of nonlinear discrete-time stochastic
systems with uncertain observation described by a multiplica-
tive noise. The multiplicative noise is assumed to be a sequence
of independent Bernoulli random variables to indicate the pres-
ence or absence of the signal in the observations. A recursive
EKF is designed to minimize the filtering error covariance
bound [27] for a discrete time-varying nonlinear system with
stochastic nonlinearities and multiple missing measurements
that reflect the multiplicative stochastic disturbances. The
feasibility and convergence of the algorithm greatly depend
on the scalar parameter in difference Riccati equations. A new
generalized extended Kalman filtering algorithm using a mul-
tiplicative measurement noise model is developed in [28]. A
Taylor series expansion linearization procedure conditioned on
the predicted state is applied to convert nonlinear function into
a linear formulation. The linearization process may introduce
large errors in the true posterior mean and covariance of the
state [29]. To reduce the errors due to linearization, a modified
gain extended Kalman filter is proposed [30]. This method
assumes that the nonlinear function is modifiable, which may
not always be true in many realistic applications.
In this paper, a type of multiplicative measurement noise

model is considered to facilitate more accurate characterisation
of measurement errors of sensors. Specifically, it is assumed
that the measurements of sensors are contaminated by both
additive Gaussian noise and multiplicative Gaussian noise.
With this nonlinear state-dependent noise model, the filter
update requires the conditional statistics of the observation.
That is, the correlation between the state and observation noise
must be taken into account. In this work, we adopt a maximum
a posteriori (MAP) estimation method to compute the updated
state. An approximate MAP estimate can be obtained by an
iteration that amounts to re-linearization of the measurement
equation, and then an iterated Kalman filter is developed based
on Gaussian approximation of the posterior distribution.
The main contribution of this paper is to present a gener-

alized iterated Kalman filter (GIKF) for nonlinear stochastic
discrete-time system with state-dependent multiplicative ob-
servation noise. Compared with the work in [22] that mainly
deals with an additive measurement noise of state-dependent
covariance, our work elaborates the theoretical relation between
the generalized iterated Kalman filter and the generalized ex-
tended Kalman filter as well as the traditional extended Kalman
filter. It is found that the generalized IKF yields a higher
estimation accuracy than the generalized EKF and traditional

EKF in the multiplicative observation noise model. The error
performance of the GIKF including the mean square estimation
error (MSE) and the Cramér-Rao lower bound (CRLB) is
analyzed as well.
The remainder of the paper is organized as follows. In

Section II, we review the filtering problem models of non-
linear systems. A generalized iterated Kalman filter with state-
dependent multiplicative measurement noise is derived in
Section III. In Section IV, the error performance of the GIKF
is analyzed in terms of the MSE and the CRLB. In Section V,
we conduct performance evaluations of the proposed algorithm
by simulation comparisons in a tracking application involving
rang measuring sensors. Section VI concludes the paper. For
the ease of reading, some proofs are included in the Appendix.

II. PROBLEM MODELS

We discuss the nonlinear filtering problem for the discrete-
time stochastic signal system [28], [31], [32]:

(1)
(2)

where is the state vector of the target at the time
step. The input noise is a Gaussian random vector with
zero mean and a covariance matrix ; and are the
state transition matrix and input matrix respectively. We assume
that identical sensor nodes with the same noise statistics are
deployed over a sensing field. The observationmeasurement ob-
tained by sensor is denoted by ; is the measuring
function of the target state; and are the multiplica-
tive and additive Gaussian noise respectively. Let to be the
set of indices of sensor nodes that have detected the target at
time . It is normally assumed that are
mutually independent, and for

(3)
(4)
(5)
(6)

where if , if ; otherwise ,
.

Denote by the cardinal number of (i.e. the number of
elements in ), the sensor measurements at the time step
may be represented in a matrix form:

(7)

where ,
, and . More-

over, , and
.

The filtering problem is to obtain a sequential Bayesian
estimate of given the noisy sensor observations

, denoted by , using an iterated
Kalman filter formulation.



