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a b s t r a c t

In this paper we deal with the problem of detecting a multi-channel signal of range-
spread target in the presence of Gaussian disturbance with an unknown covariance
matrix. In particular, we consider the so-called partially homogeneous environment,
where the disturbances in both the cells under test (primary data) and the training
samples (secondary data) share the same covariance matrix up to an unknown power
scaling factor. To this end, we first model the disturbance as a multichannel autoregressive
(AR) process, and then develop an adaptive detector resorting to the Rao test. Remarkably,
the proposed detector attains asymptotically a constant false alarm rate (CFAR) indepen-
dent of the disturbance covariance matrix as well as the power scaling factor. The
performance assessment conducted by Monte Carlo simulation highlights that the new
receiver significantly outperforms their traditional covariance matrix-based counterparts
both in AR and non-AR modeled disturbance backgrounds. Meanwhile, it requires less
secondary data and is computationally more efficient.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Multichannel adaptive detection of point-like targets
embedded in Gaussian disturbance is an issue that has
gained increasing attention among radar engineers during
the last few decades. For this problem a uniformly most
powerful (UMP) test does not exist due to the fact that the
Neyman–Pearson likelihood ratio detector requires perfect
knowledge of the disturbance covariance matrix as well as
the target amplitude and phase. As a result a variety of
different solutions have been explored in open literature
under various settings. In particular, resorting to the
generalized likelihood ratio test (GLRT), Kelly derived a
constant false alarm rate (CFAR) test for detecting signals
known up to a scaling factor [1], and Robey, et al. derived
another CFAR test called the adaptive matched filter
Chinese Academy of
7706.
(AMF), based upon the so-called two-step GLRT-based
design procedure [2]. Other recent solutions can be found
in [3–8] and references therein. More recently, in [9–17]
the aforementioned design criteria have been applied to
distributed targets buried in Gaussian disturbance with an
unknown covariance matrix. It naturally arises when
considering detection with high-resolution radars capable
of resolving a target into a number of scattering centres
appearing in different range cells [18].

However, all above detectors usually involve estimating
and inverting a large-size space–time covariance matrix
of the disturbance signal using target-free secondary data.
As a consequence, they require a large number of secondary
signals and excessive computation power, especially when
the joint space–time dimension is large. A possible means
to reduce the computational and secondary requirement is
to model the disturbance as a multichannel autoregressive
(AR) process, considering the fact that the multichannel AR
process is not only effective to model real-world airborne
radar clutter for STAP detection [19], but also versatile
in capturing the temporal and the spatial correlation of
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disturbance signals in radar and array processing applica-
tions [20,21]. The classic parametric adaptive detectors
include the parametric AMF (P-AMF) [19,22], parametric
Rao test (P-RAO) [23], and parametric GLRT (P-GLRT)
[24,25]. Moreover, in [26], the P-RAO is generalized to
address the problem of detecting a multi-channel signal of
range-spread targets. It should be noted that these solu-
tions assume a homogeneous environment, wherein the
secondary data, which are free of signal, share the same
covariance matrix of the disturbance in the sample under
test (primary data).

More recently, in [27], adaptive parametric detection of
point-like targets in partially homogeneous environment
has been addressed, where two parametric Rao tests,
known as the Normalized Parametric Rao Test (NP-RAO)
and the Scale-Invariant Parametric Rao Test (SI-PRAO),
have been devised. The partially homogeneous environ-
ment is a scenario where the primary data share the same
covariance matrix with the secondary data up to an
unknown power scaling factor under the null hypothesis.
This scenario is motivated by the following observation
that the under testing cells and the secondary range cells
are separated by a band of guarding cells, and this may
lead to a power difference between the testing and
training signals, especially when primary cells are range
spread. Detection of distributed targets in partially homo-
geneous environment, based upon the GLRT, has been
addressed in [9]. Moreover, in [28] the same problem is
attacked, where two adaptive detectors are devised relying
on the Rao test and the Wald test design criteria as
alternatives to the GLRT. To the best of our knowledge,
however, the problem of adaptive parametric detection of
distributed targets in partially homogeneous environment
has not been considered, which is another motivation of
this work.

