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A new constant false-alarm rate (CFAR) detector for
non-Rayleigh data, based on fuzzy statistical normalization, is
proposed. The proposed detector carries out the detection with two
stages. The first stage of the fuzzy statistical normalization CFAR
processor is background level estimation, based on fuzzy statistical
normalization. The second stage is signal detection, based on the
original data and the defuzzification normalized data. Performance
comparisons are carried out to validate the superiority of the
proposed CFAR detector.
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I. INTRODUCTION

Constant false-alarm rate (CFAR) detection plays an
important role in radar or sonar signal processing. Its basic
principle is to set a decision about the presence or the
absence of a target using the adaptive threshold
techniques. A CFAR detector sets the threshold adaptively
to maintain a CFAR according to the background
information by processing the reference cells surrounding
the cell under test (CUT) in range. According to the
background distribution function, CFAR detectors can be
divided into two classes: one is Rayleigh CFAR detectors,
and the other is non-Rayleigh CFAR detectors.

Rayleigh CFAR detectors presume that the background
is homogeneous and Rayleigh distributed. The typical and
basic Rayleigh CFAR detector is the cell-averaging CFAR
(CA-CFAR) detector [1]. The detection performance of
the CA-CFAR is optimal when the background is
homogeneous and the number of reference cells is large,
while it decreases deeply in nonhomogeneous
background. Many alternative CFAR processors have been
proposed to adapt themselves to the nonhomogeneous
environments, such as the smaller of CFAR (SO-CFAR)
[2], the greater of CFAR (GO-CFAR) [3], and the order
statistic CFAR (OS-CFAR) [4]. The SO-CFAR has a good
capability of closely spaced targets interference
suppression but has a worse detection capability than the
CA-CFAR, if interfering targets are located in both the
leading and lagging windows, and has excessive false
alarms in the presence of clutter edges. The GO-CFAR has
a good capability of boundary reverberation suppression,
while it decreases greatly in multitarget conditions. The
OS-CFAR detector has an advantage over the CA-CFAR,
GO-CFAR and SO-CFAR detectors against multitargets,
although it requires large processing time and suffers from
excessive false alarms during clutter transitions [5, 6].

Non-Rayleigh CFAR detectors presume that the
background is non-Rayleigh distributed. Non-Rayleigh
distributions include Rayleigh mixture distribution, K
distribution, Weibull distribution, etc. In recent years,
many researchers have studied the properties of
non-Rayleigh distributions in great detail, such as
Rayleigh mixture distribution [7], K distribution [8–14],
Weibull distribution[15–20], log-normal distribution [20],
McDaniel model [21], clutter mixture model [22],
generalized Pareto distribution [23], and spherically
invariant random vector model [24]. However, most of the
non-Rayleigh probability density functions (pdfs) have
two parameters.

In recent years, fuzzy CFAR detectors have been
widely studied, mainly for the use of multiple sensors
[25–28]. The fuzzy CFAR detectors of distributed sensors
replace the fixed threshold with a soft continuous
threshold gained from the membership function. That is,
the local sensors produce a soft decision (between 0 and
1), instead of a binary decision, and the fusion center
executes CFAR data fusion through fuzzy integration. In
[29], a fuzzy CFAR detector using a fuzzy logic controller
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with three input variables for radar moving target
detection systems was proposed.

In this paper, we propose a new robust CFAR detector
based on fuzzy statistical normalization, called the fuzzy
statistical normalization CFAR (FSN-CFAR) detector, for
non-Rayleigh radar or sonar data in nonhomogeneous
environment. The remainder of this paper is organized as
follows: In Section II, the FSN-CFAR detection is
introduced. We discuss some simulation results and a
conclusion in Section III and conclude this paper in
Section IV.

II. FSN-CFAR DETECTION

The detection performance of a CFAR detector is
determined by the rational detection threshold. Irrational
detection thresholds may result in the increase in the
probability of false alarm (pf). For active sonar systems,
the false alarms have traditionally been assumed to arise
mainly from Rayleigh distribution reverberation.
However, for the current high-resolution active sonar
systems brought on by the high bandwidth and the large
array size, the sources of echo may come from targets of
interest, interfering objects having similar character to the
target, bottom, sea surface, and other scatterers. The
number of independent scatterers is not large enough
relative to the size of the sonar system’s resolution cell.
This typically results in the high-resolution sonar data
distribution diverging from the Rayleigh distribution to
non-Rayleigh distribution, such as K distribution. In this
section, the Rayleigh and K distributions are introduced
first, then a fuzzy Rayleigh set and the normalization
based on the fuzzy Rayleigh set are proposed, and finally,
a fuzzy statistical normalization processor is presented.

