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An Adaptive Detector with Range Estimation
Capabilities for Partially Homogeneous Environment

A. De Maio, Fellow, IEEE, C. Hao, Member, IEEE, and D. Orlando, Senior Member, IEEE

Abstract—In this work, we devise an adaptive decision scheme
with range estimation capabilities for point-like targets in partially
homogeneous environments. To this end, we exploit the spillover
of target energy to consecutive range samples and synthesize the
Generalized LikelihoodRatio Test. The performance analysis, con-
ducted resorting to both simulated data and real recorded datasets,
highlights that the newly proposed architecture can guarantee su-
perior detection performance with respect to its competitors while
retaining accurate estimation capabilities of the target position.

Index Terms—Adaptive radar detection, constant false alarm
rate (CFAR), generalized likelihood ratio test (GLRT), partially
homogeneous environment, range estimation.

I. INTRODUCTION

A DAPTIVE radar detection of point-like or extended tar-
gets embedded in Gaussian disturbance represents an ac-

tive field of research, wherein the seminal paper by Kelly [1]
and the technical report [2] are considered points of reference.
Indeed, most recent papers rely on the results contained in the
above works. Specifically, in [1], Kelly resorts to the General-
ized Likelihood Ratio Test (GLRT) to derive a Constant False
Alarm Rate (CFAR) test for detecting signals known up to a
scaling factor. In [3], the authors derive another CFAR detector
called Adaptive Matched Filter (AMF) using a two-step GLRT-
based design procedure. Other different solutions can be found
in open literature (see for instance [4]). All the above receivers
assume a Homogeneous Environment (HE), wherein a set of
secondary data free of signal components, but sharing the same
spectral properties of the interference in the cells under test (pri-
mary data), is available. However, secondary data are often con-
taminated by power variations over range, clutter discretes, and
other outliers, that couldmake secondary data not representative
of the primary data. In such situations, receivers designed for the
HE exhibit significant performance degradations and the CFAR
property is no longer ensured [5]. A slightly general noise model
assumes that the interference covariance matrix of the primary
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data and that of secondary data coincide only up to a scale factor.
This scenario is referred to as Partially-Homogeneous Environ-
ment (PHE) and has been proposed in [6], where the authors
apply the GLRT to get a fully-adaptive detector, referred to as
the Adaptive Coherence Estimator (ACE) or the Adaptive Nor-
malized Matched Filter (ANMF) [7].
Another important issue concerns the design assumptions

of the nominal target. More precisely, detectors considered
so far assume that the target is located exactly “where the
matched filter is sampled” and, hence, that there is no straddle
loss, namely no spillover of target energy to adjacent matched
filter returns. While this is a reasonable approach, it does not
fully use the information provided by the measurements from
the two sampling points and, hence, does not share optimality
properties [8]. In [8], it is assumed that several closely spaced
targets fall within the same beam of a monopulse radar and
among three or more adjacent matched filter samples in range;
for the considered scenario a Maximum Likelihood (ML) ex-
tractor is developed that, using monopulse information from the
above samples, estimates the angles and ranges of the targets.
In [9], the authors focus on space-time adaptive processing
[10], [11] and devise decision schemes for point-like targets
which suitably exploit the spillover of target energy to provide
accurate estimates of the target position within the cell under
test (sub-bin accuracy). The range gates are formed sampling
the output of a filter matched to the transmitted pulse, say,
every seconds with the duration of . At the design
stage the authors assume either the HE or the PHE. Moreover,
it is also shown that decision schemes conceived to detect
distributed targets, see [2], [12]–[14], can be used to account
for the spillover of a point-like target.
In the present work, we focus on the design of space-time

decision schemes to detect point-like targets in PHE. More pre-
cisely, we borrow the discrete-time model of the received signal
from [9] and apply the GLRT design criterion (it is important
to stress here that in [9] the authors make use of the two-step
GLRT design procedure in the case of PHE). The performance
analysis is carried out on both simulated and real recorded data
in comparison with the ad hoc detector derived in [9] for the
PHE. Finally, it is important to highlight that the newly pro-
posed architecture guarantees the CFAR property with respect
to the unknown parameters of the disturbance.
The remainder of the paper is organized as follows. Next sec-

tion is devoted to the problem formulation. Section III focuses
on the detector design, while Section IV provides illustrative ex-
amples. Section V contains some concluding remarks and hints
for future work.