In this paper we focus on the design of adaptive radar
detector for distributed targets by modelling the distur-
bance as a multi-channel AR process in partially homo-
geneous environment. To this end, we apply the Rao test
design criterion, which is easier to derive and implement
than the GLRT, and is also asymptotically equivalent to the
latter. The proposed Rao test is referred to as the general-
ized scale-invariant parametric Rao (GSI-PRAO). The asymp-
totical distribution of the proposed detector is derived in
the closed form. It is shown that the GSI-PRAO is asympto-
tically independent of the unknown parameters in the null
hypothesis, which results in the property of CFAR. The
performance assessment, conducted by Monte Carlo simu-
lation, shows the superiority of the GSI-PRAO with respect
to traditional covariance matrix-based counterparts, such as
the GLRT and GASD detectors [9].

The remainder of the paper is organized as follows.
Section 2 contains problem formulation while Section 3
is devoted to detector designs. Section 4 contains some
illustrative examples. Finally, concluding remarks and
hints for future research are given in Section 5.

2. Problem formulation

We begin with the problem of detecting a known J
channel signal of unknown amplitude in a spatially and
temporally colored disturbance. Moreover the target is
contained in H range cells enclosed with K secondary
range cells where no target is supposed in. The detection
problem at hand can be formulated as the following binary
hypothesis test:

H0: rh ¼ dh;

H1: rh ¼ αhaþdh:
h¼ 1;2;…;H

(
ð1Þ

with
�
 rh ¼ ½rThð0Þ; rThð1Þ;…; rThðN�1Þ�T ACJN�1 denotes the test-
ing signal;
�
 a¼ ½aT ð0Þ;aT ð1Þ;…;aT ðN�1Þ�T ACJN�1 denotes the nominal
space–time steering vector;
�
 dh ¼ ½dT
hð0Þ;dT

hð1Þ;…;dT
hðN�1Þ�T ACJN�1 denotes the mutually

independent and identical distributed complex Gaus-
sian random vector accounting for jammer, clutter and
thermal noise;
and αh denotes the unknown deterministic reflection
factor accounting for both target reflectivity and channel
effects. Usually only observing the testing signal is not
sufficient for an effective estimation and detection. So it is
practical to obtain the secondary data from the range cells
adjacent to the primary ones, and the secondary data can
be described as

rk ¼ dk; k¼ 1;2;…;K ð2Þ

Note that in some cases the secondary range cells may be
limited or even unavailable. So it is necessary to consider
the situation when K is small.

In the partially homogeneous environment, the distri-
bution of the disturbance signals fdhgHh ¼ 1 and fdkgKk ¼ 1 can
be described as a zero mean complex Gaussian random
process with covariance R and λR, namely dh � CNð0;RÞ
and dk � CNð0; λRÞ, respectively. As mentioned earlier λ is
the unknown power scaling factor. If λ¼ 1, the partially
homogeneous environment reduces to the homogeneous
case. To model the disturbance as a J-channel AR(P)
process with order P, we follow the assumption adopted
by most model based detectors, see [19,30] and reference
therein for proofs and analysis

diðnÞ ¼ � ∑
P

p ¼ 1
AHðpÞdiðn�pÞþϵiðnÞ ð3Þ

where fAðpÞgPp ¼ 1 are the unknown J� J AR coefficient
matrices, ϵiðnÞ are the driving J-channel spatial noise
vectors, which are temporally white but spatially colored
Gaussian noise, namely ϵi � CNð0;Q Þi¼ 1;…;H, and
ϵi � CNð0; λQ Þi¼ 1þH;…;HþK , where Q denotes the
unknown J� J spacial covariance matrix, λ is the same as
the one scaling the time–space covariance matrix R. Note
that the AR coefficient matrices are identical across all
range cells, but the scaling factor differs from the second-
ary data, hence the environment is partially homogeneous
only with respect to the spatial domain. This is reasonable
since the testing and secondary data are all obtained
during the same coherent pulses interval and the distur-
bance is supposed to be wide sense stationary.
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3. Parametric Rao test

The problem of interest is to develop a parametric test
based on the unknown nuisance parameters AðpÞ;Q ; λ and
αh. Since there is no closed form solution [26] of a GLRT for
the above range-spread target detection, we turn to the
Rao test which is asymptotically the same as GLRT. The Rao
test [29] for the problem of interest follows as

∂ ln f ðrjθÞ
∂θr

T
θ ¼ θ̂0

½J �1ðθ̂0Þ�θr ;θr
∂ ln f ðrjθÞ

∂θr
θ ¼ θ̂0

������� ð4Þ

where
�
 θ¼ ½θT
r ;θ

T
s �T contains all unknown parameters;
�
 θ̂0 is the maximum likelihood (ML) estimation of θ
under H0 hypothesis;
�
 θr ¼ ½αT
R;α

T
I �AR2H�1 is the primary parameter;

