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Dispersion equation is an important tool for analyzing propagation properties of
acoustic waves in layered structures. For Love wave (LW) sensors, the dispersion
equation with an isotropic-considered substrate is too rough to get accurate solutions;
the full dispersion equation with a piezoelectric-considered substrate is too compli-
cated to get simple and practical expressions for optimizing LW-based sensors. In
this work, a dispersion equation is introduced for Love waves in a layered structure
with an anisotropic-considered substrate and an isotropic guiding layer; an intuitive
expression for mass sensitivity is also derived based on the dispersion equation. The
new equations are in simple forms similar to the previously reported simplified model
with an isotropic substrate. By introducing the Maxwell-Weichert model, these equa-
tions are also applicable to the LW device incorporating a viscoelastic guiding layer;
the mass velocity sensitivity and the mass propagation loss sensitivity are obtained
from the real part and the imaginary part of the complex mass sensitivity, respectively.
With Love waves in an elastic SiO2 layer on an ST-90◦X quartz structure, for exam-
ple, comparisons are carried out between the velocities and normalized sensitivities
calculated by using different dispersion equations and corresponding mass sensitivi-
ties. Numerical results of the method presented in this work are very close to those of
the method with a piezoelectric-considered substrate. Another numerical calculation
is carried out for the case of a LW sensor with a viscoelastic guiding layer. If the
viscosity of the layer is not too big, the effect on the real part of the velocity and the
mass velocity sensitivity is relatively small; the propagation loss and the mass loss
sensitivity are proportional to the viscosity of the guiding layer. C© 2014 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4886773]

I. INTRODUCTION

Since Love wave (LW) based sensors were reported in 1992,1, 2 they have been attracting the
interest of many researchers. LW is a kind of layered surface acoustic wave (SAW) which is only
polarized in the shear horizontal (SH) direction. LW exists in a layered structure with a finite
thickness guiding layer deposited on a semi-infinite thickness substrate, and the transverse acoustic
wave in the layer is slower than that in the substrate. Due to the guiding layer, the energy of LW
is concentrated in the guiding layer and the substrate near the surface; thus LW is very sensitive to
the disturbance loaded the surface of the guiding layer and this feature can be used to produce a
sensor with good performance. LW-based sensors have the following advantages of high sensitivity,
adjustable temperature coefficient, and small coupling loss into liquids, etc. As a kind of SAW
sensor, LW-based sensors are significantly different from the commonly used Rayleigh type SAW
(RSAW) based sensors. The propagation properties of RSAW mainly depend on the parameters of
the piezoelectric substrate, while the properties of LW depend on not only the piezoelectric substrate
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but also the waveguide layer’s characteristics, such as density, velocity of shear acoustic wave,
viscoelasticity, and thickness.

Dispersion equation is an important tool for analyzing the propagation properties of acoustic
waves in layered structures. Haskell3 studied the dispersion relation of surface waves on multilayered
isotropic medium. Anderson4 analyzed the dispersion of Love waves in heterogeneous anisotropic
materials. Curtis and Redwood5 gave the conditions for the existence of Love waves in a layered
structure with a metal layer on a 6 mm-class piezoelectric material. To achieve the accurate solution
of LW, the author6, 7 presented a general dispersion equation which includes the piezoelectricity of
the substrate. Using the equation, the calculated dispersive curves and sensitivities agree well with
the reported experiment. The shortcoming of the dispersion equation is too complicated to obtain
intuitive physically meaningful expressions, which can directly indicate the sensor performance by
using the material and structural parameters of LW devices. So some researchers8–10 would rather
use a simple but imprecise theoretical model in which the substrate is treated as an isotropic medium.
However, during designing LW-based sensors, the imprecision of the simple model leads to a large
deviation in numerical result from the experimental result. To solve the problem, in this work a
simple and accurate theoretical model will be presented.