II. PROBLEM FORMULATION

The discrete-time model for the signal and the interference is
borrowed from [9]. For the reader ease, we recall here that the
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vector of the noisy returns representing the th range cell is given
by. , where if ;

if ; if . In
the previous equations, is the cell under test, is the overall
space-time steering vector1 [10], [15]; is the complex
ambiguity function of the transmitted pulse waveform [15], 0 is
the null vector of proper dimensions, and is a residual delay
that leads to target energy spillover. The interested reader is re-
ferred to [9] for further details on the signal model. An alterna-
tive definition of the residual delay accounts for target positions
surrounding the considered bin center, namely

(1)

Finally, the decision problem to be solved can be formulated
in terms of the following binary hypothesis test:

where is a deterministic factor accounting for channel and
target effects, is the target Doppler frequency, ,

, and , , are independent complex
normal random vectors with zero mean and covariance matrices

and , where and
denotes conjugate transpose.
In the next section we derive an adaptive decision scheme that

takes advantage of the possible spillover of target energy.

III. DETECTOR DESIGN

Denote by the overall data matrix, with
the primary data matrix, the

secondary data matrix. Moreover, let

(2)

where denotes transpose. The GLRT is the following deci-
sion rule

(3)

where is the threshold value to be set according to the desired
Probability of False Alarm ( ), and is the probability
density function (pdf) of under the hypothesis, .
Assumptions of Section II imply that

(4)

1For the sake of brevity, we omit the dependence of on the spatial and the
normalized Doppler frequency.

and

(5)

where stands for with being the trace of a

square matrix, , ,
is times the sample covariance matrix of the secondary data,
and denotes the determinant of a square matrix.
Let us begin solving the optimization problem under the

hypothesis. It is well known that the maximum likelihood esti-
mate of , say, is given by the sample covariance matrix
[1]. Replacing with in (4) yields

(6)

where denotes proportionality. Now maximization with re-

spect to is tantamount to minimizing ,
that can be recast as follows

(7)

with , the -di-
mensional identity matrix, with

. Setting to zero the deriva-
tive with respect to of the last factor in (7) yields

(8)

where denotes complex conjugate. It follows that

(9)

Let us focus on the denominator of the above equation and ob-

serve that , where
is a diagonal matrix containing the eigenvalues, , ,
of and is a unitary matrix. Thus, the th root of
the denominator at the right-hand side of (9) can be recast as

(10)
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where , , and , ,

with and
. It follows that (10) can be written as

(11)
where , ,

,

, , ,

, , ,

, , . Moreover, ,
,

, ,

, ,

,

, ,

, where ,
, , and denotes the real

part of the argument. Finally, (11) can be recast as

(12)

where , ,
, , ,

. Now, we prove that (12) as function of admits
an absolute minimum in the open interval and the
minimum point is such that with denoting the
derivative of with respect to . To this end, we observe that
(12) is continuous and differentiable in ,

(note2 that if , then ), and if

, which implies . Hence, there exists at least
a point such that and the optimal solution of
(12) has to be searched among the stationary points. To proceed
further, we set to zero the derivative of with respect to of
(12), i.e.,

(13)

where , ,
,

,
,

, ,
, and select the positive root, say, which returns

the minimum of . It is important to observe that since the de-
gree of the numerator of (13) is 7, due to Abel’s Impossibility
Theorem, the roots of a general 7th order polynomial can only be
computed (to any desired degree of accuracy) using numerical
algorithms such as the Newton-Raphson or Laguerre methods.
Nevertheless, resorting to Rouchè Theorem, it is always pos-
sible to provide upper and lower bounds concerning the mag-
nitude of the roots, which can be used for the implementation
of the Newton-Raphson procedure. Specifically, the lower and

2The sign of can be easily obtained from (9).

the upper bounds are given by and
, respectively. On the other

hand, under the hypothesis, the optimization with respect to
yields

(14)

where , , are the eigenvalues of .
By Proposition 2 of [13], it is easy to prove that

admits a unique absolute minimum if
. The minimum point is given by the unique positive root,

say, of the equation ,
where , ,

, .
Gathering the above results, the GLRT can be recast as

(15)

where . Maximization over cannot be
conducted in closed form. Hence, we resort to a grid-search to
maximize with respect to . Any grid-search-based implemen-
tation of this detector will be referred to in the following as
the GLRT with Localization Capabilities for PHE (GLRT-LC-
PHE). Finally, it is not difficult to show that the GLRT-LC-PHE
ensures the CFAR property with respect to the interference co-
variance matrix [9], [16].