2
�
 θs ¼ ½λ;aR;aI ;qR;qI �T ARðð2Pþ1ÞJ þ1Þ�1 is the nuisance
parameter vector, with aR and aI being the real and
the imaginary part of vecðAHÞ, qR are the diagonal
elements and the elements below the diagonal in Q ,
while qI is the imaginary part of the elements below
the diagonal;
�
 αR and αI denote the real and the imaginary part of
α¼ ½α1;…;αH �T ;
�
 J�1ðθ̂0Þ is the inverse of the Fisher information matrix
(FIM) at the ML estimate of θ under H0, and the FIM can
be further partitioned as

JðθÞ ¼
Jθr ;θr ðθÞ Jθr ;θs

ðθÞ
Jθs ;θr ðθÞ Jθs ;θs ðθÞ

" #
ð5Þ

To derive the Rao test we need to get the ML estimation
of the parameters under H0 at first. The joint probability
function (pdf) of the receiving data f ðrjθÞ, conditioned on
the first P elements, can be expressed as (see Appendix A
for derivation)

f ðrjθÞ ¼ λ� JK=ðKþHÞ

πJjQ j expf�trðQ �1TðθÞÞg
" #ðHþKÞðN�PÞ

; ð6Þ

where trð�Þ denotes the matrix trace operator, and

HþKð Þ N�Pð ÞT θ
� �¼ ∑

H

h ¼ 1
∑

N�1

n ¼ P
ϵh nð ÞϵHh nð Þþ1

λ
∑
K

k ¼ 1
∑

N�1

n ¼ P
ϵk nð ÞϵHk nð Þ:

ð7Þ
In (7), ϵhðnÞ; h¼ 1;…;H are the temporally whitened
testing signals

ϵhðnÞ ¼ ~rhðnÞ�αh ~aðnÞ

¼ rhðnÞþ ∑
P

p ¼ 1
AHðpÞrhðn�pÞ

" #

�αh aðnÞþ ∑
P

p ¼ 1
AHðpÞaðn�pÞ

" #
; ð8Þ

and ϵkðnÞ; k¼ 1;…;K denote the temporally whitened
training signals

ϵkðnÞ ¼ rkðnÞþ ∑
P

p ¼ 1
AHðpÞrkðn�pÞ: ð9Þ
Note that α¼ 0 results in the pdf under H0, and take the
derivative of log-likelihood function ln f ðrjθÞjα ¼ 0, with
respect to (w.r.t.) Q , and equate it to zero, we can get the
estimation of Q

Q̂ λ;A
� �¼ 1

ðHþKÞðN�PÞ ∑
H

h ¼ 1
∑

N�1

n ¼ P
ϵh nð ÞϵHh nð Þþ1

λ
∑
K

k ¼ 1
∑

N�1

n ¼ P
ϵk nð ÞϵHk nð Þ:

ð10Þ
Note that Tðλ;AÞjα ¼ 0 is the ML estimation of Q̂ , and
Tðλ;AÞjα ¼ 0 can be rewritten as

ðHþKÞðN�PÞTðλ;AÞjα ¼ 0 ¼ R̂rrðλÞþAHR̂trðλÞþ R̂
H
trðλÞAþAHR̂

H
ttðλÞA
ð11Þ

where AH ¼ ½AHð1Þ;…;AHðPÞ�, and the correlation matrices
are defined as

R̂rr λ
� �¼ ∑

N�1

n ¼ P
∑
H

h ¼ 1
rh nð ÞrHh nð Þþ1

λ
∑
K

k ¼ 1
rk nð ÞrHk nð Þ

" #
ð12Þ

R̂tr λ
� �¼ ∑

N�1

n ¼ P
∑
H

h ¼ 1
th nð ÞrHh nð Þþ1

λ
∑
K

k ¼ 1
tk nð ÞrHk nð Þ

" #
ð13Þ

R̂tt λ
� �¼ ∑

N�1

n ¼ P
∑
H

h ¼ 1
th nð ÞtHh nð Þþ1

λ
∑
K

k ¼ 1
tk nð ÞtHk nð Þ

" #
ð14Þ

with ti ¼ ½rTi ðn�1Þ;…; rTi ðn�PÞ�T ACJP�1, i¼ h or k. Taking
the derivative of (11) w.r.t. A and equating it to zero, we get
the ML estimation of AH , which is