For LW-based sensors, the piezoelectricity of most commonly used substrate such as ST-cut and
90◦X-propagate quartz11–13 is relatively small. But, due to the strong anisotropy of quartz, simplifying
the substrate as an isotropic material will result in a great deviation from the exact solution. Based
on the above analysis, Zimmermann14 developed a dispersion equation for LW in a layered structure
with an anisotropic-considered substrate and an elastic layer; however, the form of her equation is
not suitable to get condensed expressions. In the theoretical part of this study, a detailed inducing
process is presented to obtain another form of the dispersion equation for LWs in a layered structure
with an anisotropic-considered substrate and an isotropic guiding layer. Compared to the previously
reported dispersion equations, the form of the new equation is very close to the dispersion equation
with an isotropic-considered substrate. Perturbation theory is applied on the dispersion equation
and the mass sensitivity is derived for LW-based sensors. Properties of a LW sensor incorporating a
viscoelastic guiding layer are also investigated. The real part and the imaginary part of the complex
mass sensitivity correspond to the mass velocity sensitivity and mass loss sensitivity, respectively. In
the numerical illustration, the dispersive curves and mass sensitivities of the first two Love modes in
the layered structure with an elastic SiO2 guiding layer on a differently considered quartz substrate
are presented. A comparison is carried out between the propagation velocities and mass sensitivities,
which prove that the new method can bring accurate solutions close to those of the complicated
method with a piezoelectric-considered substrate. Another numerical calculation is carried out for
the case of a LW sensor with a viscoelastic guiding layer. If the viscosity of the layer is not too
big, the effect on the real part the velocity and the mass velocity sensitivity is relatively small;
the propagation loss and the mass loss sensitivity are proportional to the viscosity of the guiding
layer.

II. THEORETICAL MODEL

A. Dispersion equation for LWs in the layered structure with an anisotropic-considered
substrate

As shown in Figure 1, the layered structure considered in this study consists of a semi-infinite
thickness substrate and a finite thickness layer. A rectangular Cartesian coordinate system (x1,
x2, and x3) is chosen in such way that the x1-axis is parallel to the direction of LW propagation,
the x2-axis is in the shear horizontal direction and the x3-axis is vertical to the surface of the
substrate. The substrate occupies the half-space of x3 ≤ 0; the guiding layer occupies the domain
of 0 ≤ x3 ≤ h and is rigidly linked to the substrate; the space above the layer is occupied by
air or vacuum which is assumed no mechanical contact with the guiding layer. In this work, the
guiding layer is considered as an isotropic, non-conductive and non-piezoelectric material. The
substrate is a piezoelectric material in which the electric field is only coupled with the particle
displacement in the x2 direction. The material matrices of such a material must obey the following

 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported license. See: http://creativecommons.org/licenses/by/3.0/

Downloaded to IP:  124.16.131.71 On: Wed, 02 Jul 2014 01:31:37



077102-3 Jiansheng Liu AIP Advances 4, 077102 (2014)

FIG. 1. The schematic of a layered structure supporting Love waves.

structures:15

c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 c15 0

c12 c22 c23 c24 c25 c26

c13 c23 c33 0 c35 0

0 c24 0 c44 0 c46

c15 c25 c34 0 c55 0

0 c26 0 c46 0 c66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e =

⎡
⎢⎢⎣

0 e12 0 e14 0 e16

e12 e22 e23 e24 e25 e26

0 e23 0 e34 0 e36

⎤
⎥⎥⎦ .

(1)

Here c and e represent the elastic and piezoelectric constants matrices, respectively.

1. Acoustic waves in the substrate and guiding layer

In a homogeneous elastic medium, we consider there is a plane acoustic wave propagating in
the x1 direction and the particle displacement in the x2 direction. The wave can be expressed as

u2 = Aei[ωt−k(x1+iβx3)], (2)

where A is the amplitude of the particle displacement, ω is the angular frequency, k is the propagation
constant, β is the distribution factor of the particle displacement along the x3 direction, i = √−1 is
an imaginary unit. Obviously, the particle motion must comply with Newton’s law:

c2 j2l
∂2u2

∂x j∂xl
= ρ

∂2u2

∂t2
(3)

where ρ is the density and c2j2l is the stiffness coefficient listed in the elastic constants matrix.
Substituting Equation (2) into (3), we can get

c44β
2 − 2ic46β − c66 + ρv2 = 0, (4)

where v = ω/k is the phase velocity. Equation (4) is a quadratic equation with respect to β and its
solutions are:

