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The dispersion functions of Rayleigh waves are theoretically deduced in layered half-space, which consist of elastic and 
porous layers. Different with the Rayleigh waves of elastic half-space, the dispersion function changes when the porous 
layer exists, and relates with the position of porous layers. The dispersion functions are given in cases of the porous layers 
locating at different positions. Furthermore, by the resolution of the original transfer matrix, an optimized square matrix of 
15 orders is deduced in order to eliminate the cubic terms of e, this greatly improves the computable frequency range of 
Rayleigh waves’ dispersion.  
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1.  INTRODUCTION 

Porous formation is one of the most common formation 
in geophysical and engineering geophysical 
exploration, and one of the most important objects of 
oil and gas resources exploration. Therefore, getting 
accurate the parameters of porous media is a significant 
work of oil and gas resources exploration. The 
exploration by Rayleigh waves is one of the most effect 
engineering explorations, though, which founded on 
elastic layered half-space. It will make mistakes when 
we apply Rayleigh waves’ exploration on a porous 
layered half-space. To solve this problem, we 
theoretically study on the excitation and propagation 
mechanism of Rayleigh waves in a porous layered 
half-space. 

The transfer matrix method is always used in 
theoretical research of acoustic propagation in layered 
media. It is a simple and effective means to calculate 
the dispersion curves. However, this method has a 
limitationthat it may cause the significant digit losing 
in high frequency range. In the porous layer, the 
problem is even harder due to the slow longitude wave 
and the dissipation effect. Abo-zena[1] and Menke[2] 
proposed a methodology to solve the problem, Zhang[3] 
improved the methodology. However, these former 
researches are all based on elastic layered half-space, 
there is no effective way to solve the problem in porous 
media.  

In this paper, we focus to theoretically derive the 
detail form of Rayleigh waves’ dispersion function in 
layered half-space with a porous layer is located in 
different positions. Furthermore, we propose an 
optimized algorithm to improve the problem of transfer 
matrix method that it may lose significant digit in high 

frequency range. By this algorithm, both the accuracy 
and frequency range of the dispersion computation are 
all improved. 

2. BOUNDARY CONDITIONS AND 
DISPERSION FUNCTION 

The layered half-space is assumed as a model in any 
combination of elastic and porous layers, Fig.1 shows 
the configuration.  

 
Figure 1. The configuration of layered half-space 

with porous layers 

We introduce the (b,p,c) coordination system, for 
convenience. Assume as the vector of displacement 
and stress spectrum in elastic media, its formation is 

T
BPPB kuku )/,/,/,/( 22 S        (1) 

where are the components of displacement 
spectrum,  are the components of stress 
spectrum in the normal direction.Hence, assume the jth 
layer is elastic, then the transfer relationship of stress 
and displacement spectrum between the top and bottom 
surface of the jth layer is 
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In a porous medium, the formation of S is 

,   (3) 

where is the pressure of fluid phase, are the 

 

1

2  

  

1j
 

  

N  

r 

z

O
0z

1z

2z

jz

1jz

Nz

Porous Layer 

S

BP uu ,

BP  ,

Td
B

d
P

d
P

d
P

d
f

d
B

d kwkuPku )/,/,/,/,/,/( 222 S

d
fP d

B
d
p uu ,

978-1-4799-6425-3/14/$31.00 ©2014 IEEE 



2014 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Oct. 30-Nov.2, Beijing, CHINA 

332 

displacements of solid phase, is the relative flow 
displacement, are total stress spectrum of the 
sections of porous media. Therefore, the recursive 
relation can be obtained as following when the jth layer 
is porous, 
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For convenience, Eq. (2) and (4) are formatting as 
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The transfer matrix  is a 4 orders square 
matrix for the elastic layers, while  is a 6 orders 
square matrix for the porous layers. These matrices are 
with different orders, hence, we cannot directly 
compute the transfer function when porous and elastic 
layers exist in the layered half-space simultaneously. 
Furthermore, the boundary condition of the free surface 
and acoustic propagation are different, so we should 
deduce the new dispersion functions for the different 
relative positions of porous and elastic layers. 

In coordinate system, there is no coupled 
relation between and  waves, they can be 
processed separately by same way, so we discuss 

 wave only. The vectors consisted by potential 
functions in elastic and porous media are shown in 
follow,  

,(6) 

where  and represent the potential function of 
wave and  wave, respectively. The superscript 
“ ”and “ ” represent the wave propagate along and 
against the z axis direction, and represent the 
first and second longitude waves’ potential. 

When the porous layer locates in thej+1th layer，
the boundary conditionsof are as follows: 



































)(0

)()(

)()(

)()(

)()(

1

1

1

1

1

j
j

P

j
j

Bj
j

B

j
j

Pj
j

P

j
j

Pj
j

P

j
j

Bj
j

B

zw

zz

zz

zuzu

zuzu





.            (7) 

2.1 Porous layer is at the bottom 

In this case, the porous layer is at the j+1th layer, and 
all the upper layers are elastic, so 

.         (8) 

Based on the boundary conditions (the first four 
equations of Eq.(7)), we can obtain 

.(9) 

Build a matrix for , the formation is 
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where . 
Substitute Eq. (9) and the fifth equation of Eq. (7) 

into Eq. (8), we can obtain an equation 

. (11) 

Based on boundary conditions on the free surface 
that the stress equals zero and the radial conditions on 
the depth direction that there is no ascending waves, 
the dispersion function of Rayleigh waves can be 
obtained in this case as 

.      (12) 

2.2 Porous layer is on the top 

Based on and the transfer relation of the 
matrices, combined with the first four equations of Eq. 
(7), we can get 
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The G here is a matrix of . 