A. Rayleigh Distribution Model

The pdf of Rayleigh distribution is

p(x) = x

σ 2
exp

(
− x2

2σ 2

)
x ≥ 0. (1)

Here, σ 2 is known as the fading envelope of the Rayleigh
distribution.

The cumulative distribution function (cdf) of Rayleigh
distribution is

PR(x) = 1 − exp

(
− x2

2σ 2

)
. (2)

The mathematic expectation of Rayleigh distribution is

E[X] =
√

π

2
σ. (3)

From the pdf of Rayleigh distribution and its
characteristics, we can see that the pdf has only one
parameter, and the parameter σ can be estimated by the
mathematic expectation. If the reverberation is Rayleigh
distributed, and the detection threshold is S, the pf, Pf , is

Pf =
∫ ∞

S

p(x)dx = exp

[−S2

2σ 2

]
. (4)

Fig. 1. Pdf comparison of Rayleigh and K distributions.

Equation (4) shows the relationship between the threshold
value S and the Pf . That is, if S is fixed, the parameter σ

will vary according to the changes of the information of
variable x, and Pf will change accordingly. If we estimate
the parameter σ with the mean of the variable x and make
S vary according to the variation of the parameter σ , then
Pf will not change with the variation of the parameter σ .
This is the Rayleigh CFAR detection.

B. K Distribution Model

The pdf of K distribution is

p(x) = 2

a�(v)

( x

2a

)v

Kv−1

(x

a

)
x ≥ 0, v > 0, a > 0,

(5)

E
[
Xk

] = (2a)k
�

(
k
2 + 1

)
�

(
v + k

2

)
�(v)

k ≥ 0, (6)

where �(•) is the gamma function, Kv−1 (•) is the v − 1
order-modified Bessel function of the second kind, v is the
shape parameter that determines the shape of K
distribution, a is the scale parameter that is related to the
average power of the K-distribution background.

C. Fuzzy Rayleigh Set

Fig. 1 displays the sample plots of the Rayleigh
distribution pdf and the K-distribution pdf with different
values of v. From Fig. 1, we can see that the K-distribution
pdfs have longer tails and steeper heads than that of the
Rayleigh distribution. The smaller value of v, the longer
tail of the K-distribution pdf, and the K distribution tends
toward a Rayleigh distribution as v → ∞.

What makes the high-resolution sonar data distribution
diverge from Rayleigh to K? The answer is the target
echoes, the clutters, the lower shadow area noise, and so
on. In active sonar, reverberation arises from the multiple
reflections, diffusions, or diffractions of the transmitted
signal by the sea surface, bottom, and elementary volume
elements, such as fish, bubbles, and other inhomogeneities.
However, the clutter here is caused by interfering targets,
such as isolated rock outcrops, wrecks, and coral reefs,
and is defined as the extended upper tail of the output
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distribution in the absence of a target signal [30]. The
lower shadow area noise refers to the lower power noise
and lower power reverberation in the region screened by
an object [31]. When the data values are available, there is
uncertainty about the exact category of the data. This
uncertainty is fuzziness, and the fuzziness of the data
reflects the lack of exact knowledge of the echo sources.

From Fig. 1, we can see that the clutters or the target
echoes, which are the extended upper tails of the K
distribution, influence the shape parameter of K
distribution and may not be the outliers of the
K-distribution background data. In fact, the clutters or the
target echoes are usually the outliers of the background
data, and the normalization is needed to remove them in
sonar or radar target detection. Because the Rayleigh
distribution model has the only parameter σ , which is
related to the average power of the background data, we
design a fuzzy Rayleigh background set for the
normalization of background data, and it is defined as
A = {(x, μA(x))|x ∈ X}. Here, A is the fuzzy set of
Rayleigh reverberation, X is the universal set of the fuzzy
data, x is the membership of the set X, and μA(x) is the
membership function of the fuzzy set A. For each x ∈ X,
the value of μA(x) is in [0, 1], and it reflects the degree of
the fuzzy variable x belonging to the set A.