β =
ic46 ±

√
c44

(
c66 − ρv2

) − c2
46

c44
. (5)

If the expression in the root of Equation (5) is equal to 0, the amplitude of particle displace-
ment along the x3 direction will remain unchanged, which corresponds to the body acoustic wave
propagating in the x1 direction and particle displacing in the x2 direction.

In the semi-infinite thick substrate, here which is considered as anisotropic and non-piezoelectric,

let the root part in Equation (5) equal to zero, we can get VS1 =
√

c66−c2
46

/
c44

ρS
, which is the velocity
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of the quasi-SH acoustic wave in the substrate. To ensure the particle displacement decaying to zero
when x3 tends negative infinity, the real part of β must be positive:

βS = ic46

c44
+

√(
V 2

S1 − v2
)/

V 2
S2, (6)

where VS2 = √
c44/ρS is the velocity of the transverse acoustic wave with the propagation in the x3

direction and the particle displacement in the x2 direction. In the anisotropic-considered substrate,
βS is a complex number; the real part of βS denotes the attenuation of the particle displacement
along the x3 direction and the imaginary part indicates angle between the particle motion and the
x3-axis. Substituting Equation (6) into (2), we can get the solution of SH waves in the substrate:

u2S = ASei[ωt−k(x1+iβS x3)] (7)

In the finite-thickness guiding layer, which is an isotropic material (c46 = 0, c44 = c66 = μL),
two roots of Equation (4) must be remained:

β = ±iβL , (8)

where βL =
√

v2
/

(VL )2 − 1 and kβL is the propagation constant of transverse acoustic waves

propagating in the x3 direction. VL = √
μL/ρL is the phase velocity of transverse acoustic waves in

the layer. Thus the acoustic wave in the guiding layer can be expressed as:

u2L = A1Lei[ωt−k(x1−βL x3)] + A2Lei[ωt−k(x1+βL x3)]. (9)

AS in Equation (7) and AnL in Equation (9) are coefficients to be determined by the boundary
conditions.

2. Boundary conditions and dispersion equations

There are three undetermined coefficients in Equation (7) and Equation (9), so three boundary
equations are needed.

At the plane of x3 = 0, the particle displacement in the substrate is equal to that in the layer:

AS = A1L + A2L . (10)

At the plane of x3 = 0, the stress is continuous in the x3 direction:

(βSc44 − ic46) AS = iμLβL (A1L − A2L ) . (11)

At the plane of x3 = h, the stress in the x3 direction must be zero:

iβL
(

A1LeiβL kh − A2Le−iβL kh
) = 0. (12)

Substituting Equation (10) into (11), we can get:

(βSc44 − ic46 − iμLβL ) A1L + (βSc44 − ic46 + iμLβL ) A2L = 0. (13)

Comparing Equation (12) and (13), we can remove the undetermined coefficients and get:

− A1L

A2L
= βSc44 − ic46 + iβLμL

βSc44 − ic46 − iβLμL
= −e−iβL kh

eiβL kh
. (14)

Equation (14) can be further simplified as:

μLβL tan(βLkh) = c44βS. (15)

where βS =
√(

V 2
S1−v2

)/
V 2

S2 is the real part of βS. Equation (15) is the dispersion equation for LWs
in a layered structure with an isotropic guiding layer on an anisotropic-considered substrate. In the
previous reports,8, 9 the substrate is considered as an isotropic material (assuming c44 = c66 and c46

= 0), thus the dispersion equation is simplified as:

μLβL tan (βLkh) = μSβS, (16)
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where μS is the shear modulus of the substrate,βS =
√

1 − v2
/

V 2
S and VS = √

μS/ρS is the phase
velocity of transverse acoustic waves in the substrate which is considered as an isotropic material.

