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The dispersion functions of Rayleigh waves are theoretically deduced in layered half-space, which consist of elastic and

porous layers. Different with the Rayleigh waves of elastic half-space, the dispersion function changes when the porous

layer exists, and relates with the position of porous layers. The dispersion functions are given in cases of the porous layers

locating at different positions. Furthermore, by the resolution of the original transfer matrix, an optimized square matrix of

15 orders is deduced in order to eliminate the cubic terms of e, this greatly improves the computable frequency range of

Rayleigh waves’ dispersion.
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1. INTRODUCTION

Porous formation is one of the most common formation
in geophysical and engineering geophysical
exploration, and one of the most important objects of
oil and gas resources exploration. Therefore, getting
accurate the parameters of porous media is a significant
work of oil and gas resources exploration. The
exploration by Rayleigh waves is one of the most effect
engineering explorations, though, which founded on
elastic layered half-space. It will make mistakes when
we apply Rayleigh waves’ exploration on a porous
layered half-space. To problem, we
theoretically study on the excitation and propagation
mechanism of Rayleigh waves in a porous layered
half-space.

The transfer matrix method is always used in
theoretical research of acoustic propagation in layered
media. It is a simple and effective means to calculate
the dispersion curves. However, this method has a
limitationthat it may cause the significant digit losing
in high frequency range. In the porous layer, the
problem is even harder due to the slow longitude wave
and the dissipation effect. Abo-zena[1] and Menke[2]
proposed a methodology to solve the problem, Zhang[3]
improved the methodology. However, these former
researches are all based on elastic layered half-space,
there is no effective way to solve the problem in porous
media.

In this paper, we focus to theoretically derive the
detail form of Rayleigh waves’ dispersion function in
layered half-space with a porous layer is located in
different positions. Furthermore, we propose an
optimized algorithm to improve the problem of transfer
matrix method that it may lose significant digit in high
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frequency range. By this algorithm, both the accuracy
and frequency range of the dispersion computation are
all improved.

2. BOUNDARY CONDITIONS
DISPERSION FUNCTION

AND

The layered half-space is assumed as a model in any
combination of elastic and porous layers, Fig.l shows
the configuration.

Figure 1. The configuration of layered half-space

with porous layers

We introduce the (b,p,c) coordination system, for
convenience. Assume Sas the vector of displacement
and stress spectrum in elastic media, its formation is

M

S=,/k,7,/0*u,lk,7,/0*)"

where u,,u, are the components of displacement
spectrum, Zp>Tp are the components of stress
spectrum in the normal direction.Hence, assume the ;"
layer is elastic, then the transfer relationship of stress
and displacement spectrum between the top and bottom
surface of the /™ layer is

S;(z))=M;2,M}'S,(z,.), (2)
In a porous medium, the formation of S is
S =(uf /k,—P;' lo®,t8 /o ul lk,wi lk,td I o)’ , 3

d . . d d
where 7 is the pressure of fluid phase, “,-Uzare the
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displacements of solid phase, Wy is the relative flow
displacement, 7,75 are total stress spectrum of the
sections of porous media. Therefore, the recursive
relation can be obtained as following when the /™ layer
is porous,

SU(z))=M{2M{)'SI(z,,), C))

For convenience, Eq. (2) and (4) are formatting as

{sj(zj)Pjsj(z“) , %)

S9(z;)=H ,S4(z,,)

The transfer matrix P, is a 4 orders square
matrix for the elastic layers, while H; is a 6 orders
square matrix for the porous layers. These matrices are
with different orders, hence, we cannot directly
compute the transfer function when porous and elastic
layers exist in the layered half-space simultaneously.
Furthermore, the boundary condition of the free surface
and acoustic propagation are different, so we should
deduce the new dispersion functions for the different
relative positions of porous and elastic layers.

In (b, p,c) coordinate system, there is no coupled
relation between P—SVand SH waves, they can be
processed separately by same way, so we discuss
P - Sy wave only. The vectors consisted by potential
functions in elastic and porous media are shown in
follow,

o(z) = (Aemz’Beﬂaz’ce,/>:’Deﬂ/>:)r _ (¢7+’¢’7»'//+sl//7)7
(p"(z) = (A,ﬂle‘”z,B 67"‘:,Amsz"ﬂ,Bmzeﬁzz,C em,Dme’h:)T

ml m

=0 .0 0 W) ,(6)
where® and Wrepresent the potential function of P
wave and SV wave, respectively. The superscript
“~+ »and “—” represent the wave propagate along and
against the z axis direction, ¢,and ¢, represent the
first and second longitude waves’ potential.
When the porous layer locates in thej+1™ layer,

the boundary conditionsof Z; are as follows:

wi(z)=ul(2,)
up(z;)=u}(z,) -
A=)
iz =15"(z))

0=w/'(z)

O

2.1 Porous layer is at the bottom

In this case, the porous layer is at the j+1th layer, and
all the upper layers are elastic, so
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(pd(zj+l) = M;Sd(zb,') .