Based on (2), we can see that the cdf of Rayleigh
distribution PR(x) is a monotonic increasing function and
takes values from the interval [0, 1]. If x is the lower
shadow area noise, its value will be very small, and PR(x)
will be also very small. Conversely, if x is the clutter or a
target echo, its value will be very large, and PR(x) will be
also very large. From Fig. 1, we can see that no matter if
the value of variable x is very small or large, its
probability density is very small, and the degree of x

belonging to the Rayleigh reverberation set A is small.
Thus, we can follow that whether PR(x) is very small or
very large, the value of μA(x) is very small, which means
the degree of x belonging to the set A is very small.

For a constant amplitude signal x in Rayleigh
interference, the task at hand is to select one of three
hypotheses:

H0: x ≤ th0, shadow area noise,
H1: th0 < x < th1, Rayleigh reverberation, or
H2: x ≥ th1, clutter or target signal.

Here, th0 is the crisp decision threshold to distinguish
shadow area noise from Rayleigh reverberation. In
addition, th1 is the crisp decision threshold to distinguish
Rayleigh reverberation from clutters or target echoes.
Fig. 2 shows the relationships of th0, th1, and the
parameter σ of the Rayleigh pdf.

If xi is a single observation of Rayleigh distribution
data, the probability that xi is less than th0 is

Pr(xi ≤ th0) =
th0∫
0

p(x)dx = PR(th0). (7)

Fig. 2. Relationships of th0, th1 and parameter σ of Rayleigh pdf,
here σ = 1.

The probability that xi exceeds th1 is

Pr(xi ≥ th1) =
∞∫

th1

p(x)dx = 1 − PR(th1). (8)

Equation (7) is monotonic increasing in the
range[0, 1], while (8) is monotonic decreasing in the range
[0, 1]. For the smaller x, which may come from the lower
shadow area noise, the smaller the value of x and the
smaller degree of x belonging to the set of Rayleigh
reverberation are. Based on (7), the membership function
μAs(x), which maps the lower shadow area noise space to
the Rayleigh reverberation space, is defined as

μAs(x) = PR(x). (9)

Similarly, for the greater x, which may be from the
clutter or target echo, the greater the value of x and the
smaller degree of x belonging to the set of Rayleigh
reverberation are. Based on (8), the membership function
μAg(x), which maps the clutter or target echo space to the
Rayleigh reverberation space, is defined as

μAg(x) = 1 − PR(x). (10)

For any kind of x, no matter if it comes from the lower
shadow area noise, the clutter or target echo, or the
reverberation, the membership function should be the
intersection of μAs(x) and μAg(x). Based on (7) and (8),
the membership function μA(x), which maps all the sonar
envelope data space to the Rayleigh reverberation space, is
defined as (11):

μA(x) = μAs∩Ag(x) = min(μAs(x), μAg(x))

=
{

PR(x), if PR(x) ≤ 0.5,

1 − PR(x), if PR(x) > 0.5.
(11)

To let max(μA(x)) = 1, the ultimate expression of
μA(x) is (12):

μA(x, σ )

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2PR(x) = 2

(
1−exp

(
− x2

2σ 2

))
, if PR(x) ≤ 0.5,

2(1−PR(x)) = 2 exp

(
− x2

2σ 2

)
, if PR(x) > 0.5.

(12)
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Fig. 3. Membership functions of fuzzy Rayleigh reverberation.

The corresponding membership functions μA(x, σ )
are depicted in Fig. 3, with σ = 1, 2, 3, respectively.

D. Normalization Based on Fuzzy Statistical Inference
and Defuzzification Operation

The normalization is needed to remove the
nonstationarity of the active sonar reverberation [24]. In
this paper, we propose a new normalization algorithm
based on fuzzy statistical inference and defuzzification
operation for non-Rayleigh distribution active sonar or
radar data. This method realizes the outlier rejection by
attenuating the heavier-tailed data and enlarging the lower
shadow area noise data, based on the fuzzy Rayleigh set
proposed in the last subsection (Section II.C).