IV. PERFORMANCE ASSESSMENT

In this section, we analyze the performance of the proposed
detection algorithm in terms of Probability of Detection ( )
and Root Mean Square (RMS) error in range. For comparison
purposes, we also show the performance of the so-called Mod-
ified ACE (M-ACE) derived in [9]. The analysis is conducted
both on simulated and real recorded data.
As to simulated data, we exploit standard Monte Carlo

counting techniques and evaluate the thresholds necessary
to ensure a preassigned value of resorting to
independent trials. The values and the RMS range er-
rors are estimated over and independent trials,
respectively. The actual position of the target is modeled as
(independent from trial to trial and) uniformly distributed3
in .
Moreover, we use a rectangular pulse with s and

Hz. As to the , it takes on values in with

. The SNR is given by with
a deterministic factor, while the disturbance is modeled as an
exponentially-correlated complex normal vector with one-lag
correlation coefficient , namely the th element of the
covariance matrix is given by , with . Finally,
we set and .
The detection performances are analyzed in Figs. 1 and 2.

More precisely, in Fig. 1 we plot versus SNR for ,
and two values of , while in Fig. 2 we report the RMS error
in range versus the SNR for the same values of and as in
Fig. 1. The curves highlight that for a small number of training

3Otherwise stated, the residual delay is a realization of the uniform random
variable (rv) that takes on values in .
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Fig. 1. versus SNR for the GLRT-LC-PHE and the M-ACE with simulated
data; and two values of .

Fig. 2. RMS error in range versus SNR for the GLRT-LC-PHE and theM-ACE
with simulated data; and two values of .

data, the GLRT-LC-PHE guarantees a superior detection perfor-
mance than the M-ACE. For instance, at , the perfor-
mance gain is about dB when . However, the gain
reduces to 0.4 dB when . The curves also show that two
detectors share the same performance in terms of target local-
ization capability, which also depends on .More precisely, the
higher , the lower the RMS error in range. Finally, it is impor-
tant to observe that for high SNR values the RMS error can be
approximated as a rv uniformly distributed in
with denoting the search grid resolution [9]. The standard
deviation of such rv (i.e., ) is a lower-bound on the
RMS errors, that for the considered parameter values is equal
to m (see Figs. 2 and 4).
In Figs. 3 and 4, we study the performance of the

GLRT-LC-PHE and the M-ACE using data collected by the
McMaster IPIX radar from a site in Dartmouth in November
1993 [17]. Our analysis refer to the file 19931117 131609
stareB0002.cdf (dataset 226 of [17]). The details on the exper-
iment can be found in [17]. We use the range cells 49-51 of
VV channel as the primary data, and the range cells adjacent to
the primary data as the secondary data; specifically, we choose
the range cells 44-48 and 52-56. The normalized Doppler
frequency is selected equal to 0 and 0.939 (which corresponds
to a moving target with velocity of about m s).
The and the RMS error in range are evaluated over 1536

and 500 independent trials, respectively. Moreover, we inves-
tigate the behaviors of the GLRT-LC-PHE and M-ACE under
the same number of False Alarms (FA). The limited amount of
real data does not allow a Monte Carlo estimation of the
on live clutter. Nevertheless, we set the threshold of the dif-
ferent receivers in order to obtain a pre-assigned FA number,

Fig. 3. versus SNR for the GLRT-LC-PHE and the M-ACE with IPIX data;
, , , and FA .

Fig. 4. RMS errors in range versus SNR for the GLRT-LC-PHE and the
M-ACE with IPIX data; , , , and FA .

i.e., . Inspection of the figures confirms the trend ob-
served in Figs. 1 and 2. Specifically, the GLRT-LC-PHE ensures
better detection performance than the M-ACE; as to the local-
ization capabilities, both receivers exhibit the same behavior,
namely the RMS errors are comparable for the considered SNR
values.

V. CONCLUSIONS

In this work, we have considered the problem of adaptive de-
tection and range estimation of a point-like target buried in par-
tially homogeneous Gaussian disturbance. At the design stage,
we have exploited target energy spillover to derive an adap-
tive receiver with localization capabilities. Remarkably, it en-
sures the desirable CFAR property with respect to the unknown
parameters of the interference. The performance assessment,
conducted on both simulated data and real recorded data, has
shown that, for the considered values of the parameters, the new
receiver can guarantee better detection performances than the
M-ACE [9] at the price of an increased computational load. On
the other hand, the estimation accuracy of the target position
is comparable to that of the M-ACE. Possible future research
tracks might include the design of decision schemes with local-
ization capabilities for range-distributed targets and/or polariza-
tion processing [18].
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