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Abstract—In the present letter we investigate the problem of
adaptive detection and range estimation for point-like targets
buried in partially homogeneous Gaussian disturbance with
unknown covariance matrix. To this end, we jointly exploit the
spillover of target energy to consecutive range samples and the
oversampling of the received signal. In this context, we design a
detector relying on the Generalized Likelihood Ratio Test (GLRT).
Remarkably, the new decision scheme ensures the Constant
False Alarm Rate (CFAR) property with respect to the unknown
disturbance parameters. The performance analysis reveals that
it can provide enhanced detection performance compared with
its state-of-art counterpart while retaining accurate estimation
capabilities of the target position.

Index Terms—Adaptive radar detection, constant false alarm
rate, generalized likelihood ratio test, oversampling, partially
homogeneous environment.

I. INTRODUCTION

A DAPTIVE radar detection of targets embedded in
Gaussian disturbance with unknown spectral properties

is a classic task in radar applications, and has received an
increasing attention in recent years. Most of the proposed solu-
tions assume a Homogeneous Environment (HE), wherein a set
of secondary data free of signal components, but sharing the
same spectral properties of the interference in the cells under
test (primary data), is available [1]–[7]. However, the HE might
not be met in realistic situations: see, for example [7, and refer-
ences therein]. The most frequently used assumption to depart
from a HE is the so-called Partially Homogeneous Environment
(PHE), which assumes that primary and secondary data share
the same structure of the disturbance covariance matrix but
different power levels. Constant False Alarm Rate (CFAR)
detection of point-like targets in PHE has been addressed in
[9], while CFAR detection of range-spread targets based on the
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Rao and Wald tests in PHE has been considered in [10]. Other
recent solutions can be found in [11]–[17].
The aforementioned detectors, however, are based on the as-

sumption that there is no spillover of the target energy to adja-
cent matched filter returns. In fact, such assumption is not al-
ways reasonable, because there is no guarantee that the sam-
ples at the matched filter output is exactly taken at the peak of
the target return. The spillover is a physical phenomenon in a
radar system and causes a significant loss of signal energy in
the above traditional radar signal processing methods. Several
methods have been proposed to mitigate or to take advantage of
the energy split among adjacent samples. In [18], [19] using two
adjacent matched filter samples, it is shown that a monopulse
radar may discern up to five targets instead of two by exploiting
the spillover. This framework is further generalized in [20] and
[21] to the case of Space-Time Adaptive Processing (STAP),
wherein a space-time spillover mode for point-like targets is es-
tablished and three detectors are introduced. These methods ac-
curately estimate the target position within the Cell Under Test
(CUT). More recently, in [22] and [23], the oversampling of
the noisy returns is used to obtain an adaptive receiver with en-
hanced detection and localization performance for HE and PHE,
respectively.
In the present work, we still deal with the same framework

as in [23] and derive an adaptive receiver capable of ensuring
better performance than that proposed in [23]. To this end, we
first briefly describe the discrete-time model of the oversam-
pled received signal, and then apply the plain GLRT instead of
two-step GLRT-based design procedure used in [23], to obtain
the decision scheme. The new scheme can exploit the primary
data and secondary data more efficiently, due to the fact that the
plain GLRT jointly estimate the unknown parameters, while the
two-step GLRT separates the estimation of the noise covariance
matrix from those of the remaining parameters. Remarkably, the
new decision scheme guarantees the CFAR property with re-
spect to the unknown parameters of the disturbance. Finally, we
highlight that this letter is a generalization of [21], which refers
to the case where the oversampling factor is equal to one and,
meantime, is an extension of [22] wherein the plain GLRT for
the PHE is not derived. This seeminglyminormodification leads
to more difficult optimization problems with respect to previous
works.
The remainder of the letter is organized as follows.

Section II addresses the problem formulation while
Section III deals with detector designs. Section IV provides
illustrative examples. Finally, Section V contains some
concluding remarks.
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II. PROBLEM FORMULATION

The aim of this section is to briefly introduce the discrete-time
model for the signal and the interference. The interested readers
are referred to [23] and [24] for further details. Specifically, the
vector of the noisy returns representing the th range bin is given
by

(1)
where with the number of spatial channels and

the number of temporal observations, is the interference
component with the colored matrix or vector, and is the
signal component which can be denoted by

...
...