From Fig. 3, we can see that if the minimum
membership value of a fuzzy Rayleigh set is xmin,
μA(xmin, σ ) → 0, theoretically. Any variable whose value
is smaller than xmin will be an outlier. Based on (12) and
(2), if μA(xmin, σ ) = 0, then exp(− x2

min
2σ 2 ) = 1 and x2

min
2σ 2 = 0.

We are unable to obtain any information from xmin and
parameter σ . Thus, we let μA(xmin, σ ) = 0.2, if x < xmin,
then PR(x) < PR(xmin) = 0.1, and x will be an outlier. If
x ≥ xmin, then μA(x, σ ) ≥ μA(xmin, σ ) = 0.2, and x will
be a membership of the Rayleigh reverberation set.

Similarly, if the maximum membership value of the
fuzzy Rayleigh set is xmax, μA(xmax, σ ) → 0, theoretically.
Any variable whose value is greater than xmax will be an
outlier. Also, based on (12) and (2), if μA(xmax, σ ) → 0,
then exp(− x2

max
2σ 2 ) = 0 and x2

max
2σ 2 = ∞. We also are unable to

obtain any information from xmax and parameter σ .
Therefore, we also let μA(xmax, σ ) = 0.2, if x > xmax,
then PR(x) > PR(xmax) = 0.9, and x will be an outlier. If
x ≤ xmax, then μA(x, σ ) ≤ μA(xmax, σ ) = 0.2, and x will
be a membership of the Rayleigh reverberation set.

Here, defuzzification transforms the fuzzy active sonar
data into the crisp Rayleigh reverberation data using the
alpha-cut (α − cut) method. An α−cut of a fuzzy set A is
the crisp set Aα that contains all the elements that have the
membership value greater than or equal to α, which is

Aα = {x ∈ X|μA(x, σ ) ≥ α} . (13)

Fig. 4. Flow diagram of active sonar signal processing based on fuzzy
statistical normalization.

We let α = 0.2, and the 0.2 − cut set is

A0.2 = {x ∈ X|μA(x, σ ) ≥ 0.2} . (14)

Then, from (12) and (14), we can see that the variable
x of the crisp Rayleigh reverberation set satisfies (11):

0.1 ≤ P (x) ≤ 0.9. (15)

The crisp Rayleigh reverberation set is denoted as
follows:

A0.2 = {x ∈ X|0.1 ≤ P (x) ≤ 0.9} . (16)

E. FSN-CFAR Detection

To introduce the FSN-CFAR detector clearly, the flow
diagram of active sonar data processing for the
FSN-CFAR detector is shown in Fig. 4. The input data of
the fuzzy statistical normalizer are the fuzzy active sonar
data, which are the output data of the linear law detector,
and after the fuzzy statistical normalization, they are
transformed into the crisp Rayleigh reverberation data as
the output data. The input data of the FSN-CFAR detector
are the normalized data that are the output of the fuzzy
statistical normalizer and the original fuzzy sonar data.
The normalized data are mainly used to estimate the
background level, while the original fuzzy data, including
clutter data and signal data, are mainly used to detect the
target signals.

The structure of the FSN-CFAR detector is depicted in
Fig. 5. Here, xCUT is the CUT, x1 . . . xN/2 are the leading
reference cells, xN/2+1 . . . xN are the lagging reference
cells, and the shadow cells are guard cells that prevent
target energy from corrupting the reference window.
aver1, aver2, and aver are the average values of the
leading reference window, lagging reference window, and
total reference data, respectively. T hedge is the threshold
that is employed to determine whether the leading
reference window and the lagging reference window are
homogeneous. If the average value of the leading
reference window is greater than T hedge times of the
average value of the lagging reference window or is
smaller than 1

T hedge
times of the average value of the

lagging reference window, then the FSN-CFAR detector
considers that the leading reference window and the
lagging reference window are not homogeneous and takes
the greater average value as the estimated background
level. Ts and Tg are the proportion thresholds that decide
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Fig. 5. FSN-CFAR detector.

whether xi is an outlier, and they are deduced by (16).
x ′

1 . . . x ′
N/2 and x ′

N/2+1 . . . x ′
N are the first normalized data

that are used to estimate the parameter σ of the reference
data. With x ′

1 . . . x ′
N/2 and x ′

N/2+1 . . . x ′
N , the parameter σ

of the membership function of the fuzzy Rayleigh set is
gained. Based on the fuzzy Rayleigh set and the method of
defuzzification, the second normalized data x ′′