®)

Based on the boundary conditions (the first four
equations of Eq.(7)), we can obtain

uy(z,)/k

o'z a8

u”,“ (Z/ Yk = P(Z, »Zi0 ) P(z,,2)8(zy) = P(Z, ,20)8(2,)
7' |, 9)

Build a matrix for G = D-P(z,,z,), the formation is

m']] “ee Y,
10
| -, (10)

m's,
where " TMali
Substitute Eq. (9) and the fifth equation of Eq. (7)

into Eq. (8), we can obtain an equation

o us(z)/k

A g, m, g, &3 ’n;S &

2 8 My &n &x My &u |~ P (Z,)/W2
2% _| 8 My gyn 8w M & | Tp(Z)/@°
(2 gu My & 8n M &u up(zy)/k

n ’

4 8y My gn 8s Mk & 0
7,z | (11)

- '

174 g My Lo & Ms Za

Based on boundary conditions on the free surface
that the stress equals zero and the radial conditions on
the depth direction that there is no ascending waves,
the dispersion function of Rayleigh waves can be
obtained in this case as

gu My g
gy My Z4=0
g Mgy & (12)

2.2 Porous layer is on the top

Based on@=M"'S and the transfer relation of the
matrices, combined with the first four equations of Eq.
(7), we can get

=
=
=
=

hn 12 13 14 15 hlb (13)

by hy hy by by h ’
(P(Zm):M;:IP(Z/’ZH)"' 5 My Ty Mgy s Mg 'SJ(ZU)

hy hy hy hy hys hy

hy, hy, hgy hy hs h

B
B
2
S

=G'Su(zo)

The G here is a matrix of 6x4 .

With the propagation condition that there is only
descending wave in the bottom layer, and the fifth
equation of Eq. (7), we can getthe dispersion function
as
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821 8u 82
8n 8u 8s/=0
T (14)

2.3 Porous layer is at any interlayer

Now the porous layer is at thejth layer, the upper and
lower layers are all elastic, the relation of both side
interface of porous layer can be written as

Sd(zj) = M;Iﬂ'deSd(ij]) = Hdsd(zl—]) , (1 5)
based on Eq. (15) and Eq. (7), we can get
by hy by g s by (16)
s, (Z/.): by hy by hy s by s, (ZH)
41 h42 h4? h44 /145 h46
hg hy hg hg hes hg

Because W, equals zero both at the upper and lower
interface, so

0= "1, (uy / F)+hsy (=P, 10") +hy (T, @)+ oy k) + g (7,1 @0°)
that is

1
(—P‘/./a)z)z ] :_7(h51’h53ah54’h56)s(2/71)’ an
J 55
substituteEq. (16) into Eq. (15),
S(z,)=£,5(z,.,) (18)

P, is the equivalent transfer matrix of porous media, a
4 orders square matrix it is.
By the transfer matrix, we can obtain

0(z,,) =M [P (z,.2,,) P(z,,2,)-S(z) = G-8(z,) (19)

based on the existence conditions of Rayleigh waves,
we can obtain the dispersion function as follow

821843~ 8538u=0" (20)

2.4 Porous layers are at the top and bottom layers

In this case, the j+1™ layer is considered as a porous
half-space, and the /" layer is elastic, and all the others
are assumed as porous layers.Therefore, in the bottom
layer (i.e. j+1), there is

(Pd(zjﬂ):M;lSd(Zj). (21)

uB,uP,TB,TP can be

From Eq. (7) we can get that

written as
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=

o hy o by 14 s T , (22)
h h h h h h
S(z/): P(z/,zH)--- 31 32 33 34 35 36 Sd(ZD)
h4| h4z h43 h44 h45 h46
he hgy hg hy he h

:PV(Z]"ZO)'SJ(Zn)

though w,(z;)=0_P,(z;)is unknown, then we can
build a D matrix as the format of Eq. (10). Then as the
same procession from Eq. (10) to Eq. (12), the
dispersion function is obtained in the same format with
Eq. (12).