3206 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 12, JUNE 15, 2015

III. GENERALIZED ITERATED KALMAN FILTER (GIKF)
In this section, we focus on the derivation of the generalized

iterated Kalman filter for the nonlinear stochastic signal system
with multiplicative observation noise.
The basic filtering solution to the state estimation

problem can be described as a two-stage recursive process
of prediction and update. Now, given the distribution

, the joint distribu-
tion of and conditioned on the previous measurements

is

(8)

The predictive distribution of given the measurement his-
tory up to time step can be calculated by Lemma A1 in
Appendix A

(9)

According to (7) and (4)∼(6), the conditional probability den-
sity function (pdf) of the measurement , given , is written
as follows:

(10)

where,

(11)

(12)

The derivation of (12) can be seen in Appendix B.
Using this measurement likelihood , we get the pa-

rameters of the posterior distribution by the Bayes rule

(13)

where the proportionality factor is , and

The MAP estimate associated to the posterior is
identical to minimizing its negative logarithm:

(14)

The above equation ignores the constant terms not dependent
on , and . The MAP estimate can be found by
solving the optimization problem

(15)

The minimization problem of (15) can be equivalently stated
as a nonlinear unconstrained optimization problem, the common
solution to the optimization problem is found through the fol-
lowing Newton-Raphson iterative method:

(16)

where is the iteration step, and the initial value .
Equivalently, the MAP estimation problem is a nonlinear least
square problem , where

. Unlike
Newton-Raphson method, the Gauss-Newton algorithm can
only be used to solve the nonlinear least square problem. It
approximates the Hessian matrix of by ignoring the
second-order derivative terms of the residuals . As a
consequence, the convergence of the Gauss-Newton method
depends on whether the omitted second-order derivative
terms of the residuals are large parts of the Hessian. When

cannot be satisfied, it is shown that
the Gauss-Newton method may not be locally convergent at all
[33].
Some computation facts about the derivatives and traces of

a matrix are given to facilitate the calculation of derivatives of
the function . Let be a nonsingular symmetric matrix
dependent on a scalar , and let and be vectors. All vectors
will be regarded as column vectors in the context. Then [34]

(17)
(18)

Using (17) and (18), the th component of the gradient of the
logarithm function with respect to is given as

(19)
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where is a basis vector with a 1 in the th element and 0’s
elsewhere. Then, the element at the th row and th column of
the Hessian matrix of the function can be computed as

(20)

The joint distribution of and is

(21)

From (21) and (13), the derivative of negative logarithm func-
tion of with respect to is also equal to

which is called the score. Denote .
The Fisher information matrix for the estimated parameter
is defined as [35]

Note that the measurement function in (7) is a non-
linear map. For most nonlinear models, the closed-form ana-
lytic expression of the posterior distributions does
not exist in general [36]. A workaround is to adopt a Gaussian
approximation of the filtering (posterior) distribution
[21]. Moreover, the approximated posterior error covariance is
equal to the inverse of the Fisher informationmatrix [37]. There-
fore we have the following proposition.
Proposition 1: Given the discrete system of (1) and (7), let

the error covariance of the state estimate be defined as
. If the posterior distribu-

tion is , then the error covariance
associated with can be obtained as

(22)

where is the Jacobian of
the re-linearized measurement function, and

is defined in (25).

Proof: Given , then and .
From (20), the information matrix equals

(23)

the element at the th row and th column of is given by
,

(24)

Let

(25)

And then can be transformed as

Thus, we can get

(26)

where . Since is a symmetric posi-
tive-definite diagonal matrix, is positive semi-definite. Note
that is positive, so is nonsingular. Taking

at right side of (26), then we can easily conclude the
theorem.
Note that if the measurement noise is uncorrelated with the

target state, that is the multiplicative noise is ignored (in
this case we can assume , ). The observation
function is approximated by the first order Taylor series in the
standard extended (or iterated) Kalman filter derivation. It is
consistent with Gauss-Newton method truncating the second-
order derivative terms of residuals. As such retaining only up to
the first derivative of , (16) simplifies to the following update
formula in the traditional iterated KF for the case of additive
state-independent observation covariance [38],

(27)
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The corresponding error covariance in the traditional iterated
KF is, from (22), given by

(28)

For a single step iteration, setting in (27) and (28) above,
we obtain the standard EKF update formula in the case of addi-
tive state-independent observation covariance

(29)

(30)

IV. ERROR PERFORMANCE OF GIKF
In this section, the error performance of GIKF is analyzed in

terms of the MSE and the CRLB to evaluate the effectiveness of
the GIKF, and then the MSE of GIKF is compared with a gener-
alized extended Kalman filter that uses Taylor series expansion
to linearize the measurement function.