...
...

with a residual delay that leads to target energy spillover,
the target Doppler frequency, the oversampling factor,
the sample under test, the duration of transmitted pulse,

the complex ambiguity function of the transmitted pulse
waveform, and the space-time steering vector1.
Alternatively, we define the residual delay, say, evaluated

with respect to the th range bin accounting for the target posi-
tions surrounding the considered bin center as follows

(2)

As pointed in [23], although the oversampling makes interfer-
ence samples spatially correlated with a correlation tied up to
the waveform ambiguity function, it is possible to show that the
structure of the fast-time interference correlation is functionally
independent of the environmental parameters under reasonable
technical assumptions. Therefore, a whitening matrix can
be pre-canned into the system and used to spatially decorrelate
primary data. The whitened primary data matrix can be written
as [23]

(3)
where , and

...
. . .

...

As customary, we assume that a secondary dataset , free
of signal components, is available. Precisely, are chosen
from a set of adjacent range cells of primary data, and given by

, where the indices account
for a guard interval, and . Following the same line of
reasoning as for the primary data, the whitened secondary data
matrix can be written as . Summarizing,
the decision problem can be formulated as a binary hypothesis
testing problem

1For the sake of brevity we omit the dependence of on the spatial and the
Doppler frequency.

(4)
where is unknown deterministic factors which account for
both target reflectivity and channel effects, ,

, and , , are independent complex
normal random vectors with zero mean and covariance ma-
trices and , with the
power scaling factor, and the conjugate transpose. Finally,

is given by with

, and .

III. DETECTOR DESIGN

In this section, we solve problem (4) resorting to the
GLRT. To begin with, let us denote by ,

the overall data matrix, and
.

The GLRT based on primary and secondary data is given by

(5)

where is the threshold to be set according to the desired Prob-
ability of False Alarm ( ), and is the Probability Den-
sity Function (PDF) of under , , namely

(6)
In (6), , is the times
sample covariance matrix of the secondary data, and
denote the determinant and the trace of a square matrix, re-
spectively. Let us focus on the optimization problem under
firstly. It is well known that the maximum likelihood estimate of
, say, is given by the sample covariance matrix. Replacing
with yields

(7)
where denotes proportional to. Now maximization with re-
spect to is tantamount to , where the
argument can be recast as follows

(8)

with the -dimensional identity matrix,
the projection matrix onto the subspace

spanned by , , and
. The last equality comes

from with . Thus,
the optimization problem with respect to is equivalent to
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. Setting to zero the deriva-
tive with respect to , yields [22]

(9)

where denotes complex conjugate. It follows that

(10)
Based on the results in (8) and (10), we have

(11)
Observe that the eigendecomposition of is ,
where is a diagonal matrix containing the eigenvalues
of , i.e., , and is a unitary
matrix. Moreover, let us define symbols that will come
in handy for the optimization with respect to , namely,

, and
. It follows that the th

root of the denominator of (11) can be recast as

(12)

where , , , ,
, and ,

. Observe that is a continuous on ,
and2

(13)

(14)

The above equalities ensure that at least a minimum ex-
ists. For this reason, we search the absolute minimum
between the positive solutions of the equation

, which is differentiable in (0, ). It is easy to show
that , , and

Re
with , and
the real part of the argument. Hence, can be
expressed as

(15)

2Recall that .

where . It is easy to know that the de-
gree of (15) is , and hence, we have to solve it
resorting to numerical algorithms such as the Newton-Raphson
or Laguerre methods. Anyway, we can obtain by using stan-
dard numerical routines such as ‘fzero’ of Matlab.
Similarly, the compressed likelihood under is given by

(16)

where , , are the eigenvalues of . According
to Proposition 2 of [25], it is easy to show that the RHS of (16)
attains its absolute minimum (if ) at the unique
positive solution of the equation,

(17)

where , and ,
. Note that the degree of the above equation is

, and it can be solved by using the Matlab function ‘fzero’.
Gathering the above results, the GLRT can be recast as

(18)

where .
As a final remark, it is difficult to obtain a closed-form es-

timate of , and, hence we resort to a grid search to perform
the maximization with respect to . The grid-search-based im-
plementation of (18) will be referred to in the sequel as the
Oversampled GLRT for PHE (OS-GLRT-PHE). Moreover, the
new receiver ensures the CFAR property with respect to and
. Proof of such statements, not reported here for the sake of

brevity, follows the lead of [20] and references therein.
Finally, the implementation of the OS-GLRT-PHE requires

solving (15) and (17) under and , respectively and hence,
an additional processing cost with respect to the so-called Over-
sampled ACE (OS-ACE) derived in [23].