Â
H
λ ¼ � R̂

H
trðλÞR̂

�1
tt ðλÞ ð15Þ

put (15) into (11) we have

Q̂ML ¼
R̂rrðλ̂Þþ Â

H
λ̂ R̂trðλ̂Þ

ðHþKÞðN�PÞ ð16Þ

where λ̂ is the solution of the following equation (see
Appendix B for details):

JK
HþK

� ∑
JðPþ1Þ

i ¼ 1

1
1þλτi

þ ∑
JP

i ¼ 1

1
1þλγi

¼ 0 ð17Þ

where fτigJðPþ1Þ
i ¼ 1 and fγigJPi ¼ 1 are the eigenvalues of the

matrices R̂
�1=2
K R̂HR̂

�1=2
K and R̂

�1=2
K;t R̂H;tR̂

�1=2
K;t , respectively,

with

R̂H ¼
∑H

h ¼ 1∑
N�1
n ¼ PthðnÞtHh ðnÞ ∑H

h ¼ 1∑
N�1
n ¼ PthðnÞrHh ðnÞ

∑H
h ¼ 1∑

N�1
n ¼ PrhðnÞtHh ðnÞ ∑H

h ¼ 1∑
N�1
n ¼ PrhðnÞrHh ðnÞ

" #

ð18Þ

R̂K ¼
∑K

k ¼ 1∑
N�1
n ¼ PtkðnÞtHk ðnÞ ∑K

k ¼ 1∑
N�1
n ¼ PtkðnÞrHk ðnÞ

∑K
k ¼ 1∑

N�1
n ¼ PrkðnÞtHk ðnÞ ∑K

k ¼ 1∑
N�1
n ¼ PrkðnÞrHk ðnÞ

" #

ð19Þ

R̂H;t ¼ ∑
H

h ¼ 1
∑

N�1

n ¼ P
thðnÞtHh ðnÞ ð20Þ

R̂K;t ¼ ∑
K

k ¼ 1
∑

N�1

n ¼ P
tkðnÞtHk ðnÞ ð21Þ
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3.1. FIM and first-order derivatives of the log likelihood
function

In this subsection, the FIM and formulas related to it are
derived. Note that the vectors θr and θs have no parameter
in common. This result in Jθs ;θr ðθÞ ¼ 0 and Jθr ;θs

ðθÞ ¼ 0.
So we have

½J�1ðθÞ�θr ;θr
¼ J�1

θr ;θr
ðθÞ ð22Þ

The hth element of the first-order partial derivative of
the log likelihood function of f ðrjθÞ w.r.t θr is

∂ ln f ðrjθÞ
∂ θr

� �
h
¼

∂ ln f ðrjθÞ
∂ αR

∂ ln f ðrjθÞ
∂ αI

2
6664

3
7775
h

ð23Þ

in particular

∂ ln f ðrjθÞ
∂ αR

� �
h
¼ ∑

N�1

n ¼ P
Re ~aH nð ÞQ �1 ~rh nð Þ
h i

ð24Þ

∂ ln f ðrjθÞ
∂ αI

� �
h
¼ ∑

N�1

n ¼ P
Im ~aH nð ÞQ �1 ~rh nð Þ
h i

ð25Þ

where ½��h denotes the hth element of a vector, the
temporal whitened steering vector ~aðnÞ and the temporal
whitened testing signal ~rhðnÞ can be obtained by replacing
the AR coefficient in (8) with its ML estimation. The
second-order partial derivatives are

∂2ln f ðrjθÞ
∂fαRgi∂fαRgh

¼ �δ i�hð Þ2 ∑
N�1

n ¼ P

~aH nð ÞQ �1 ~a nð Þ ð26Þ

∂2ln f ðrjθÞ
∂fαIgi∂fαIgh

¼ �δ i�hð Þ2 ∑
N�1

n ¼ P

~aH nð ÞQ �1 ~a nð Þ ð27Þ

∂2ln f ðrjθÞ
∂fαRgi∂fαIgh

¼ ∂2ln f ðrjθÞ
∂fαIgi∂fαRgh

¼ 0 ð28Þ

where δðlÞ is the Kronecker delta function. Plugging (26)–(28)
into (22) results in

½J�1ðθ0Þ�θr ;θr ¼
1

2∑N�1
n ¼ P

~aHðnÞQ̂ �1
ML ~aðnÞ

I2H ð29Þ

where I2H denotes the identity matrix with 2H diagonal
elements. Putting (24), (25) and (29) back into (4) we get the
GSI-PRAO as follows:

TGSI�PRAO9
2∑H

h ¼ 1j∑N�1
n ¼ P

~aHðnÞQ̂ �1
ML ~rhðnÞj2

∑N�1
n ¼ P

~aHðnÞQ̂ �1
ML ~aðnÞ

≷
H1

H0

η; ð30Þ

where η is a proper threshold to be set.