A. Cramér-Rao Lower Bound
The CRLB that provides a lower bound on the MSE of the

state estimate is widely used to assess the performance of an
estimator. The CRLB on the error covariance matrix of the state
estimate has the form [35],

(31)

where is the Fisher information matrix evaluated at the true
state . It is different with in (22) evaluated at the estimated
state .
An efficient method for computing recursively is given

in [35].
Proposition 2: Given the discrete system of (1) and (7), the

CRLB can be recursively calculated by

(32)

The derivation of Proposition 2 can be found in Appendix C.
According to the matrix inversion lemma, the CRLB in (32) can
be rewritten

(33)

B. Convergence of MSE in GIKF
The trace (sum of diagonal elements) of the covariancematrix

corresponds to the MSE of the
updated state and can be used to measure the estimation
accuracy [28], [39]. In general, smaller value implies
more accurate state estimate.
From Proposition 1, we can find that there always exists an

extremum for which is positive definite. Since

is a continuously differentiable function, we give the
following lemma:
Lemma 1: is locally Lipschitz-continuous, that is

there exists a scalar with arbitrary such that
for all and satisfying

and [40].
Since is positive, by the continuity of ,

we can find a neighborhood of such that ,
, is positive. Therefore, we have another lemma:

Lemma 2: When , there exists a scalar for
which , it satisfies the following inequality
[41]

(34)

Theorem 1: Suppose satisfies , where
and , then

so that in
GIKF.
The detailed proof of above theorem is shown in Appendix D.
Corollary 1: Suppose satisfies , then

the estimation accuracy in GIKF converges to a limit, that is

Proof: From Theorem 1, we know that for
is a monotonous decreasing sequence and it is also

bounded by from (31),
so according to the monotone convergence theorem, the limit
of the sequence exists, i.e.,
, where is constant at time .
From the above corollary, it can be found that

since , thereby
can not converge to at each time step and the only

claim is that , which means that
convergence is guaranteed as the iterate proceeds.
Note that the results regarding the convergence in the above

theorems are local, they apply only if the starting point is suffi-
ciently close to the desired limit. In the GIKF, the initial estimate
of the iterative process comes from the Kalman state prediction
which can assist nice convergence, and thus the sampling time
interval is not too long for convergence. Typically, only a few
iterations are sufficient to get the minimum, because the longer
iteration steps cannot promise more accurate state estimate.

C. Comparison to Generalized Extended Kalman Filter

For the filtering problem with state-dependent multiplicative
observation noise, our early work presented a generalized ex-
tended Kalman filter (GEKF) that adopts a first order Taylor
series expansion linearization method for forming a Gaussian
approximation of the posterior probability. The measurement
model can be then approximated around

(35)
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Thus, the expression of GEKF based on the discrete system of
(1) and (35) is briefly recalled below [28]:

(36)
(37)

where,

where
is a diagonal matrix consisting of

the diagonal elements of the matrix inside the brackets.
With the Gaussian approximation of the posterior probability,

the estimation accuracy comparison between GEKF and GIKF
can be analytically summarized below.
Proposition 3: Given the discrete system of (1) and (7), the

GIKF yields more accurate estimate than the GEKF, that is

(38)