IV. PERFORMANCE ASSESSMENT

This section is devoted to the performance assessment of the
proposed detection algorithms in terms of Probability of Detec-
tion ( ) and Root Mean Square (RMS) errors in range. To this
end, we compare the proposed detector with OS-ACE.
We make use of standard Monte Carlo counting techniques

and evaluate the thresholds necessary to ensure a preassigned
value of resorting to independent trials. The
values and the RMS range errors are estimated over and

independent trials, respectively. All the illustrative exam-
ples assume , Hz, s,

m/s, and . The actual position of the target is as-
sumed (independent from trial to trial) uniformly distributed in

.
As to , it takes on values in with .
The interference is modeled as a complex normal vector with
the space-time covariance matrix , where

, is evaluated assuming a clutter-to-noise ratio
of 30 dB, the ( )th element of is given by with

[26], [27]. Finally, the SNR is defined as
.
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Fig. 1. Performance of the OS-GLRT-PHE and OS-ACE with simulated data; , , , , and .

Fig. 2. Performance of the OS-GLRT-PHE and OS-ACE with real data; , , , , and .

In Fig. 1, we study the performance of the OS-GLRT-PHE
assuming , , , and as pa-
rameter. More precisely, in Fig. 1(a) we plot versus SNR,
whereas in Fig. 1(b) the comparisons are in terms of RMS er-
rors in range. As it can be seen from Fig. 1, the GLRT-LC-PHE
guarantees a superior detection performance than the OS-ACE.
Moreover, the greater , the higher the detection gains of the
OS-GLRT-PHEwith respect to the OS-ACE. On the other hand,
the curves reported in Fig. 1b show that the two receivers have
practically the same RMS errors. All above results show that
oversampling is a suitable means to enhance radar system per-
formance even when a scale mismatch between primary and
secondary data is present. It is worth noting that for high SNR
values, the RMS errors become identical, because they achieve
the lower bound given by the grid resolution .
In order to show the performance of the OS-GLRT-PHE

in a realistic environment, we exploit the real radar measure-
ments collected using the McMaster IPIX radar from a site in
Dartmouth. Our analysis refers to the file 19931117 131609
stareB0002.cdf (dataset 226 of [28]). The details on the experi-
ment can be found in [28]. Since the real data were oversampled
with a factor equal to 2, we only consider the case of .
We use the range cells 48-52 of VV channel as the primary
data, and the range cells adjacent to the primary data as the
secondary data; specifically, we choose the range cells 39-46
and 54-61 for . The performance of the OS-GLRT-PHE
and the OS-ACE are evaluated under the same number of False
Alarms (FA). This is because the limited amount of real data
do not allow a Monte Carlo estimation of the . Precisely,
we set , which corresponds to an obtained of
about . Note that the dataset 226 entails only clutter and
that a synthetic target is injected at the zero velocity with a

given SNR and residual delay. Moreover, the SNR is defined
as , where is the estimated sample
covariance matrix using all the returns of the range cells 48-52.
As to the residual delay, it randomly and uniformly distributed
over .
The corresponding results are shown in Fig. 2 in terms of
versus SNR and RMS errors versus SNR assuming

and . Inspection of the figure confirms the trend
observed on simulated data, namely that the OS-GLRT-PHE
ensures better detection performance then the OS-ACE. Finally,
it is worth noting that in HE the OS-GLRT-PHE and OS-ACE
would suffer a loss with respect to their counterparts devised
for HE [22], due to the fact that they are scale-invariant to the
power scaling factor .