3.2. Asymptotic performance

According to [29], the GSI-PRAO has the same asymp-
totic distribution with the GLRT when N-1. So we have

TGSI�PRAO �a
χ2
2H H0

χ 02
2HðξÞ H1

(
ð31Þ

where χ2
2H is the central Chi-squared distribution with 2H

degrees of freedom, and χ 02
2HðξÞ is the non-central

Chi-squared distribution with 2H degrees of freedom and
a non-central parameter ξ

ξ¼ ðθr�θ0rÞT ð½J�1ðθÞ�θr ;θr Þ�1ðθr�θ0rÞ

¼ 2 ∑
H

h ¼ 1
jαhj2 ∑

N�1

n ¼ P

~aHðnÞQ �1 ~aðnÞ ð32Þ

where θ0r ¼ 0AR2H�1 is the primary parameter under H0

and ~a is generated by using the true AR coefficient matrix
A (in Section 4 we generate the simulation data with a give
AR coefficient matrix). For a given asymptotic test thresh-
old η, the asymptotic probability of false alarm can be
denoted as

Pfa ¼
Z þ1

η
f χ22H xð Þ dx¼

Z þ1

η

1

2HΓðHÞ
xH�1e� x=2 dx ð33Þ

where f χ22H ðxÞ is the pdf of χ2
2H , and Γð�Þ is the gamma

function. According to (33) the probability of false alarm is
only related to H and the chosen threshold. This implies
the GSI-PRAO test is asymptotically constant false alarm
rate (CFAR). Furthermore, the asymptotic detection prob-
ability is expressed as

Pd ¼
Z þ1

η
f χ 02

2H
xð Þ dx

¼
Z þ1

η

1
2

x
ξ

� �ðH�1Þ=2
exp �ξþx

2

� �
IH�1

ffiffiffiffiffi
ξx

q� �
dx ð34Þ

where f χ 022H ðxÞ is the pdf of χ 02
2H , and IH�1ð�Þ is the modified

Bessel function of the first kind with the ðH�1Þth order.

4. Performance assessment

Before representing the simulation results, we give
some necessary definitions first. The disturbance signal is
generated as a second-order multichannel AR process,
except for the “Model-mismatched case” subsection. The
AR(2) coefficient matrices A and spatial covariance matrix
Q are generated from a given space–time covariance
matrix RACJN�JN which is previously generated using the
method in [31]. The space–time steering vector is given by

a¼ atðf dÞ � asðf sÞ ð35Þ
where atðf dÞ is the N�1 temporal steering vector with fd
the normalized Doppler frequency

at ¼
1ffiffiffiffi
N

p ½1; ejf d ;…; ejðN�1Þf d �T ð36Þ

and asðf sÞ is the J � 1 temporal steering vector with fs the
normalized spatial frequency

as ¼
1ffiffi
J

p ½1; ejf s ;…; ejðN�1Þf s �T : ð37Þ

The signal to noise ratio (SNR) is defined as

SNR¼ ∑
H

h ¼ 1

jαhj2
H

aHR�1a: ð38Þ

In the numerical simulations two detectors which are
derived in [9] to handle the similar detection problem
are included. It is interesting to see if our detectors are
more competitive in different cases, especially in the
limited secondary data case. For easy reference, we rewrite
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Fig. 1. Probability of detection vs. SNR for different numbers of pulses
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the two detectors below

TGLRT ¼
λ̂
JK=ðKþHÞ
0 jZ0þ λ̂

�1

0 Sj
λ̂
JK=ðKþHÞ
1 jZ0þ λ̂

�1

1 Sj
ð39Þ

where

Z0 ¼ ∑
H

h ¼ 1
rhrHh ;

Z1 ¼ ∑
H

h ¼ 1
rh�

aHS�1rh
aHS�1a

a

 !
rh�

aHS�1rh
aHS�1a

a

 !H

and S ¼ ∑
K

k ¼ 1
rkrHk :

The scaling factors λ0 and λ1 are estimated using the
following equation:

∑
bj

i ¼ 1

γi;jλj
γi;jλjþ1

¼ JNH
KþH

; j¼ 0;1 ð40Þ

where b0 ¼minðH; JNÞ, γi;0 denotes the nonzero eigenvalue
of the matrix S�1=2Z0S

�1=2 under H0, b1 ¼minðH; JN�1Þ
and γi;1 denotes the nonzero eigenvalue of the matrix
S�1=2Z1S