The proof of Proposition 3 is included in Appendix E.
Remark 1: It is known that when the observation equation

is nonlinear, the traditional IKF with a single iteration obtains
the same estimation performance with the traditional EKF in
the case of additive state-independent observation noise [42],
or in the case of additive state-dependent observation noise[22].
However, from Proposition 3, we can find that the generalized
IKF with a single iteration yields a higher estimation accuracy
than the generalized EKF in themultiplicative observation noise
model.
Remark 2: The traditional EKF always assumes that the

measurement noise is independent of the state, its covariance
is unconditional. The multiplicative noise in (7) can be con-
verted into an equivalent additive signal-dependent noise by a
first-order linear approximation of the non-linear measurement
model as follows

where
is additive noise with mean value and covariance

. This leads to the state update equations in the traditional
EKF formulation [28]

(39)

(40)

where,

It is verified that the traditional EKF using the additive noise
yields bigger posterior error covariance matrix than the GEKF
[31]. From Proposition 3, the generalized IKF can also obtain
higher accuracy than the traditional EKF under the multiplica-
tive measurement model in (7). In addition, it is worth pointing
out that, for the problem of state estimation problem, the imple-
mentations of the traditional Kalman filter requires oper-
ations. Note that computing of the inverses in the covariance in
(50) for GEKF requires operations in general. Similarly,
for each instant , if the iteration is repeated times, then the
computational complexity of the GIKF is comparable to that of
the traditional IKF and is in general [43]. On average,
the computational complexities of GIKF and GEKF are in the
same order of magnitude if is not too large.

V. NUMERICAL SIMULATIONS

To show the efficiency of the proposed GIKF, it is applied
to a target tracking application in comparison with the GEKF,
and the traditional EKF (TEKF) as well as a two-phase KF+ML
algorithm proposed in [14]. Error performance of the filters is
evaluated with Monte Carlo simulations in this section.
For simplicity, we only consider a single target tracking

scenario, but nevertheless our proposed GIKF algorithm
still is applicable to multi-target tracking as the targets have
been classified. The constant velocity model is adopted
to represent the motion of the target in a 2-D space with

, where and
are the position coordinates and velocities of the

target along and directions at time step, respectively.
The state transition matrix and input matrix are

(41)

respectively, where is the sampling time interval between
two successive time step and . Denote by the
known location of the sensor. The measuring function for a
sensor is given by

(42)

Suppose that four sensor nodes are deployed at the four cor-
ners of a 2 meters by 2 meters sensing field, each sensor is
equipped with an ultrasonic range sensor with a given detection
range , when the sensor to target distance is less than
, the target will be detected and the distance will be estimated.

These detecting sensor nodes dynamically form a cluster [44].
A cluster head is selected and all other sensor nodes within the
cluster will transmit their distance observations to the cluster
head for tracking computation.
A moving target travels at a constant angular velocity of

0.122 rad/s along a trajectory consisting of two adjacent circles
of radius 0.35 meters. The sampling interval is
second (5 Hz). The process noise corresponds to the
variable acceleration of the target and can be approximated
by a white Gaussian sequence with zero mean and covariance
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Fig. 1. Tracking trajectories under different noise conditions: The target travels along a trajectory consisting of two adjacent circles, the high noise condition
imitates an outdoor environment, the additive noise condition supposes a traditional additive noise assumption while the low noise condition represents an actual
indoor environment; (a) High noise; (b) Additive noise; (c) Low noise.

matrix [14]. Three different
measurement noise conditions are given to test the algorithms:
(a) High noise condition with , , ,

, which imitates an outdoor environment, (b) Additive
noise condition with , , , ,
which supposes a traditional additive noise assumption, and (c)
Low noise condition with , ,

, , which represents an actual
indoor environment.
The initial values of target state and error covariance are as-

sumed to be:

One hundred Monte-Carlo runs with the above noise con-
ditions are performed. The results are summarized in the fol-
lowing. Fig. 1 shows the average tracking trajectories of 100
realizations for the four filtering algorithms. Fig. 2 gives the
population and its mean of quadratic sums of the state estima-
tion errors in each time step. Specially the population for the
KF+ML is not depicted here to clearly distinguish from these
filters. Fig. 3 describes the corresponding mean value of the
population of target estimated location biases