If the substrate is treated as a piezoelectric material, the dispersion equation of LWs becomes:6

μLβL tan(βLkh) = (D2 − ε̄L )T1 − (D1 − ε̄L )T2

(D2 − ε̄L )A1 − (D1 − ε̄L )A2
. (17)

In Equation (17), T1 and T2 are the surface normal stresses of the substrate at the plane of x3 = 0;
D1 and D2 are the substrate surface normal electric displacements at the plane of x3 = 0; A1 and A2

are the ratios of the particle displacement amplitude to electric potential amplitude in the substrate,
ε̄L is the equivalent permittivity of the guiding layer.

In all three equations, the left side represents the transverse acoustic waves propagating in the
guiding layer, which is considered as an isotropic material in all three two models, so their left
sides have the same form. Equation (15) and (16) have a similar expression of the right side, which
represents the acoustic waves propagating in the substrate; however, the physical meaning of each
equation is essentially different. In Equation (15), VS1 represents acoustic wave propagating in the x1

direction; c44 and VS2 represent the acoustic wave propagating along the x3 direction, namely wave
coupled into the guiding layer. VS1 �= VS2 indicates that the substrate is anisotropic. In Equation (16),
the substrate is considered as an isotropic material in which transverse acoustic waves propagating
along any direction have the same propagation velocity. If the substrate has a strong anisotropy, the
isotropy approximation will lead to a large deviation from the exact value. The right side of Equation
(17) represents not only the SH acoustic waves in the substrate, but also the electric field in the
whole layered structure. Therefore, the right side of Equation (17) is much more complicated than
the right side of Equation (15). If the substrate is a material with weak piezoelectricity, the solution
of Equation (15) should be very close to the solution of Equation (17).

B. Mass velocity sensitivity

The dispersion equation (15) can be written in the following form:

F(v, h) = μLβL tan(βLkh)−c44βS = 0. (18)

In this section, both the substrate and the layer are assumed lossless, thus the propagation
number is a real number and k = 2π /λ. When a LW device is finished, the wave length λ is fixed by
the period of the interdigital transducer (IDT); thus the propagation factor k is a constant in Equation
(18). Assuming there is a small increase of 	h in the guiding layer thickness, which will result in a
change of 	v in the propagation velocity:

F(v + 	v, h + 	h) = 0. (19)

Expanding Equation (19) into the Taylor series about the point (v, h) with respect to a small
increment of (	v, 	h) and, neglecting terms higher than the first order, we can get:

F(v + 	v, h + 	h) = F(v, h) + ∂ F

∂v

∣∣∣∣
(v,h)

· 	v + ∂ F

∂h

∣∣∣∣
(v,h)

· 	h = 0 (20)

From Equation (20), we can obtain:

	v = −∂ F
/
∂h

∂ F
/
∂v

∣∣∣∣∣
(v,h)

· 	h. (21)

Substituting Equation (18) into (21), we can get:

	v = − μLβ2
L

/
ρLvh

1 + 1
βL kh sin (βLkh) cos (βLkh) + ρS/ρL

βSkh
cos2 (βLkh)

· 	h (22)

 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported license. See: http://creativecommons.org/licenses/by/3.0/

Downloaded to IP:  124.16.131.71 On: Wed, 02 Jul 2014 01:31:37



077102-6 Jiansheng Liu AIP Advances 4, 077102 (2014)

FIG. 2. Schematic of the Maxwell-Weichert model for the viscoelastic guiding layer.