1 . . . x ′′
N/2

and x ′′
N/2+1 . . . x ′′

N are obtained, and they are used to
estimate the background level Z and determine the
threshold parameter T for the FSN-CFAR detection. T is
the threshold parameter to control the desired pf and is
related to the distribution of the reference data, for
example, different values of shape parameter v of K
distribution will lead to different values of T . For a

high-resolution radar or sonar system, the radar or sonar
data are usually non-Rayleigh distributed and
nonhomogeneous. It is impossible to completely
normalize the non-Rayleigh and nonhomogeneous data to
a Rayleigh distribution with the fuzzy statistical
normalization. In fact, the normalization only makes the
K-distribution shape parameter become larger, but it
realizes the important purpose of outlier rejection. In this
paper, we presume that the non-Rayleigh background data
are K distributed; how to obtain the K-distribution shape
parameter v is shown in [8–14]. In the proposed
FSN-CFAR detector, the K-distribution shape parameter v

should be estimated with the second normalized data
x ′′

1 . . . x ′′
N/2 and x ′′

N/2+1 . . . x ′′
N when the second normalized
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Fig. 6. Estimated background level of FSN-CFAR with different α values.

data are homogeneous. If the data are nonhomogeneous,

that is, if aver1 = 2
N

N/2∑
i=1

x ′′
i , aver2 = 2

N

N∑
i=N/2+1

x ′′
i and

(aver1/aver2 ≥ T hedge or aver1/aver2 ≤ 1/
T hedge

), the

shape parameter v should be estimated with x ′′
1 . . . x ′′

N/2, if
aver1 ≥ aver2, or with x ′′

N/2+1 . . . x ′′
N , if aver1 < aver2.

The threshold parameter T is acquired based on the
estimated shape parameter v and the desired pf.

The proportion threshold Ts is deduced as follows:
From Section II.D, we know that the fuzzy data are

transformed into normalized Rayleigh data using
alpha-cut (α−cut) method. We let α = 0.2 and
μA(xmin, σ ) = 0.2. Based on (12), if x < xmin, then
μA(x, σ ) < μA(xmin, σ ), PR(x) < PR(xmin) = 0.1, and x

will be an outlier. Otherwise x will be a membership of
the Rayleigh reverberation set.

Let PR(xmin) = 0.1, the relationship between xmin and
the parameter σ is

exp

(
− xmin

2

2σ 2

)
= 0.9. (17)

Based on (2), (3), and (17), the proportion of xmin to
the E(X) of the Rayleigh distribution variables can be
calculated, here X is the reference data set. That is
Ts = xmin

E(X) ≈ 0.3663, and the reference data whose value
is smaller than 0.3663 × E(X) will be rejected and
replaced by E(X).

That is, based on (2), (3), (12), and (17):

μA(xmin, σ ) = 0.2, → PR(xmin) = 0.1,

→ exp

(
− xmin

2

2σ 2

)
= 0.9, →

xmin
2

σ 2
≈ 0.2107, → xmin

2

(E(X))2
≈ 0.1341,

→ Ts = xmin

E(X)
≈ 0.3663.

Similarly, the proportion threshold Tg is deduced as
follows:

We let α = 0.2 and μA(xmax, σ ) = 0.2. Based on
(12), if x > xmax, then μA(x, σ ) < μA(xmax, σ ),
PR(x) > PR(xmax) = 0.9, and x will be an outlier.
Otherwise, x will be a membership of the Rayleigh
distribution set.

Let P (xmax) = 0.9, the relationship between xmax and
parameter σ is

exp

(
− xmax

2

2σ 2

)
= 0.1. (18)

Based on (2), (3), and (18), the proportion of xmax to
the E(X) of the Rayleigh distribution variables can be
calculated. That is, Tg = xmax

E(X) ≈ 1.7122, and the reference
data whose value is greater than 1.7122 × E(X) will be
rejected and replaced by E(X).

That is, based on (2), (3), (12), and (18):

μA(xmax, σ ) = 0.2, → PR(xmax) = 0.9,

→ exp

(
− xmax

2

2σ 2

)
= 0.1, →

xmax
2

σ 2
≈ 4.605, → xmax

2

(E(X))2
≈ 2.9317,

→ Tg = xmax

E(X)
≈ 1.7122.