With the propagation condition that there is only 
descending wave in the bottom layer, and the fifth 
equation of Eq. (7), we can getthe dispersion function 
as  
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,         (14) 

2.3 Porous layer is at any interlayer 

Now the porous layer is at thejth layer, the upper and 
lower layers are all elastic, the relation of both side 
interface of porous layer can be written as 

,  (15) 

based on Eq. (15) and Eq. (7), we can get 
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Because  equals zero both at the upper and lower 
interface, so 

 
that is 

 156545351
551

2 ),,,(
1

)/( 


 j
j

f zShhhh
hz

P  ,    (17) 

substituteEq. (16) into Eq. (15),  
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is the equivalent transfer matrix of porous media, a 
4 orders square matrix it is.  

By the transfer matrix, we can obtain 

, (19) 

based on the existence conditions of Rayleigh waves, 
we can obtain the dispersion function as follow 

041234321  gggg .         (20) 

2.4 Porous layers are at the top and bottom layers 

In this case, the j+1th layer is considered as a porous 
half-space, and the jth layer is elastic, and all the others 
are assumed as porous layers.Therefore, in the bottom 
layer (i.e. j+1), there is 
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From Eq. (7) we can get that , , ,  can be 

written as 
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though , is unknown, then we can 
build a D matrix as the format of Eq. (10). Then as the 
same procession from Eq. (10) to Eq. (12), the 
dispersion function is obtained in the same format with 
Eq. (12). 

We deduce the dispersion functions of Rayleigh 
waves in a layered half-space with porous layers locate 
at different positions. Almost all kinds of half-space 
with porous layers can be induced as the formats above. 
For indication that the matrix H in Eq. (5) is still used 
in processing the interface between porous layers. 

3.  OPTIMIZING THE TRANSFER FUNCTIONS 

There is a losing significant digit issue during the 
calculation of transfer matrix algorithm. In elastic 
layered half-space, Abo-zena [1] and Menke [2] 
improved the format of transfer functions, made a new 
matrix Y, the Y matrix’s transfer relation in layered 
half-space is 

),(),( 0
1

0
)1( zzPYzzPY N

N
N

T  .     (23) 

It is an antisymmetric 4 orders square matrix, then the 
dispersion function can be written as 
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Zhang [3] further improved the Y matrix, and made the 
transfer matrix as follow: 

,               (25) 

where , the format of VU , and * can be 
seen in Ref. [3]. By this way, the square terms of e is 
eliminated, the computable frequency range is greatly 
expanded. The dispersion function here is 
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However, when porous layers exist in half-space, 
this algorithm is not suitable because of the different 
size of transfer matrix. If we use the original format of 
transfer matrix, it would be a big limitation of 
computable frequency range. Furthermore, the 
multiplication of transfer matrix of porous media 
causes the cubic terms of e, it is obvious that the 
computable frequency range would be less than that of 
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elastic media. Focus on solving this problem, we do 
our research on it. 

 ,, represent the 2nd, 4th, and 6th row of 
1
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So the dispersion function of porous layered 
half-space is 
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j
bY are a set of antisymmetric matrices, hence, we can 

obtain a column matrix which is made of the upper 
triangular elements of 

1N
bY , which is the Y matrix of 

the bottom layer. By this way, we build an E matrix as 

 TN yyyyyyyyyyyyyyyE 151413121110987654321
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It is a column matrix of 15 rows. In each layer of 

layered half-space, jE  is satisfied of the deductive 

relation as follow: 
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Then, by the transfer relation of
j

bY and E, the transfer 
matrix F can be inferred, which is a 15 orders square 
matrix. Furthermore, the F matrix can be deduced to a 
multiplication of 3 square matrices as 

ddd VUF * .              (29) 

By this way, the cubic terms of e are eliminated. It 
greatly improves the computable frequency range.  

We use Newton-Raphson method to solve the 
dispersion functions of Rayleigh waves. The method 
needs a relative accurate initial value for each modes of 
Rayleigh waves. Therefore, we introduce the bisection 
method into the complicated plane, in order to get the 
complicated roots of the dispersion functions. 

The figures of dispersion curves calculated by 
original and optimized transfer matrix are shown in Fig. 
2. From these figures, we can see that the computable 
frequency range is only about 12 kHz for the original 
method (left), but it is up to 22 kHz for the optimized 
one (right). In addition, the original method would lose 
some modes because of the calculation mistake, the 4th 

and 5th modes are miss in the left figure of Fig. 2. The 
problem is well solved in the optimized method. 

 
Figure2. The comparison of the dispersion curves 

calculated by the original and optimized 

transfer matrix. 

4.  CONCLUSION 

The dispersion functions of Rayleigh waves in layered 
half-space consisted of elastic and porous layers. The 
dispersion functions are deducted by the boundary and 
propagation conditions of Rayleigh waves in cases of 
the porous layers located at different positions of 
half-space. The theoretical system of Rayleigh waves’ 
excitation and propagation is improved in layered 
half-space with porous layers.  

Then the transfer matrix of Rayleigh waves is 
optimized to solve the losing significant digit issue. By 
this means, the cubic terms of e are eliminated, the 
computable frequency range is greatly improved.  

Finally, we introduce the bisection method into 
complicated plane to get the complicated roots of the 
dispersion functions. Using these roots as the initial 
values of Newton-Raphson method. The results are 
good. 
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