When a mass load is acted on the surface of the guiding layer, similar to the reported change6

in dispersion Equation (17), dispersion Equation (15) becomes:

μLβL
μLβL tan (βLkh) + kσv2

μLβL − kσv2 tan (βLkh)
= c44βS, (23)

where σ is the areal density of the mass load. If σ tends to zero, kσv2
/
μLβL = tan(kσv2

/
μLβL )

and Equation (23) becomes:

μLβL tan

[
βLk

(
h + σv2

μLβ2
L

)]
= c44βS. (24)

Equation (24) indicates that a tiny mass σ loaded on the guiding layer surface can be equivalent
to an increment in the guiding layer thickness and

	h = σv2

μLβ2
L

. (25)

Substituting Equation (25) into (22), we can get the mass velocity sensitivity of LW-based
sensors:

Sv
m = 	v

vσ

∣∣∣∣
σ→0

= − 1

ρL h
· 1

1 + 1
βL kh sin (βLkh) cos (βLkh) + ρS/ρL

βSkh
cos2 (βLkh)

. (26)

Equation (26) has a similar form to the previous reported mass sensitivity16 for LW-based
sensors with an isotropic-considered substrate.

C. LW sensors incorporating viscoelastic layers

If the guiding layer is an elastic material, the velocity and the mass sensitivity of a LW sensor
can be obtained by using the equations presented in the previous section. To achieve a higher mass
sensitivity, polymers are often adopted as guiding materials of LW devices because of their lower
velocity of transverse waves and less density,. Different from elastic overlays, a polymer guiding
layer will produce a large propagation attenuation because of its non-ignorable viscosity. When the
viscoelasticity is considered, the shear modulus μL of the guiding layer becomes a complex variant.
The mechanical behavior of a viscoelastic material can be described by using a model consisting
of springs and dashpots. In this work, a simplified Maxwell–Weichert model (seen in Figure 2) is
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TABLE I. Material parameters of simplified model used in numerical calculation.

Parameters ST-90◦X quartz SiO2

ρ in kg/m3 2651 2200
c44 in GPa 30.34
c66 in Gpa 67.47
c46 in Gpa −7.60
c66 − c2

46

/
c44 in Gpa 65.57

VS1 in m/s 4973
VS2 in m/s 3383
VSSBW in m/s 4992
μL in Gpa 17.40
VL in m/s 2812

adopted; thus the complex shear modulus can be expressed as:17

μL = μ0 + μ1
iωτ1

1 + iωτ1
(27)

where τ 1 = η1/μ1 is the relaxation time of the Maxwell branch. Substituting the complex μL into
the dispersion equations, we can get a complex velocity v = vr + ivi. vr represents the propagation
velocity in the x1 direction, vi is related to the propagation loss in the x1 direction:

IL ≈ −40π
(
log10 e

) vi

vr
= −54.6

vi

vr
, (28)

The mass sensitivity calculated by using Equation (26) is also a complex number:

Sv
m = 	v

vσ

∣∣∣∣
σ→0

≈ 	vr + i	vi

vrσ

∣∣∣∣
σ→0

= Svr
m − i

S I L
m

54.6
, (29)

where Svr
m mass velocity sensitivity of a LW sensor incorporating a viscoelastic guiding layer, SI L

m
is the mass insertion loss sensitivity.

III. ILLUSTRATIONS OF LWS IN A DEVICE WITH A QUARTZ SUBSTRATE

A. LWs in a structure with an elastic layer

To verify the accuracy of the new dispersion equation and sensitivity, numerical calculations
are carried out by using the equations listed in the previous section. The analyzed LW-based sensor
consists of a substrate of ST-90◦X quartz and an elastic guiding layer of silicon oxide. It is known
that ST-cut quartz is a piezoelectric material, which supports a Rayleigh wave parallel to the X-axis
and a surface skimming bulk wave (SSBW) perpendicular to the X-axis.18 The material constants
of quartz are from reference.19 It is noted that the given material constants are based on crystal axis
coordinates, which is different from the calculation coordinates shown in Figure 1. To obtain the
material constants in the calculation coordinates, a Bond transformation is needed and the Euler
angles of ST-90◦X quartz are (0, 132.75◦, 90◦). Due to the very low propagation loss and good
abrasion resistance, SiO2 is considered as an ideal material for the guiding layer of LW-based
devices. In LW mode sensors, SiO2 is usually sputtered on the substrate surface and its material
constants2 are slightly different from the constants of fused quartz. The density and the elastic
constants of the substrate and the guiding layer are listed in Table I. As shown in Table I, c44 is much
different from c66, which indicates ST-90◦X quartz has a strong anisotropy. The strong anisotropy
will lead to a big deviation in the solution of isotropic-considered substrate to the exact solution,
which will be verified in the following numerical results.