III. RESULTS AND DISCUSSIONS

From Section II, we know that the defuzzification
transforms the fuzzy data into the crisp Rayleigh
reverberation data using the α−cut method. How do we
assign the α value and will the changes of the α value
influence the performance of FSN-CFAR detection? Fig. 6
shows the estimated background level of the FSN-CFAR
with α = 0.2, 0.02, 0.002, 0.0002, 0.00002,
respectively. The parameter v of the simulated
K-distribution data is 1.5. The number of the reference
cells of the FSN-CFAR is 2 × 32, that is, N = 64. From
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Fig. 7. Conventional detectors of OS-CFAR, CA-CFAR, GO-CFAR
and SO-CFAR.

Fig. 8. Simulated target signal.

Fig. 6, we can see that the changes of the α value have
little influence on the background level estimation of the
FSN-CFAR detector in that the outliers are replaced by the
average of the normalized reference cells.

To illustrate the detection performance of the
FSN-CFAR detector in a non-Rayleigh background, we
compared its probability of detection (pd) to conventional
detectors using the Monte-Carlo simulation method. All of
the different signal-to-noise ratio (SNR) target signals and
the K-distribution background data with different shape
parameters were obtained through simulation. The
conventional detectors are CA-CFAR, GO-CFAR,
SO-CFAR, and OS-CFAR, which are displayed in Fig. 7.
The α value of the FSN-CFAR detector is 0.2, that is,
Ts = 0.3663 and Tb = 1.7122. Here, we call OS-CFAR
OSM-CFAR when the background level Z is taken to be
equal to the median of the reference cells values, we and
call OS-CFAR OSTQ-CFAR when Z = x(i) and the
rank-ordered index i is taken to be equal to three-quarters
of N . All the conventional detectors and the proposed
FSN-CFAR detector have the same reference window size
and guard window size. In view of the high resolution of
the modern sonar or radar data, here the lengths of the
reference window, the guard window, and the simulated
signal are 2 × 64, 2 × 32, and 9, respectively. The
simulated target signal is attained by a sinc function and is
shown in Fig. 8.

For the conventional detectors, the non-Rayleigh
distribution parameters of the background data are not
changed before the detection threshold is achieved. Thus,
if we assume that the non-Rayleigh background data are K
distributed and the shape parameters of the K distribution
are the same, the detection performances of the
conventional detectors can be compared under the same
conditions by simulation method. For the proposed
FSN-CFAR detector, the statistical normalization changes
the K-distribution shape parameter of the background data,
and the normalized background data may not follow K
distribution completely. Furthermore, even the normalized
data follow K distribution, and it is difficult to ensure every
group normalized data have the same shape parameter and
to estimate the K-distribution shape parameter precisely in
the Monte-Carlo simulation trials; all these will influence
the simulation results in the FSN-CFAR detection. For the
previously mentioned reasons, there are two assumptions
in the Monte-Carlo simulation trials in this paper: the first
assumption is that the non-Rayleigh background data are
K distributed and the shape parameter v of the K
distribution is known; and the second is that after the
fuzzy statistical normalization, the K-distribution shape
parameter of the normalized background data is not
changed. Based on the second assumption, the FSN-CFAR
need not estimate the K-distribution shape parameter with
the normalized background data, for the shape parameter
of the normalized background data is not changed.

Based on the two assumptions, the statistical simulated
results of pd and pf of the conventional detectors and the
proposed FSN-CFAR detector are obtained under the
same conditions.

Fig. 9 depicts the false-alarm rate of the FSN-CFAR,
CA-CFAR, SO-CFAR, GO-CFAR, OSM-CFAR, and
OSTQ-CFAR detectors versus threshold parameter T ,
with N = 2 × 64, for the K-distribution shape parameter:
Fig. 9a: v = 5.0; Fig. 9b: v = 3.5; Fig. 9c: v = 1.5; and
Fig. 9d: v = 0.5. All the results of Fig. 9 were acquired
using Monte-Carlo simulation with 200 000 independent
trials. It can be observed that the larger K-distribution
shape parameter v is, the smaller the threshold parameter
T required to reach a given pf is. Based on Fig. 9, the
threshold parameter T for a given pf for the FSN-CFAR,
CA-CFAR, SO-CFAR, GO-CFAR, OSM-CFAR, and
OSTQ-CFAR detectors in the K-distribution background
with shape parameter v = 5.0, 3.5, 1.5, 0.5 can be
attained.