V. CONCLUSIONS
In this work, we have proposed an adaptive decision scheme

with enhanced detection and range estimation capabilities for
point-like targets in partially homogeneous Gaussian distur-
bance. For the sake of deriving the new detector, we jointly take
advantage of the oversampling of the noisy returns as well as
the target energy spillover to adjacent range samples, and resort
to the plain GLRT. Notably, the OS-GLRT-PHE possesses
the CFAR property with respect to with respect to both the
structure of the covariance matrix as well as the power level.
The performance assessment, conducted on both simulated
data and real recorded data, has shown that the OS-GLRT-PHE
can guarantee better detection performance than the OS-ACE.
As to the range estimation capabilities, the OS-GLRT-PHE is
comparable to the OS-ACE. Possible research could concern
the problem of detection and range estimation for non-Gaussian
scenarios [29]–[31].



HAO et al.: ADAPTIVE RADAR DETECTION AND RANGE ESTIMATION 1363

REFERENCES

[1] E. J. Kelly, “An adaptive detection algorithm,” IEEE Trans. Aerosp.
Electron. Syst., vol. 22, no. 2, pp. 115–127, Mar. 1986.

[2] F. C. Robey, D. L. Fuhrman, E. J. Kelly, and R. Nitzberg, “A CFAR
adaptive matched filter detector,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 29, no. 1, pp. 208–216, Jan. 1992.

[3] C. D. Richmond, “Performance of the adaptive sidelobe blanker de-
tection algorithm in homogeneous environments,” IEEE Trans. Signal
Process., vol. 48, no. 5, pp. 1235–1247, May 2000.

[4] S. D. Blunt and K. Gerlach, “Efficient robust AMF using the FRACTA
algorithm,” IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 2, pp.
537–548, Apr. 2005.

[5] K. Sohn, H. Li, and B. Himed, “Parametric GLRT for multichannel
adaptive signal detection,” IEEE Trans. Signal Process., vol. 55, no.
11, pp. 5351–5360, Nov. 2007.

[6] A. Aubry, A. De Maio, D. Orlando, and M. Piezzo, “Adaptive detec-
tion of point-like targets in the presence of homogeneous clutter and
subspace interference,” IEEE Signal Process. Lett., vol. 21, no. 7, pp.
848–852, Jul. 2014.

[7] W. Liu, W. Xie, J. Liu, and Y. Wang, “Adaptive double subspace
signal detection in gaussian fbackground-part I: Homogeneous envi-
ronments,” IEEE Trans. Signal Process., vol. 62, no. 9, pp. 2345–2357,
Sep. 2014.

[8] W. L. Melvin, “Space-time adaptive radar performance in heteroge-
neous clutter,” IEEE Trans. Aerosp. Electron. Syst., vol. 36, no. 2, pp.
621–633, Apr. 2000.

[9] S. Kraut and L. L. Scharf, “The CFAR adaptive subspace detector is
a scale-invariant GLRT,” IEEE Trans. Signal Process., vol. 47, no. 9,
pp. 2538–2541, Sep. 1999.

[10] C. Hao, X.Ma, X. Shang, and L. Cai, “Adaptive detection of distributed
targets in partially homogeneous environment with rao and wald tests,”
Signal Process., vol. 92, no. 4, pp. 926–930, Apr. 2012.

[11] A. De Maio and S. Iommelli, “Coincidence of the Rao test, wald
test, and GLRT in partially homogeneous environment,” IEEE Signal
Process. Lett., vol. 15, pp. 385–388, 2008.

[12] F. Bandiera, A. De Maio, A. S. Greco, and G. Ricci, “Adaptive radar
detection of distributed targets in homogeneous and partially homoge-
neous noise plus subspace interference,” IEEE Trans. Signal Process.,
vol. 55, no. 4, pp. 1223–1237, Apr. 2007.

[13] S. Bidon, O. Besson, and J. Y. Tourneret, “The adaptive coherence es-
timator is the generalized likelihood ratio test for a class of heteroge-
neous environments,” IEEE Signal Process. Lett., vol. 15, pp. 281–284,
2008.

[14] J. Liu, Z. Zhang, Y. Yang, and H. Liu, “A CFAR adaptive subspace
detector for first-order or second-order gaussian signals based on a
single observation,” IEEE Trans. Signal Process., vol. 59, no. 11, pp.
5126–5140, Nov. 2011.