�1=2 under H1

TGASD ¼ ∑
H

h ¼ 1

jaHS�1rhj2
aHS�1a∑H

i ¼ 1r
H
h S

�1rh
ð41Þ

The following simulation results are obtained for var-
ious values of K, N, λ and multiple dominant scatterer
(MDS) models when J¼4, P¼2, H¼8 and a constant false
alarm Pfa ¼ 10�2. In particular, we make five distinct
comparisons: (1) the limited secondary data case. In this
case, we restrict K¼1 (the minimum value) to ensure an
effective estimation of λ, and evaluate the detection
performance in different values of the number of sampling
pulses; (2) the asymptotic case. We evaluate the asympto-
tic performance by increasing the secondary data; (3) the
scaling invariant case. In this case different power scaling
factors are set to evaluate the CFAR property of the GSI-
PRAO in comparison with the other two detectors; (4)
the model mismatched case. We evaluate the GSI-PRAO's
performance when the AR-model order is not accurate or
the disturbance is not an AR process; (5) the MDS models
case. We utilize the different MDS models defined in
Table 1 to evaluate the influence of those models. In above
each case, the asymptotic curve (34) obtained by using the
true AR coefficients A and Q is also included to serve as a
benchmark.

4.1. Limited-training case

In this case, the simulation is carried out under Model0.
Figs. 1 and 2 show the probability of detection (Pd) versus SNR
for J¼4, N¼16, and λ¼ 4. Moreover, for the GSI-PRAO, we set
Table 1
MDS models.

Model Range cell

number 1 2 3 4 5 6 7 8

Model0 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
Model1 1/12 1/12 1/12 5/12 1/12 1/12 1/12 1/12
model2 1 0 0 0 0 0 0 0
K¼1, and consider two other cases of N, i.e., N¼32 and N¼64.
For the GLRT and GASD, we set K¼128 in order to make sure
that the sample covariance matrix is non-singular.

It is clear that the GSI-PRAO performs much better than
the GLRT and GASD in this limited-training case. What's more,
the larger the number of sampling pulses is, the closer the
simulation curves approach to the asymptotic one.

4.2. Asymptotic case and the scaling invariant property

Firstly, we evaluate the detection performance with
limited sampling pulses. Figs. 3 and 4 show Pd versus SNR
when λ¼ 4 and λ¼ 8, respectively. Both figures show that
the Pd curves of the GSI-PRAO approach its asymptotic
performance as K increases. This property is similar to the



−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

P

GSI−PRAO−K=64
GSI−PRAO−K=16
GSI−PRAO−K=8
GSI−PRAO−K=1
GSI−PRao−Asy
GLRT−K=128
GASD−K=128
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scenario when N increases, and implies that the para-
metric method overcomes the lack of secondary data by
adopting more sampling pulses. Meanwhile, the GSI-PRAO
with different values of K outperforms the GLRT and GASD
with K¼128.

Furthermore, in Fig. 5 we evaluate the detection per-
formance for several values of λ. Note that when λ¼ 1, the
partially homogeneous environment turns to be a ideally
homogeneous environment, where the GSI-PRAO is
expected to perform no worse than the partially homo-
geneous environment. Indeed, the figure shows that all Pd
curves of the considered three detectors converge to a
potential common center. This result implies that all three
detectors have the CFAR property w.r.t. λ.
4.3. Model mismatched case

The above simulation results are based on two assump-
tions, i.e., the model order is known, and the disturbance is
exactly a multichannel AR process. In this subsection, we
evaluate the detection performance of the GSI-PRAO when
these assumptions are not met. Firstly, we evaluate the
proposed method under the assumption that the distur-
bance is an AR process but the order is incorrect. Fig. 6
depicts the detection performance of the GSI-PRAO when
the model order is underestimated and overestimated,
wherein the true AR model order is 2. As it can be seen,
the performances of the GSI-PRAO have some but not
significant degradation when the model order is under-
estimated or overestimated. It also shows that the bigger
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the order differs from the true one, the more degradation
the GSI-PRAO has. Secondly, we consider that the distur-
bance is not a precisely AR process. Specifically, we assume
that the disturbance is a spatially colored but temporally
white Gaussian random vector with the spatial–temporal
covariance matrix given by [21]