for each filter, where comes from the

estimated value of the Kalman filters, in GIKF , in
the other filters . In the low noise condition, the im-
pact of the noise has negligible magnitude, then the observations
are very accurate, thus all the filtering algorithms attain similar
performance. However, under the high noise condition, themea-
surement errors become bigger, as shown in Fig. 1. The tracking
trajectory in the KF+ML greatly diverges from the true trajec-
tory, and the mean squared error(MSE) of the state estimation
and the estimation bias are the worst among the four algorithms.
From Fig. 2 we can see that, due to the inadequate noise model,
the TEKF has bigger MSE and estimation bias than the GEKF
and the GIKF, and the tracking MSE and estimation bias in the
GEKF are more than those of the GIKF. In particular, the MSE
of the GIKF is closest to the CRLB, and the GIKF has the best
tracking performance. This result indicates that the GIKF can
yield more accurate estimate than the GEKF in the high noise
environments.
In contrast, in the additive noise condition, the GEKF sim-

plifies to the traditional EKF, then the GEKF and TEKF have
the same tracking accuracy. Table II lists the average root
mean square of the target estimated position error (RMSE)

in all the time steps under
the additive noise condition when the sampling interval is 0.2
second. In this case, the GIKF also simplifies to the traditional
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Fig. 2. The mean squared errors of the state estimation under different noise conditions: The sample data points are the MSE population of 100 realizations, the
solid line with marker describes the mean value of population, the black solid line represents the real CRLB; (a)High noise; (b) Additive noise; (c) Low noise.

IKF. From Table II, it can be seen that the GIKF with one
iteration can obtain the same RMSE with the GEKF and the
TEKF.
Table I and III also show the average RMSEs of the TEKF,

GEKF, KF+ML and the GIKF with different sampling intervals
under the other two noise conditions. In the high noise condi-
tion, the RMSE of the GIKF with a single iteration is smaller
than that of the GEKF, and the RMSE of the GIKF decreases
as the number of iterations increases. In the low noise condi-
tion, the RMSEs of the four filtering algorithms are almost the
same. Because the state prediction is very close to the true target
state in the low noise condition, the GIKF has a higher rate
of convergence than that in the other noise conditions. More-
over, the RMSEs of Kalman filters decrease as the sampling in-
terval decreases, this is because the constant-velocity motion
model becomes more precise in the shorter sampling interval,
which results in better state prediction and convergence. Simi-
larly, Fig. 4 shows the MSEs of the GIKF with different num-
bers of iterations at each time step under the high noise condi-
tion when the sampling interval is 0.2 second. The MSE of the
GIKF at each time step decreases as the number of iterations in-
creases, but the longer iterations can not promise much higher
accurate state estimate, the MSE of the GIKF with a few iter-
ations is very close to the CRLB. This result indicates that the

GIKF with a few iterations can yield higher accurate estimate
and nicer convergence.
To investigate the stability of the proposed GIKF, another

simulation is conducted that uses the same setting as above
except for much worse noise condition. In particular, we set

, , , and .With
such unfavorable noise conditions, the KF+ML method failed
miserably (as shown in Fig. 5) and hence its results are excluded
from reporting. In Fig. 5, the average tracking trajectories of the
TEKF, GEKF and GIKF are plotted. Clearly, the GIKF achieves
better tracking accuracy, and the GEKF has marginally better
performance than the TEKF. Fig. 6 plots the distributions of
tracking errors of the position states along and directions
for these three methods, together with the corresponding error
covariance ellipses of position state . The error co-
variance of the position state is defined as

where denotes the diagonal element of the error co-
variance matrix . The major and minor axes of each ellipse
correspond to the square roots of eigenvalues of the error covari-
ance matrix, and the angles between these axes and x-axis are
determined by the orientation of corresponding eigenvectors. It
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TABLE I
AVERAGE RMSES OF DIFFERENT SAMPLING INTERVALS UNDER THE HIGH NOISE CONDITION