We deduce the dispersion functions of Rayleigh
waves in a layered half-space with porous layers locate
at different positions. Almost all kinds of half-space
with porous layers can be induced as the formats above.
For indication that the matrix H in Eq. (5) is still used
in processing the interface between porous layers.

3. OPTIMIZING THE TRANSFER FUNCTIONS

There is a losing significant digit issue during the
calculation of transfer matrix algorithm. In elastic
layered half-space, Abo-zena [1] and Menke [2]
improved the format of transfer functions, made a new
matrix Y, the Y matrix’s transfer relation in layered
half-space is

YO = P (zy,2)Y V"' P(zy,2,) - (23)
It is an antisymmetric 4 orders square matrix, then the
dispersion function can be written as

YV =0. 24)

12

Zhang [3] further improved the Y matrix, and made the
transfer matrix as follow:

ET =F/E’, (25)
where F =UAV , the format of y, ) and A" can be
seen in Ref. [3]. By this way, the square terms of e is
eliminated, the computable frequency range is greatly
expanded. The dispersion function here is

E0 0. (26)

However, when porous layers exist in half-space,
this algorithm is not suitable because of the different
size of transfer matrix. If we use the original format of
transfer matrix, it would be a big limitation of
computable Furthermore, the
multiplication of transfer matrix of porous media
causes the cubic terms of e, it is obvious that the
computable frequency range would be less than that of

frequency range.
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elastic media. Focus on solving this problem, we do
our research on it.
a, B,y represent the 2™, 4" and 6™ row of

(M )., » respectively. Then, define a set of matrices as

follows:

Y =a Y=gy B
Ya‘N = YaNH Hy(zy,2x) Yh“\’ = H;(Z,v»Z,vfl)yl;\’HHd(z.v: Zy.1)

.26)

Yul = Yuz “H,(z2),2y) yhl =H;‘(zl,zn)ythu(znzn)

So the dispersion function of porous layered
half-space is

V()Y (45) - Y/ (@)Y 1.5 +Y(9)-vaH =0, (27
Y/ are a set of antisymmetric matrices, hence, we can
obtain a column matrix which is made of the upper
. N+ . . .
triangular elements of %™ which is the ¥ matrix of
the bottom layer. By this way, we build an E matrix as

I+ T
EY :b]syzryvyuysryesywyxayQayloaynsylzaywymsyls]
It is a column matrix of 15 rows. In each layer of
layered half-space, E/ is satisfied of the deductive

relation as follow:

EF =Fi-E. (28)

Then, by the transfer relation of Y/ and E, the transfer
matrix F can be inferred, which is a 15 orders square
matrix. Furthermore, the F matrix can be deduced to a
multiplication of 3 square matrices as

F=UAV,- 29

By this way, the cubic terms of e are eliminated. It
greatly improves the computable frequency range.

We use Newton-Raphson method to solve the
dispersion functions of Rayleigh waves. The method
needs a relative accurate initial value for each modes of
Rayleigh waves. Therefore, we introduce the bisection
method into the complicated plane, in order to get the
complicated roots of the dispersion functions.

The figures of dispersion curves calculated by
original and optimized transfer matrix are shown in Fig.
2. From these figures, we can see that the computable
frequency range is only about 12 kHz for the original
method (left), but it is up to 22 kHz for the optimized
one (right). In addition, the original method would lose
some modes because of the calculation mistake, the 4™
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and 5" modes are miss in the left figure of Fig. 2. The
problem is well solved in the optimized method.

ey Froquencyiiz)

Figure2. The comparison of the dispersion curves
calculated by the original and optimized

transfer matrix.

4. CONCLUSION

The dispersion functions of Rayleigh waves in layered
half-space consisted of elastic and porous layers. The
dispersion functions are deducted by the boundary and
propagation conditions of Rayleigh waves in cases of
the porous layers located at different positions of
half-space. The theoretical system of Rayleigh waves’
excitation and propagation is improved in layered
half-space with porous layers.

Then the transfer matrix of Rayleigh waves is
optimized to solve the losing significant digit issue. By
this means, the cubic terms of e are eliminated, the
computable frequency range is greatly improved.

Finally, we introduce the bisection method into
complicated plane to get the complicated roots of the
dispersion functions. Using these roots as the initial
values of Newton-Raphson method. The results are
good.
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