R¼ σ2Rs � It ; ð42Þ
where � denotes the Kronecker product, σ2 is the signal to
disturbance ratio, the (i,j)th element of Rs is ρ

ji� jj
s and It is

a N�N identity matrix. In Fig. 7 we compare the GSI-PRAO
with the GLRT and GASD assuming that J¼4, N¼32,
ρs ¼ 0:9, K¼2 for the GSI-PRAO, K¼256 for the GLRT and
GASD, and two values of λ. It shows that the GSI-PRAO
performs better when the model order is lower. It is
reasonable, since the random process is temporally white,
which is suitable for a low AR-model order to approximate
the spectrum. However, even when P¼3 the GSI-PRAO
performs better than the GLRT and GASD, which is in
accordance with that observed on that AR disturbance
model. Interestingly, it also shows that the new receiver
still keeps the scaling invariant property.

4.4. MDS models

The aforementioned simulation examples are carried
out for detecting a target with uniformly distributed
energy, which is Model0 defined in Table 1. In this case,
we consider two more different MDS models, termed as
Model1 and Model2. Precisely, Model1 represents the case
that only one range cell has the strongest scattering energy
and the others have uniformly distributed lower scattering
energy, while Model2 corresponds to the unresolved
point-like target, which is also known to cause the
“collapsing loss” due to the presence of cells containing
mostly noise [32,9]. Fig. 8 shows that the GSI-PRAO has
practically the same detection performance for different
MDS models, even for the unresolved point-like target.
This result implies that the GSI-PRAO is robust to different
MDS models.

In Fig. 9, we compare the GSI-PRAO under model2 with
the so-called SI-PRAO introduced in [27], which is the GSI-
PRAO for point-like targets, i.e., the GSI-PRAO with H¼1.
The parameters are set as follows: J¼4, N¼32, K¼2, and
H¼8 for the GSI-PRAO. Moreover, we consider two cases
of λ, namely λ¼ 4 and λ¼ 8. Inspection of the curves
highlights that the GSI-PRAO significantly outperforms the
SI-PRAO, due to the fact that more noise-only data are
available for the GSI-PRAO to estimate the covariance
matrix. More precisely, the number of noise-only data for
the GSI-PRAO is 9 (HþK�1¼ 9), while such number is 2
(K¼2) for the SI-PRAO.
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5. Conclusion

In this paper, we considered the problem of adaptively
detecting the range spread target in a partially homoge-
neous environment. The GSI-PRAO was developed by
modelling the disturbance in both test signals and training
signals as a multi-channel AR process. The GSI-PRAO was
shown to be a sum of each local parametric Rao test of
a particular range cell. Each local parametric Rao test used
the globe ML estimates of the unknown parameters.
The analytical result revealed that the GSI-PRAO was a CFAR
test in an asymptotic sense w.r.t. the disturbance covariance
and to the unknown power scaling factor. Moreover, in
Appendix B we showed the existence and the uniqueness
of the ML estimation of the power scaling factor. The
simulation results showed that the GSI-PRAO had great
performance improvements than the detectors using non-
parametric approaches, when the training data was limited.
Moreover, the GSI-PRAO have a good robustness to the
disturbance model, scaling factor and MDS models.
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Appendix A. Derivation of (6)

This appendix is devoted to the derivation of (6).
Observe that under H0 the pdf's of the primary data and
the secondary data are

f rh θ
�� ��

¼ 1
πJ jQ j

� �HðN�PÞ
exp �tr Q �1 ∑

H

h ¼ 1
∑

N�1

n ¼ P
ϵhðnÞϵHh ðnÞ

" #( )
:

ðA:1Þ

and

f rk θ
�� ��

¼ 1
πJ jλQ j

� �KðN�PÞ
exp �tr Q �11

λ
∑
K

k ¼ 1
∑

N�1

n ¼ P
ϵk nð ÞϵHk nð Þ

" #( )
;

ðA:2Þ

respectively. It follows that their joint pdf is given by

f r θ
�� ��

¼ λ� JK=ðKþHÞ

πJ jQ j

" #ðHþKÞðN�PÞ

exp �tr Q �1 ∑
H

h ¼ 1
∑

N�1

n ¼ P
ϵhðnÞϵHh ðnÞ

"(

þQ �11
λ

∑
K

k ¼ 1
∑

N�1

n ¼ P
ϵk nð ÞϵHk nð Þ

�)
; ðA:3Þ

which is equivalent to (6).
Appendix B. ML estimation of λ

In this appendix, we derive the ML estimation of λ, and
prove that there is only one λA ð0; þ1Þ satisfying (17). The
ML estimation derivation is much similar to that in [27].