TABLE II
AVERAGE RMSES OF DIFFERENT SAMPLING INTERVALS UNDER THE ADDITIVE NOISE CONDITION

TABLE III
AVERAGE RMSES OF DIFFERENT SAMPLING INTERVALS UNDER THE LOW NOISE CONDITION

is quite clear that the GIKF achieves smaller error covariance
compared to the TEKF or the GEKF, and the tracking errors of
the position states in the GIKF for most realizations lie in the
ellipse.
The average estimated location bias of the whole tracking

trajectory in each realization is shown in Fig. 7. The
corresponding average RMSE in the CRLB

is also shown in Fig. 7. As can be
seen in Fig. 7 the average estimated location biases in the
GIKF for most realizations are below the average RMSE ,
while the TEKF and the GEKF are above the average line in
many realizations. A comparison of the computation times is
also shown in Fig. 8. These simulations are performed on a
2.80-GHz PC equipped with an Intel Xeon processor using
MATLAB scripts. As expected, the computation time for the
GIKF is similar to those of the TEKF, GEKF or KF+ML when
the number of iterations of the GIKF is limited to one. When
the number of iterations increases, the computation time for the
GIKF increases proportionally.

VI. CONCLUSION
In this paper, we derive a generalized iterated Kalman filter

(GIKF) for the nonlinear stochastic discrete-time system with
state-dependent multiplicative observation noise. The theoret-
ical relation between the GIKF and the GEKF as well as the
TEKF is demonstrated. It is found that the GIKF yields a smaller

MSE than the GEKF and the TEKF in the multiplicative obser-
vation noise model. Furthermore, the CRLB is introduced as the
performance measure of the error behavior and the local con-
vergence of MSE of GIKF is rigorously established. Simulation
results are also reported that the GIKF with a few iterations can
yield higher accurate estimate and nicer convergence than ex-
isting methods. In the future work, we hope to apply the pro-
posed algorithm to develop a target tracking platform in a mo-
bile acoustic array network.

APPENDIX

A. Lemma A1
Lemma A1: For two random Gaussian column vectors and
, if the joint density of has the Gaussian probability den-
sities, it is given as [45]

(43)

where , , then the marginal and condi-
tional densities of and are given as follows:

(44)
(45)
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Fig. 3. The average estimated location biases of 100 realizations under different noise conditions: The solid line with marker represents the mean value of pop-
ulation of target estimated location biases for all the time steps, the KF+ML takes biases at the some previous time steps while the others go beyond the frame of
axes in the high noise condition; (a) High noise; (b) Additive noise; (c) Low noise.

(46)

(47)

B. Derivation of (12)
According to (7) and (4)∼(6), the covariance of given

is shown in the equation at the bottom of the page.
C. Proof of Proposition 2

Proof: Given the discrete system (1) and (7), the posterior
information matrices for estimating state obeys the recursion

(48)

...
...

...
...

...
...
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Fig. 4. The MSEs of GIKF with different iteration numbers under the high
noise condition: The line represents the mean value of MSE population when
the sampling interval is 0.2 second.

Fig. 5. Tracking trajectories under a heavily noisy condition.

where,

According to (13) and
, it gets

Fig. 6. The tracking errors along and directions and the error covariance
ellipses of the position state: The sample data points are the population of 100
realizations of and at some random time steps.

Fig. 7. The average estimated location bias of the whole tracking trajectory in
each realization: The solid line with marker represents the average estimated
location bias of all the time steps. The estimation biases in the KF+ML entirely
go beyond the frame of axes, it is not shown in the figure.

Fig. 8. The average computation time of the TEKF, GEKF, GIKF and KF+ML:
The computation time is an average elapsed time for one realization.
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D. Proof of Theorem 1
Proof: For normal probability density functions, the first

moment of the score [46], then

Due to , then
. Using Lemma 1, it has

Because , and combining (34) with
the above yields

(49)

E. Proof of Proposition 3
Proof: From (37), using the matrix inversion lemma, the

covariance of GEKF can be rewritten as

(50)

The entry of
is given by

in the above, where

.
According to the definition of positive-definite matrix, due

to , then , then
. let , it follows that from

(24) the entry of is

Similarly with Proposition 1, we can rewrite
where

. Since is a symmetric positive definite diag-
onal matrix, is positive semi-definite. Thus in the
initial iteration , , it has

(51)

Then, ,
or equivalently . By Theorem 1, for ,

.
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