In Figure 3(a) and 4(a), the black curves represent the propagation velocity and mass velocity
sensitivity of LWs in a device incorporating a piezoelectric-considered quartz substrate; the blue
curves represent the velocity and the sensitivity with an anisotropic-considered substrate; the red
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FIG. 3. Comparison between the propagation velocities of the first two Love modes in a device with an elastic SiO2 layer on
a differently considered ST-90◦X quartz substrate. (a) Propagation velocity vs. relative guiding layer thickness, (b) Deviations
of propagation velocity with differently simplified substrate from the exact values.

FIG. 4. Comparison between the magnitudes of normalized mass velocity sensitivity for the first two Love modes in a
device with an elastic SiO2 layer on a differently considered ST-90◦X quartz substrate. (a) The magnitudes of normalized
sensitivity vs. relative guiding layer thickness, (b) Deviations of the sensitivity with differently simplified substrate from the
exact values.

curves represent the velocity and the sensitivity with an isotropic-considered substrate and μS =
c66 − c2

46/c44; the green curves represent the velocity and the sensitivity with an isotropic-considered
substrate and μS = c66. In Figure 3(b) and 4(b), the blue, red, green curves represent the velocity and
sensitivity deviations of differently simplified substrate to the exact solutions with a piezoelectric-
considered substrate.

In Figure 3, the propagation velocities of LWs in SiO2/quartz structure are compared between
different-considered substrates. When the guiding layer is very thin, the black curve tends to VSSBW,

the blue and the red curves tend to VS1, the green curve tends to VS =
√

c66
/
ρS . If thickening

the guiding layer, all the propagation velocities decrease and tend to VL as the guiding layer tends
infinite thick. Figure 3(a) displays that the blue curves are very close to the black curves, which
represent the exact theoretical velocities with a piezoelectric-considered substrate. This proves that
the method developed in this work has a good accuracy. To clearly compare the accuracy of the
dispersion equations with differently simplified substrate, Figure 3(b) shows the deviations in prop-
agation velocities of the first two Love modes from the exact propagation velocities (black curves in
Figure 3(a)). The deviation denoted by the blue curves is the smallest and the deviation is being
reduced when the guiding layer thickness increases. The deviations denoted by the red curves and
the green curves are much bigger, and initially the deviations is increased when the guiding layer
thickness increases. The green curves illustrate that the maximum deviation in the velocity of the
fundamental Love mode is about 250 m/s (200 m/s for the red curves), which is about 5% (4%) of
the propagation velocity. More unfortunately, the maximum deviation occurs at the relative guiding
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FIG. 5. The real part of velocity and propagation loss vs. relative layer thickness for a LW device with a viscoelastic guiding
layer. (a) real part of velocity; (b) propagation loss. The black lines in (b) denote the propagation loss scaled up by a factor
of 1000.

layer thickness of 12%, which is the most valuable for LW-based sensors because of closing to the
layer thickness corresponding to the maximum sensitivity (seen in Figure 4(a)).

In Figure 4, the normalized mass velocity sensitivities of the first two Love modes with different-
considered substrate are compared. The blue curves in Figure 4(a) almost completely overlap with
the black curves, which illustrates that we can get a very precise sensitivity of LW-based sensors
by using Equation (26) with an anisotropic-considered substrate. The red and the green curves
are deviated from the black curves obviously, although their maximum values are very close. The
maximum sensitivity represented by the blue and the black curves occurs at the relative guiding
layer thickness of 14%, while the maximum sensitivity represented by the red and the green curves
occurs at the relative guiding layer thickness of 17%. Before reaching the maximum value, the blue
and the black curves have been above the red and the green curves. Figure 4(b) shows the deviations
in the normalized mass velocity sensitivity of differently simplified method to the exact values. The
blue curve shows that the sensitivity calculated by using the model with an anisotropic-considered
substrate has an excellent accuracy. The red curves and the green curves illustrate that the model with
an isotropic-considered substrate has a worse accuracy. For the red curves, the maximum deviation
in the normalized sensitivity of the fundamental Love mode is about 0.45 × 10−3 m3/kg (0.43 ×
10−3 m3/kg for the green curves), which is about the 28% of the maximum normalized sensitivity.