Put (15) and (16) into (6) and omit the constant parts
the log-likelihood function can be written as

� ln f pðλjÂ; Q̂ Þp JK
HþK

ln λþ ln jTðλÞj ðB:1Þ

where jðHþKÞðN�PÞTðλÞj ¼ jðR̂rrðλÞ� R̂
H
trðλÞR̂

�1
tt ðλÞR̂trðλÞÞj

and p means “proportional to”. Using (18), (19) and (14)
jðHþKÞðN�PÞTðλÞj can be denoted as

jðHþKÞðN�PÞTðλÞj ¼
jR̂Hþ

1
λ
R̂K j

jR̂ttðλÞj
ðB:2Þ

since

jR̂Hþ
1
λ
R̂K j

jR̂ttðλÞj
¼ jðR̂rrðλÞ� R̂

H
trðλÞR̂

�1
tt ðλÞR̂trðλÞÞj ðB:3Þ

Consequently, we have

� ln f pðλjÂ; Q̂ Þp JK
HþK

ln λþ ln R̂Hþ
1
λ
R̂K � lnjR̂ttðλÞj
������� ðB:4Þ

on the other hand, the log-likelihood function of the
non-parametric method can be written as

ln f npðλjR̂Þ ¼ ln½e� JNπ� JNλ� JNK=ðHþKÞjSðλÞj�ðHþKÞ

p� JNK
HþK

ln λþ lnjSðλ
� �

j
�

ðB:5Þ

where the ML estimation of time–space covariance matrix
R is SðλÞ. Particularly it is

ðHþKÞSðλÞ ¼ ∑
H

h ¼ 1
rhrHh þ

1
λ

∑
K

k ¼ 1
rkrHk ðB:6Þ

Let E¼∑H
h ¼ 1rhr

H
h and F ¼∑K

k ¼ 1rkr
H
k , and take the deri-

vatives of (B4) and (B5) w.r.t. λ and equate them to zero,
we have (17) and (B.7), respectively

JNK
HþK

� ∑
JN

i ¼ 1

1
1þλsi

¼ 0 ðB:7Þ

where siZ0 is the eigenvalue of F �1=2EF �1=2, since E and
F are both positive semi-definite, and we use the fact that

∂
∂λ

ln Bþ1
λ
C ¼ ∑

M

i ¼ 1

�1
λð1þλbiÞ

����
���� ðB:8Þ

where biZ0 is the eigenvalue of C�1=2BC�1=2. Define

gðλÞ ¼ JK
HþK

� ∑
JðPþ1Þ

i ¼ 1

1
1þλτi

þ ∑
JP

i ¼ 1

1
1þλγi

ðB:9Þ

hðλÞ ¼ JNK
HþK

� ∑
JN

i ¼ 1

1
1þλsi

ðB:10Þ

Note that gðλÞ and hðλÞ are both continuous functions on
ð0; þ1Þ, and observe that

lim
λ-0

gðλÞ ¼ JK
HþK

� Jo0 ðB:11Þ
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lim
λ-0

hðλÞ ¼ JNK
HþK

� JNo0 ðB:12Þ

lim
λ-1

gðλÞ ¼ JK
HþK

40 ðB:13Þ

lim
λ-1

hðλÞ ¼ JNK
HþK

40 ðB:14Þ

which implies that there is at least one λAð0; þ1Þ giving
gðλÞ ¼ 0 or hðλÞ ¼ 0. As we mentioned in the end of Section
2 that the λ in CNð0;λRÞ and the λ in CNð0;λQ Þ are exactly
the same. So if there is only one λAð0; þ1Þ for hðλÞ ¼ 0,
there is only one λAð0; þ1Þ for gðλÞ ¼ 0. The first-order
derivative of hðλÞ w.r.t. λ is

∂
∂λ

hðλÞ ¼ ∑
JN

i ¼ 1

bi
ð1þλbiÞ2

40 ðB:15Þ

So hðλÞ is a monotonically increasing function with
limλ-0hðλÞo0 and limλ-1hðλÞ40. This implies that λ is
unique in ð0; þ1Þ for hðλÞ ¼ 0. Moreover, if (λ1aλ satis-
fying gðλ1Þ ¼ 0, such that hðλ1Þ ¼ 0, since λ is the unique
solution for hðλÞ ¼ 0, we have λ1 ¼ λ, that is contrary to the
assumption. So λ is the unique solution for gðλÞ ¼ 0, hence
λ is unique in ð0; þ1Þ.
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