To evaluate the detection performance of the
FSN-CFAR detector under K-distribution background,
several computer simulations have been conducted.
Multiple target situations and the case in which a clutter
edge is present in the reference widow are considered. All
the detection simulation results are obtained by the Monte
Carlo method, with 105 independent trials with the design
pf = 10−3 and the window size N = 2 × 64.

In Figs. 10–12, the performances of the FSN-CFAR
detector are compared with the CA-CFAR, GO-CFAR,
SO-CFAR, and OS-CFAR detectors by using the plotted
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Fig. 9. Pf of different CFAR detectors versus threshold parameter T , for shape parameter: (a) v = 5.0; (b) v = 3.5; (c) v = 1.5; (d) v = 0.5.

Fig. 10. Pd against SNR of FSN-CFAR, CA-CFAR,GO-CFAR,SO-CFAR and OS-CFAR detectors in homogeneous K distribution background, for
shape parameter: (a) v = 5.0; (b) v = 3.5; (c) v = 1.5; (d) v = 0.5, N = 2 × 64, design pf = 10−3.
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Fig. 11. Pd against SNR of FSN-CFAR, CA-CFAR,GO-CFAR,SO-CFAR and OS-CFAR detectors in K-distribution background with one interfering
target in leading reference window with INR = SNR, for shape parameter: (a) v = 5.0; (b) v = 3.5; (c) v = 1.5; (d) v = 0.5; N = 2 × 64, design

pf = 10−3, INR = SNR.

Fig. 12. Pd against SNR of FSN-CFAR, CA-CFAR,GO-CFAR,SO-CFAR and OS-CFAR detectors in K-distribution background with one interfering
target in leading reference window and one in lagging reference window with INR = SNR, for shape parameter: (a) v = 5.0; (b) v = 3.5;

(c) v = 1.5; (d) v = 0.5, N = 2 × 64, design pf = 10−3.
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Fig. 13. Power transition of simulated reference window.

pd as a function of SNR curves. Fig. 10 depicts the pd
against the SNR of FSN-CFAR, CA-CFAR, GO-CFAR,
SO-CFAR, and OS-CFAR detectors in a homogeneous
K-distribution background, for shape parameter: Fig. 10a:
v = 5.0; Fig. 10b: v = 3.5; Fig 10c: v = 1.5; and
Fig. 10d: v = 0.5. Fig. 11 depicts the pd against the SNR
in K-distribution background with one interfering target in
the leading reference window with INR = SNR, for
shape parameter: Fig. 11a: v = 5.0; Fig. 11b: v = 3.5;
Fig. 11c: v = 1.5; and Fig. 11d: v = 0.5, with the
interfering target-to-noise ratio (INR). Fig. 12. depicts Pd
against the SNR in K-distribution background with one
interfering target in the leading reference window and one
interfering target in the lagging reference window with

INR = SNR, for shape parameter Fig. 12a: v = 5.0;
Fig. 12b: v = 3.5; Fig. 12c: v = 1.5; and Fig. 12d:
v = 0.5.

Fig. 10 shows that the CA-CFAR detector has the best
performance when the background is homogenous, while
the detection performances of the OS-CFAR detectors are
poor. From Figs. 11 and 12, we can see that the
performances of the GO-CFAR, SO-CFAR, and
CA-CFAR detectors are poor when both the leading
reference window and the lagging reference window have
one or more interfering targets. The detection performance
of the FSN-CFAR is robust or moderate compared with
the other CFAR detectors. However, all the results are
obtained under the assumption that after the fuzzy
statistical normalization, and the K-distribution shape
parameter of the normalized background data is not
changed. In fact, after the fuzzy statistical normalization,
the extended upper tail data are attenuated, and the shape
parameter should become larger. From Figs. 10–12, we
can see that for all the detectors, the larger K-distribution
shape parameter of the background data, the better
detection performance of the CFAR detector is. Thus, we
can believe that if we estimate the K-distribution shape
parameter with the normalized background data in the
proposed FSN-CFAR detector, the shape parameter should
become larger, and the detection performance may be
better than the simulation results in this paper, especially
in the condition of the K-distribution shape parameter
being smaller.