B. LWs in a structure with a viscoelastic guiding layer

In the followings some numerical results will be presented for a LW device incorporating
a viscoelastic guiding layer on an anisotropic-considered ST-90◦X quartz substrate. The device is
characterized by a wavelength of 40μm, which is decided by the period of the interdigital transducers
deposited on the substrate surface. Material parameters of the viscoelastic layer are assumed as: ρL

= 1200 kg/m3, μ0 = 1.5 GPa, τ 1 = 13 ns. In Figure 5 and 6, the blue lines correspond to μ1 = 0.15
GPa, black lines corresponds to μ1 = 0.15 MPa.

As shown in Figure 5(a), the effect on real part of velocity (vr) is relatively small. The blue
lines is above the black lines because the shear modulus of the guiding layer with μ1 = 0.15 GPa
is larger than that with μ1 = 0.15 MPa. The impact on the fundamental mode is smaller than on
the higher order modes. The difference of the initial layer thicknesses of two adjacent modes is
about λ/2√

V 2
S1

/
V 2

L −1
. Figure 5(b) displays that the effect of layer viscosity on the propagation loss is

considerably larger than on the real part of velocity. The black curves are very close to the blue
curves, which represent the propagation loss multiplied a factor of 1000, the ratio of corresponding
μ1. This result proves that the propagation loss is proportional to the guiding layer viscosity for LW
devices incorporating a polymer overlay with a not too big viscosity. Figure 5(b) also shows that the
propagation loss of a higher order mode is larger than that of a lower order mode.
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FIG. 6. Magnitudes of normalized Svr
m and SI L

m vs. relative layer thickness for a LW device with a viscoelastic guiding layer.
The blue lines in (b) represent the mass loss sensitivity multiplied by a factor of 1000.

Figure 6 displays the magnitudes of the normalized mass velocity sensitivity and normalized
mass loss sensitivity as functions of the normalized layer thickness. Similar to on the propagation
velocity, the effect on the velocity sensitivity is very small and the effect on the fundamental mode is
smaller than on the higher modes (seen in Figure 6(a)). The mass sensitivity of a lower order mode
is larger than that of a higher order mode. The blue curves in Figure 6(b) represent the normalized
mass loss sensitivity multiplied by the factor of 1000. The black curves are very close to the blue
curves. This proves that the mass loss sensitivity is also proportional to the viscosity of the guiding
layer. The maximum mass loss sensitivity of a lower order mode is larger than that of a higher order
mode.

IV. CONCLUSIONS

To achieve simple and precise solution, a dispersion equation is induced for LWs in a layered
structure with an anisotropic-considered substrate and an isotropic guiding layer; a direct expression
of mass velocity sensitivity is also presented based upon the dispersion equation. The simple forms of
the dispersion equation and sensitivity expression are similar to those of LWs in the layered structure
with an isotropic-considered substrate. With an example of LWs in a commonly used structure with
a substrate of ST-90◦X quartz and a guiding layer of SiO2, propagation velocities and normalized
mass sensitivities are calculated and compared by using different theoretical models. Numerical
results show that the method presented in this work can achieve much more accurate solutions
than the simplified model reported previously. Another numerical illustration is presented for a LW
sensor incorporating a viscoelastic guiding layer on an anisotropic-considered quartz substrate. The
calculation results show that the guiding layer viscosity causes a relatively small effect on the real
part of velocity and the mass velocity sensitivity; the propagation loss and the mass loss sensitivity
are proportional to the viscosity of the guiding layer.
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