[15] P. Wang, H. Li, and B. Himed, “Parametric rao tests for multichannel
adaptive detection in partially homogeneous environment,” IEEE
Trans. Aerosp. Electron. Syst., vol. 47, no. 3, pp. 1850–1862, Jul. 2011.

[16] W. Liu,W. Xie, J. Liu, and Y.Wang, “Adaptive double subspace signal
detection in gaussian background part II: Partially homogeneous envi-
ronments,” IEEE Trans. Signal Process., vol. 62, no. 9, pp. 2358–2369,
Sep. 2014.

[17] Y. Gao, G. Liao, S. Zhu, X. Zhang, and D. Yang, “Persymmetric adap-
tive detectors in homogeneous and partially homogeneous environ-
ments,” IEEE Trans. Signal Process., vol. 62, no. 2, pp. 331–342, Feb.
2014.

[18] X. Zhang, P. K. Willett, and Y. Bar-Shalom, “Monopulse radar detec-
tion and localization of multiple unresolved targets via joint bin pro-
cessing,” IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1225–1236,
Apr. 2005.

[19] X. Zhang, P. K. Willett, and Y. Bar-Shalom, “Detection and localiza-
tion of multiple unresolved extended targets via monopulse radar signal
processing,” IEEE Trans. Aerosp. Electron. Syst., vol. 45, no. 2, pp.
455–472, Apr. 2009.

[20] D. Orlando and G. Ricci, “Adaptive radar detection and localization
of a point-like target,” IEEE Trans. Signal Process., vol. 59, no. 9, pp.
4086–4096, Sep. 2011.

[21] A. DeMaio, C. Hao, and D. Orlando, “An adaptive detector with range
estimation capabilities for partially homogeneous environment,” IEEE
Signal Process. Lett., vol. 21, no. 3, pp. 325–329, Mar. 2014.

[22] A. Aubry, A. De Maio, G. Foglia, C. Hao, and D. Orlando, “Radar
detection and range estimation using oversampled data,” IEEE Trans.
Aerosp. Electron. Syst., to be published.

[23] A. Aubry, A. De Maio, G. Foglia, C. Hao, and D. Orlando, “A radar
detector with enhanced range estimation capabilities for partially ho-
mogeneous environment,” IET Radar, Sonar Navig., vol. 48, no. 9, pp.
1018–1025, Dec. 2014.

[24] F. Bandiera, D. Orlando, and G. Ricci, “Advanced radar detection
schemes under mismatched signal models,” in Synthesis Lectures
on Signal Processing. San Rafael, CA, USA: Morgan & Claypool,
2009, 8.

[25] E. Conte, A. De Maio, and G. Ricci, “GLRT-based adaptive detection
algorithms for range-spread targets,” IEEE Trans. Signal Process., vol.
49, no. 7, pp. 1336–1348, Jul. 2001.

[26] E. Conte, A. De Maio, and C. Galdi, “Statistical analysis of real clutter
at different range resolutions,” IEEE Trans. Aerosp. Electron. Syst., vol.
40, no. 3, pp. 903–918, Jul. 2004.

[27] E. Conte, A. De Maio, and A. Farina, “Statistical tests for higher order
analysis of radar clutter: Their application to l-band measured data,”
IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 1, pp. 205–218, Jan.
2005.

[28] [Online]. Available: http://soma.crl.mcmaster.ca/ipix/
[29] S. Watts, “Radar detection prediction in K-distributed sea clutter and

thermal noise,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-23, no.
1, pp. 40–45, Jan. 1987.

[30] F. Gini and A. Farina, “Vector subspace detection in com-
pound-gaussian clutter part i: Survey and new results,” IEEE Trans.
Aerosp. Electron. Syst., vol. 38, no. 4, pp. 1295–1311, Oct. 2002.

[31] F. Gini and M. Greco, “Suboptimum approach to adaptive coherent
radar detection in compound-gaussian clutter,” IEEE Trans. Aerosp.
Electron. Syst., vol. 35, no. 3, pp. 1095–1103, Jul. 1999.