The effects of clutter edges on the false-alarm
performances of the FSN-CFAR, CA-CFAR, SO-CFAR,
GO-CFAR, OSM-CFAR, and OSTQ-CFAR detectors are
analyzed using the Monte Carlo method with 106

Fig. 14. Pf comparison of FSN-CFAR, CA-CFAR, GO-CFAR, SO-CFAR and OS-CFAR detectors in clutter edge (15-dB CNR) environment, for
shape parameter: (a) v = 5.0; (b) v = 3.5; (c) v = 1.5; (d) v = 0.5, N = 2 × 64, design pf = 10−3.
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Fig. 15. Pf comparison of FSN-CFAR, CA-CFAR, GO-CFAR, SO-CFAR and OS-CFAR detectors in clutter edge (10 dB CNR) environment, for
shape parameter: (a) v = 5.0; (b) v = 3.5; (c) v = 1.5; (d) v = 0.5; N = 2 × 64, design pf = 10−3.

Fig. 16. Pf comparison of FSN-CFAR, CA-CFAR, GO-CFAR, SO-CFAR and OS-CFAR detectors in clutter edge (5-dB CNR) environment, for
shape parameter: (a) v = 5.0; (b) v = 3.5; (c) v = 1.5; (d) v = 0.5; N = 2 × 64, design pf = 10−3.

independent trials, with the design pf = 10−3, the
reference window size N = 2 × 64, and the threshold
T hedge = 1.9.

Fig. 13 shows the power transition of the simulated
reference window: the left reference cells of the clutter
edge position are clutter, and the right reference cells are
noise.

The pf in a clutter edge environment for the CFAR
detectors is shown in Figs. 14–16, where the

clutter-to-noise ratio (CNR) is, respectively, 15 dB, 10 dB,
and 5 dB, and Figs. 14–16 illustrate the curves of pf versus
clutter edge position. If the position of the clutter edge in
the reference window is smaller than 64, then the real pf
will be lower than the design pf, so Figs. 14–16 only show
the curves of pf when the clutter edge position is greater
than 64.

Figs. 14–16 show that the pf of SO-CFAR,
OSM-CFAR, CA-CFAR, and OSTQ-CFAR deviates from
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the design pf abruptly when the clutter edge is located
around the CUT. GO-CFAR always outperforms the other
CFAR detectors, and FSN-CFAR outperforms the
GO-CFAR when the clutter edge is located around the
CUT and 20 log10(T hedge) < CNR.

IV. CONCLUSION AND FUTURE WORK

In this paper, a robust FSN-CFAR detector, based on
fuzzy statistical normalization is proposed. We have
compared the performance of the proposed FSN-CFAR
detector with the conventional CFAR detectors, such as
CA-CFAR, GO-CFAR, SO-CFAR, and OS-CFAR in
nonhomogeneous environment and non-Rayleigh
background. Simulation results show that the
performances of SO-CFAR and OSM-CFAR detectors are
poor in the case of a clutter edge. GO-CFAR offers good
performance in a clutter edge environment, but its
detection performance is poor in multiple target situations.
The performance of CA-CFAR is the best in homogeneous
background, but FSN-CFAR outperforms CA-CFAR in
nonhomogeneous background and offers low CFAR loss in
homogeneous background. Compared with OSTQ-CFAR,
the superiority of FSN-CFAR is perceptible: OSTQ-CFAR
offers higher CFAR loss in homogeneous background and
higher pf in clutter edge environments and is very time
consuming when the number of reference cells is large.
The proposed FSN-CFAR may be a robust CFAR detector
for non-Rayleigh radar or sonar data both in
nonhomogeneous and homogeneous environments.

The detectors are compared on the basis that the clutter
is K distributed with a known shape parameter in this
paper. Although in reality, the true clutter distribution is
unknown, and the shape parameter of the K distribution
must be estimated from the data. It is difficult to get
accurate estimates from small samples as required for a
practical CFAR detector. This could have an impact on the
performance of the proposed detector. We defer detailed
consideration and simulation of this important issue in
future work.
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